
Debugging Missing Assumptions in a Formal
Verification Environment

Brian Keng1, Evean Qin2, Andreas Veneris1,3, Djordje Maksimovic1

Abstract—In the past decade, formal tools have increased
functional verification efficiency by searching for corner-case
bugs using mathematical reasoning. At the same time, this prac-
tice has introduced new challenges when failures are detected.
Once a counter-example is returned by a formal tool, the user
typically does not know if the failure is caused by a design bug,
an incorrectly written assertion, or a missing assumption. This
paper introduces a novel methodology to automatically debug
missing assumptions. We first present an algorithm to automati-
cally generate missing input constraints given a failing counter-
example. The algorithm is then extended to provide higher
quality assumptions using multiple failing counter-examples. A
function is extracted from these counter-examples that encodes
the input combinations that cause the assertion to fail. This
function is later used to generate a list of fixed cycle assumptions
that prevent failures similar to the generated counter-examples.
These filtered assumptions can then be used as hints for the actual
missing assumption. Further, if a missing assumption is not the
cause of the failure, the method offers the additional benefit
that the counter-examples it generates can be utilized to debug
the RTL and/or the assertion. Preliminary experimental results
show that the generated properties provide a strong intuition as
to what input constraints may be missing.

I. INTRODUCTION

Functional debugging is one of the largest bottlenecks in the
design cycle taking up 60% of the total verification time [1].
To cope with this bottleneck, many debugging techniques [2]–
[4] have been introduced to automatically localize design
errors and improve debugging efficiency. At the same time,
techniques such as formal property checking and assertion-
based verification [5] have grown in popularity, leading to
new challenges that extend beyond traditional design error
debugging.

Formal property checkers [6] aim to increase verification
efficiency by globally verifying an assertion using mathe-
matical models which encode the design intent. In the ideal
case, if an assertion is violated, the formal tool returns a
single counter-example allowing detection and debugging of
corner case design bugs. However, as extensively documented
in industry reports [7], debugging formal counter-examples
can be challenging, as the engineer does not have confidence
whether the observed failure is due to a design bug, an
incorrectly written assertion, or a missing assumption.

Assumptions are necessary in formal verification as they
model the design’s intended environment and ensure that
Register Transfer Level (RTL) bugs can be detected. Never-
theless, debugging missing assumptions can be a challenging
task because – unlike assertions – they are rarely explicitly
documented. Instead, they are expressed implicitly by either
the design specification or the functionality of adjacent design
blocks. For the engineer, this can lead to a tedious “guess-and-
check” iterative debugging process, introducing many time-
consuming calls to the formal tool. To alleviate this pain
and make formal technology effective to its full potential, the
engineer today needs more debug automation to help analyze

1University of Toronto, ECE Department, Toronto, ON M5S 3G4 ({briank,
veneris, djordje}@eecg.toronto.edu)

2Vennsa Technologies Inc., Toronto, ON M5R 3L8 (evean@vennsa.com)
3University of Toronto, CS Department, Toronto, ON M5S 3G4

the behavior of the counter-example and identify candidate
missing assumptions.

In this work, we present an algorithm that takes the first
steps towards automated debugging of missing input con-
straints in a formal Register Transfer Level (RTL) verification
flow. This algorithm automatically generates fixed cycle input
constraints in the form of SystemVerilog properties from a
failing formal counter-example. In essence, the goal for these
added assumptions is to provide suggestions or hints to the
engineer in identifying the missing assumption, or to provide
confidence that the problem is most likely into the RTL and/or
the assertion and not into the assumption(s) itself.

This algorithm is then extended to overcome limitations in
the quality of the assumptions it generates. This is accom-
plished by generating extra counter-examples from an existing
designer specified set, and then using these new counter-
examples to generate useful assumptions. The algorithm com-
plements other debugging techniques as it provides additional
information through new counter-examples. In detail, the con-
tributions of the work are twofold:

• A novel algorithm to generate multiple distinct counter-
examples from a single assertion failure by iteratively ex-
tracting constraints from previous counter-examples and
re-running the formal tool. When a missing assumption is
not the root-cause of the observed failure, the generated
counter-examples can be used by the engineer to improve
the resolution of existing automated tools when debug-
ging incorrect assertions [8] and/or RTL design errors [3].

• A method of using multiple distinct counter-examples
to improve the quality of results of the assumption
debugging methodology.

An extensive set of experimental results have been per-
formed over a wide variety of OpenCores [9] designs
with SystemVerilog assertions written from their specification
documents. Results confirm the efficiency in generating the
new properties as well as their ability to provide effective
guidance as to what input constraints may be missing. Multiple
counter-examples are shown to reduce the number of generated
assumptions by 38% on average for ten counter-examples, and
an average of 28 assumptions returned to the user.

The remaining sections of this paper proceed as follows.
Section II presents background material. Section III presents
the generation of assumptions using a single counter-example.
Section IV describes an overview of the extended assumption
debugging methodology, while Section V present the details
of the proposed work. Section VI presents experimental results
and Section VII concludes this work.

II. PRELIMINARIES

A. Minimal Correction Sets and Unsatisfiable Cores

For a given unsatisfiable (UNSAT) Boolean formula φ in
conjunctive normal form (CNF), an UNSAT core is a subset
of clauses of φ that are unsatisfiable. A Minimal Unsatisfiable
Subset (MUS) is an UNSAT core where every proper subset
is satisfiable (SAT). A Minimal Correction Set (MCS) is a
minimal set of clauses of φ such that removing them will result
in φ being SAT. There exists a duality relationship between

MUSs and MCSs such that, if one has all MUSs, then all
MCSs can be computed and vice versa [10].

MCSs of φ can be computed by introducing a fresh re-
laxation variable to each clause. If the variable is active,
then the clause is effectively removed from the problem.
By additionally introducing cardinality constraints on these
relaxation variables, one can find all minimal sets of relaxation
variables which will result in φ being SAT. Each one of these
solutions represents an MCS corresponding to the associated
relaxation variables. This idea has been used extensively in
modern Max-SAT solvers [11], [12] to compute MCSs as well
as design debugging [3], [4] applications.

III. DEBUGGING MISSING INPUT CONSTRAINTS WITH A

SINGLE COUNTER-EXAMPLE

In this section, we develop a methodology to quickly
determine whether a candidate input constraint will prevent a
failure from occurring. A naive way to detect this is to simply
re-run the formal tool with the added candidate constraint. This
can be very computationally intensive especially if multiple
input constraint candidates need to be tested. Instead, we
will generate an approximate solution to this process by
generating a function that represents all MUSs with respect to
the input unit clauses of the unrolled counter-example. Using
this function, potential input constraints can be efficiently
checked to ensure that they do not cause a failure in a similar
manner to the given counter-example.

Consider the CNF formula φ of the time-frame expanded
circuit and the corresponding counter-example:

φ = S ·X · T · P (1)

where S represents the initial state, X the counter-example
input vector, T the unrolled circuit transition relation, and
P the property to be checked. Since φ models the counter-
example of the unrolled circuit, it is guaranteed to be UNSAT.

Instead of computing all MUSs for φ to generate our desired
function, a less expensive computation can be performed by
examining only the inputs clauses from X . The intuition here
is that we are only concerned with missing input constraints,
so it is unnecessary to perform extra computation for finding
all MUSs not relating to inputs.

More precisely, we wish to extract all minimal∗ subsets of
input unit clauses from X (denoted by Uk for the kth such
set) such that S · T · P · Uk is UNSAT. This will allow us
to build a function, F , that represents the disjunction of all
MUSs with respect to the inputs, shown in the next equation:

F = U0 + ...+ Uk (2)

Given a candidate input constraint, A, if F · A is SAT, then
A does not prevent the failure given in the counter-example
since at least one of Uk is SAT. Inversely, if F ·A is UNSAT,
then A will ensure that future failures will not occur in the
same way as the given counter-example. However in the latter
case, A may not constrain the input space enough to prevent
all failures, but it at least prevents failures similar to those
seen in the counter-example.

For the ith literal in Uk, denoted by uk
i
, Equation 2 can be

expanded to give:

F =u0
0
u0
1
...u0|U0| + ...+ uk

0
uk
1
...uk|Uk|

=(u0
0
+ u0

1
+ ...+ u0|U0|)...(u

k
0
+ uk

1
+ ...+ uk|Uk|) (3)

∗ Minimal in the sense that removing any clause from Uk will make
S · T · P · Uk become SAT.

Notice that when F evaluates to false, at least one literal in
each Uk term is false. In other words, all Uk MUSs can be
broken by negating at least one literal from each term in F .
Correspondingly, φ can be made SAT if at least one literal
from each term in F is negated for the respective unit clauses
in φ. Further, removing a minimal set of the corresponding
unit clauses from the original problem will give an equivalent
effect. Define this minimal set to be V k ⊆ X for the kth set.

The set V k can be thought of as the kth MCS with respect to
the input literals. In fact, the relationship between the minimal
subsets of inputs to make φ UNSAT (Uk), and the minimal
subsets of inputs that need to be removed to make φ SAT (V k),
is analogous to the relationship between MUSs and MCSs.

Using this relationship and the fact that these sets only
contain unit clauses, F can be simplified further. Let the
ith literal in V k ⊆ X be denoted by vk

i
. Equation 3 can

be simplified, by distributing the conjunctions and removing
redundant terms/literals, to:

F =v0
0
v0
1
...v0|V 0| + ...+ vk

0
vk
1
...vk|V k| (4)

Now each term of Equation 4 contains the conjunction of the
negated literals of each V k. Thus to build the function F , one
only needs to find all V k.

This can be accomplished in a similar manner to computing
all MCSs. Begin by adding a fresh relaxation variable to each
clause in X . Using cardinality constraints, find all minimal
SAT solutions with respect to these relaxation variables similar
to the process used by modern Max-SAT solvers [11], [12].
Each such solution will correspond to a V k. After all such
solutions are found, construct a SAT instance of the form
F · A, where A is the given input constraint to be checked.
This instance checks whether A can restrict the input space
to prevent a failure similar to the one seen in the counter-
example.

Although computing MCSs can be computationally inten-
sive in general, the proposed method only calculates them with
respect to the input unit clauses.

IV. ASSUMPTION DEBUGGING FLOW

This section extends our methodology for debugging miss-
ing assumptions in a formal property checking environment.
Although the overall flow is presented in the context of
debugging missing input assumptions, as noted earlier, the
work here can still be valuable in debugging other types of
formal failures such as RTL design errors or incorrectly written
assertions.

Let Ck denote the kth Minimal Correction Input Set
(MCIS), defined as a minimal set of input unit clauses of X
that when removed, will result in φ being SAT i.e., Ck is the
minimal set of input clauses to remove to correct the failure.
This is analogous to the idea of a MCSs except with respect
to only input unit clauses.

Let Uk denote the kth Minimal Unsatisfiable Input Subset
(MUIS), defined as a minimal unsatisfiable set of input unit
clauses such that S · T ·P ·Uk, in Section III, is still UNSAT
i.e., Uk is the minimal set of input clauses needed to expose
the failure. Similarly, Uk is analogous to MUSs except with
respect to input unit clauses.

The overall methodology is shown in Figure 1 and consists
of two major phases. Given an assertion failure and its
associated counter-example, the first phase attempts to iter-
atively generate multiple formal counter-examples. For each
counter-example, MCISs are extracted and used to generate
constraints which are then passed back into the formal tool.
These constraints ensure that another distinct counter-example
is found. This process is repeated until the formal tool cannot

Checker
Formal Property

Assumptions
Generate Assumptions

Model

Assumptions
Filter

Counter−Examples
Generate Multiple

Assumptions

Counter−example

MCISs

Filtered Assumptions

Pruned Assumptions

Candidates

Generate

Extract

MCISs

Fig. 1. Assumption Debugging Methodology

return any more counter-examples (i.e. the number of counter-
examples produced lead to assumptions that fully constrain
the undesired behaviour of the design), or a desired number
of vectors has been reached.

The second phase of the methodology iteratively generates
input assumptions that can prevent failures similar to those
seen in the formal counter-examples. This is accomplished
by using a model of simple assumption structures and fil-
tering them based on the MCIS constraints extracted from
the counter-examples. The resulting filtered assumptions are
returned to the user and can either be used as suggestions
for the missing assumptions, or as hints to which signals and
expressions might be needed.

This flow improves debugging efficiency in two ways. First,
multiple counter-examples can greatly improve debugging
of formal failures regardless of their type. This is because
they provide a more general representation of the assertion
failure, which benefits both manual and automated debugging
techniques [3], [4], [8]. In particular, they can greatly reduce
the number of assumptions returned to the user, dramatically
improving the quality of results. Second, the assumptions
returned by the methodology improve upon previous work by
generating easy-to-understand properties based upon common
assumption structures. The next section describes the phases
of our methodology in greater detail.

V. GENERATING MULTIPLE COUNTER-EXAMPLES

Multiple counter-examples are beneficial for debugging
because they allow a broader view of the root-cause of failure
and may improve the resolution of automated debugging
techniques [3], [8]. Despite the benefits of multiple counter-
examples, to the best of the author’s knowledge, existing
formal property checkers do not support this feature.

The difficulty in this process is not simply generating a
second counter-example, but rather generating a useful second
counter-example that causes the assertion to fail in a different
manner; i.e. a failure that propagates through a different path,
and/or it isn’t simply a time shifted instance of a preced-
ing counter-example. The following sub-sections describe a
method to generate multiple formal counter-examples that are
quantitatively different from each other. It also outlines how to
apply them to filter candidate input assumptions and improve
quality of the final results.

A. Minimal Correction Input Sets as Blocking Constraints

In the context of debugging, a failure can be viewed as
a counter-example exciting an error, propagating its effect
through design components, and causing an assertion to fail.

This corresponds to the unrolled (in time) CNF of the counter-
example from Equation 1. The initial states and input vector
propagate through the clauses that model the design, and
cause a conflict with the modeled property. The corresponding
clauses can be abstractly viewed as a set of MUSs. As
such, a natural way to quantify two counter-examples as
being different is when the observed failures occur with no
identical MUSs. This leads to the following definition of
distinct counter-examples:

Definition 1 Given two counter-examples R and S, and their
respective unrolled CNF instances from Equation 1, φR and
φS , let MR and MS represent the set of all MUSs from φR
and φS , respectively. Counter-examples R and S are said to
be distinct iff MR ∩MS = ∅.

Using this definition, we can generate multiple distinct
counter-examples by preventing previously seen MUSs from
occurring again. To prevent a MUS, we need to ensure at least
one of its clauses is not present. Since the circuit behavior
should not change, only the clauses corresponding to the
primary input vector should be blocked to prevent previ-
ously found MUSs. This corresponds directly to generating a
blocking constraint on the inputs to prevent previously found
MUISs. Using the duality between MUISs and MCISs, this
constraint can be computed from a single MCIS.

In more detail, for the unrolled counter-example φ from
Equation 1 and MCIS Ck = {c0, ..., c|Ck|}, removing Ck

will break all MUISs (and thus all MUSs) in φ since their
removal will make the instance SAT. Since Ck is minimal,
this is equivalent to reversing the polarity of the corresponding
input unit clauses in φ, and it can be expressed as the following
blocking constraint Bk for the kth MCIS:

Bk = ck
0
· ck

1
· ... · ck

|Ck|
(5)

This blocking constraint can be used in conjunction with
the design and assertion to generate another distinct counter-
example using an additional call to the formal tool. The
following lemma describes this idea:

Lemma 1 For counter-example R, let φR be the unrolled
counter-example in CNF. If Bk is the kth blocking constraint
of φR, then any counter-example that satisfies Bk is distinct
from R.

Proof: From Equation 5, Bk is the conjunction of all the
negations of the kth MCIS, Ck. By definition, removing the
literals of Ck from the φR will result in the instance being
SAT, effectively breaking all the MUSs from φR. Since Ck

is minimal and no proper subset has the property of being a
correction set, any SAT assignment will contain the negation of
all the literals of Ck, precisely the expression Bk. It follows
then that any counter-example that contains the assignment
from Bk will necessarily not contain any MUSs from φR,
and therefore is distinct.
As such, to generate a new distinct counter-example we can
use Lemma 1 and pass a blocking constraint in the form of
Equation 5 to the formal tool. If the formal tool returns a
counter-example, it implicitly guarantees that Bk is satisfied,
resulting in a distinct counter-example.

B. A Practical Algorithm

Algorithm 1 shows the pseudo-code for generating multiple
counter-examples. The algorithm begins by generating the
first counter-example from the formal property checker and
extracting all MCISs from it (lines 2-5). The loop from line 6-
14 generates multiple counter-examples. For a given MCIS,
it will attempt to find a new counter-example. If successful

Algorithm 1 Generating Multiple Counter-Examples

1: procedure MULTIPLECOUNTEREXAMPLES(max)
2: blocking = ∅
3: c-ex = RUNFORMAL(blocking)
4: CEX = {c-ex}
5: MCIS = EXTRACTALLMCIS(c-ex)
6: while MCIS 6= ∅ and —CEX— < max do
7: C =EXTRACTBLOCKING(MCIS)
8: c-ex = RUNFORMAL(blocking ∪ C)
9: if c-ex 6= ∅ then

10: blocking = blocking ∪ C
11: CEX = CEX ∪ c-ex
12: MCIS = EXTRACTALLMCIS(c-ex)
13: end if
14: end while
15: return CEX
16: end procedure

(line 9), this MCIS is saved in blocking to ensure that future
counter-examples remain distinct. This process greedily selects
new MCISs to add to blocking only when it can find a new
counter-example. Once the new counter-example is saved, a
new set of MCISs are extracted (lines 11-12), and the process
repeats using this new set of MCISs. The loop stops when
either none of MCISs combined with the existing constraints
in blocking can generate another counter-example, or when
the maximum number of user-specified counter-examples has
been reached. The following theorem confirms the benefits of
these counter-examples:

Theorem 1 All counter-examples returned by Algorithm 1 are
mutually distinct.

Proof: Each counter-example generated from the run of
the formal tool on line 8 will run under the set of blocking
constraints, blocking∪C. By Lemma 1, any counter-examples
that derived any of the constraints in blocking ∪ C will
be distinct from the newly generated one. Since blocking
constraints are added only when a new counter-example is
found, blocking ∪ C maintains a set of MCISs from each
of the previously seen counter-examples. Therefore, each
newly generated counter-example will respect these blocking
constraints and it will be mutually distinct.

One important aspect of Algorithm 1 is that it iteratively
adds a blocking constraint in the form of Equation 5. This
could have alternatively been implemented using the disjunc-
tion of all blocking clauses from a single counter-example
i.e., the negation of Equation 4. However, our experience with
an industrial formal property checker shows that this latter
approach significantly slows down the tool causing time-outs
or bounded proofs, an observation that can be explained as
follows. Our blocking constraints are just unit clauses, which
are easily modeled within many different model checking
algorithms. Whereas, the disjunction of multiple MCISs can
be significantly more complicated to model (or at least require
specialized optimizations). This allows for a more generic
method without any need to use a specialized property checker.

C. Applications for Debugging Missing Input Assumptions

As mentioned in Section III, a single counter-example can
be used to filter a candidate assumption A. The filtering
function F used to rule out candidate assumptions is derived
directly from a set of MCISs. If Algorithm 1 is used to derive
multiple counter-examples, all MCISs from each counter-
example are indirectly generated as a by-product. These can
be used to generate a set of filtering functions F1, ..., FN

TABLE I
ASSUMPTION MODEL

Category Model

Unit input, !input
Booleans
(unit)
Combined <unit> & <unit>,
Booleans <unit> & <unit> & <unit>,

<unit> | <unit>,
<unit> | <unit> | <unit>

One-hot $onehot(bus), $onehot0(bus),
$onehot({<unit>, <unit>}),
$onehot({<unit>, <unit>, <unit>})

Stability $stable(bus), bus == 0
input |=> !input, !input |=> input

TABLE II
DESIGN INFORMATION

Design # # #
Name Gates Flops Inputs

(k)

cpu 50.9 1270 51
ddr2 55.5 2475 431

hpdmc 9.8 431 210
mips 51.1 2250 82

mrisc 9.9 1372 69
pci 60.3 3886 162
spi 1.7 133 16

usbf 33.2 1954 128
wb 4.0 98 143

for N counter-examples, respectively, which can naturally be
combined to extend the filtering function and generate the
following instance:

ψ = (F1 + ...+ FN) ·A (6)

The disjunction of all the Fi in Equation 6 correspond to all
the MUISs for each of the counter-examples. This implicitly
encodes all the input behaviors that led to the observed
assertion failures in the given counter-examples. If the instance
is SAT, then the assumption is not strong enough to prevent at
least one of the observed failures. Otherwise, the assumption
is generalized enough to prevent all the observed failures and
should be returned to the user.

It should be noted that although we present this filtering
function in the context of pruning generated assumptions, it
is equally valid to say that this function can be used to test
manually generated assumptions by the engineer. Thus, the
filtering function can provide quick feedback to determine if
a given assumption can prevent the failure(s) present in the
current counter-example(s).

D. Assumption Model

Table I shows a summary of the model used to generate can-
didate missing input assumptions as in Section III. Each row
corresponds to one of four categories of properties presented
in SystemVerilog. These categories correspond to simple unit
Booleans, combined Boolean operators, one-hot operators, and
stability expressions. An assumption is generated by taking
the property and using the same clock and reset as the target
failing assertion. Each assumption is then checked against the
filtering function to determine if it should be returned to the
user. In the table, input refers to a single bit primary input
pin, while bus refers to a semantic grouping of primary input
pins.

VI. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
methodology. All experiments are performed on a single core
of an Intel Core i5 3.1 GHz quad-core workstation with 16
GB of RAM. A commercial property checker [13] is used

TABLE III
AUTOMATED GENERATION OF MISSING CONSTRAINTS EXPERIMENTAL RESULTS

instance info algorithm check

instance # # c-ex time cand filter time passing vacuous
name gates states len (s) (s)

hpdmc1 9794 430 13 25 211 29 716 11 2
hpdmc2 9794 430 12 58 325 45 984 1 5
hpdmc3 9794 430 2 1 14 5 46 3 1
spi1 1724 132 4 1 40 10 80 1 8
spi2 1724 132 21 4 82 40 169 0 10
ddr1 55069 2474 9 248 310 20 3477 0 0
ddr2 55069 2474 6 42 180 20 1869 0 0

with default settings to perform all formal checks, while the
extraction of MCISs as well as generation and filtering of
candidate assumptions are all implemented in C++, using
Minisat [14] as the SAT engine. Nine designs are selected
for evaluation from OpenCores [9] with assertions written
based upon their specification documents.

The formal property checker is run on each design and any
failure is considered to be an instance of a missing assumption.
The instances listed in the following tables correspond to a
single failing assertion and are labeled by appending a number
to the design name. Table II presents relevant statistics and a
description for each of the designs used in the experimentals.

A. Debugging Missing Input Constraints with a Single
Counter-Example

Using these instances, our experimental methodology pro-
ceeds as follows. First, for each failing assertion, a counter-
example is generated using a formal property checker. Next,
the proposed approach from Section III uses the counter-
example to generate a filtered list of missing constraints.
Minisat [14] is used to solve all SAT instances, including
generating the filtering function F . Finally, to check if any
of the generated properties can be used as actual missing
constraints, each property is re-run in a separate formal check
with the original failing assertion. The comprehensive results
for each instance are shown in Table III.

The first four columns of Table III show the instance name,
number of gates, number of state elements, and counter-
example length. Column 5 lists the overall run-time of the pro-
posed approach, including creating the function F as well as
filtering. Column 6 lists the amount of assumptions generated,
and Column 7 lists the number remaining after filtering with
function F . From the filtered list, the last three columns show
the total run-time, number of non-vacuous passing instances
and vacuous passing instances when re-running all generated
constraints separately with the formal tool.

Overall, the results in Table III show that the filtering
function can significantly reduce the number of candidates
constraints from an average of 166 properties in column 6,
down to an average of 24 in column 7 after filtering. Moreover,
this is done with relatively little run-time making it ideal
for fast analysis for use when debugging missing constraints.
Compared to running each generated constraint in a separate
formal check (column 8), the proposed method shows a 33.4x
speedup on average. The last two columns show that in
certain cases (e.g. hpdmc and spi), the simple properties can
generate an exact constraint to prevent the failing assertion.
Although in the case of ddr, none of the generated properties
are able to prevent the failing assertion.

B. Generating Multiple Counter-Examples

This subsection presents experimental results for the pro-
posed approach to generate multiple counter-examples from
Section V. Experiments in this subsection are conducted for

TABLE IV
MULTIPLE COUNTER-EXAMPLE EXPERIMENTS

Instance # MCIS Form Tot Filt Using n CE
Name CE Time Time Can 1 5 10 15

(s) (s)

cpu 1 15 653 356 154 2 2 2 2
cpu 2 10 778 616 154 3 3 3 -
ddr2 1 3 625 86 226 68 - - -
ddr2 2 9 383 1395 257 15 2 - -
hpdmc 1 15 112 148 97 17 16 11 11
hpdmc 2 15 123 200 97 25 16 13 11
mips 1 4 278 93 163 36 - - -
mips 2 12 813 959 163 13 13 13 -
mrisc 1 8 88 1126 92 11 5 - -
mrisc 2 7 190 1339 92 8 8 - -
pci 1 8 611 761 267 9 9 - -
pci 2 8 648 723 267 11 11 - -
spi 1 15 8 177 22 6 6 6 6
spi 2 15 47 214 22 19 10 7 7
usbf 1 12 901 858 131 61 28 26 -
usbf 2 10 186 1152 131 22 0 0 -
wb 1 15 6 846 13 9 7 6 6
wb 2 15 8 344 41 10 2 2 2

each instance by, first, running Algorithm 1 to generate as
many counter-examples as possible within 1800 seconds to a
maximum of 15. Next, using either 1, 5, 10, or 15 counter-
examples, candidate assumptions are generated and filtered to
examine if multiple counter-examples are useful in reducing
the number of generated assumptions. To simplify the exper-
iments, combined and one-hot type properties from Table I
are omitted when generating assumptions. Additionally, each
pin of an input bus is also used in unit Boolean properties
so that we have a sufficient set of properties across all
input pins. Note that a cone of influence [6] optimization is
run on the failing assertion of each instance, resulting in a
potentially different number of total generated assumptions
between instances of the same design. Table IV shows the
results of these experiments.

The first five columns list the instance name, number of
counter-examples generated, run-time to extract MCISs from
the counter-examples, run-time of the formal tool to generate
that many counter-examples, and the total number of candidate
assumptions for that instance. The last four columns show how
many of the candidate assumptions remain after filtering using
the technique from Section V-C with 1, 5, 10, and 15 counter-
examples, respectively.

Overall the last four columns show that using more counter-
examples can effectively reduce the number of filtered assump-
tions. On average, for instances that are able to generate either
5, 10, or 15 counter-examples, the number of filtered assump-
tions are reduced by 30.4%, 37.9% and 38.3%, respectively,
compared to a single counter-example. This confirms that
the additional counter-examples generated result in assertion
failures which can be blocked using a smaller assumption set.

The ability of the proposed technique to filter candidate
assumptions works well in most of the instances (such as
ddr2_2 and usbf_1), but not all (such as cpu_1 and

TABLE V
ASSUMPTION DEBUGGING METHODOLOGY EXPERIMENTS

Instance # MCIS Form Gen Tot Filt Instance # MCIS Form Gen Tot Filt
Name CE Time Time Time Can Can Name CE Time Time Time Can Can

(s) (s) (s) (s) (s) (s)

cpu 1 10 255 100 5 31 3 mrisc 4 9 116 898 5 39 14
cpu 2 10 778 616 7 28 5 pci 1 8 611 761 7 25 10
ddr2 1 3 625 86 TO 857 21 pci 2 8 648 723 7 22 11
ddr2 2 9 383 1395 1504 4094 333 pci 3 8 564 518 8 25 10
hpdmc 1 10 70 60 4 90 33 pci 4 2 466 60 27 261 82
hpdmc 2 10 77 65 8 65 18 spi 1 10 4 48 1 20 9
hpdmc 3 10 6 77 1 8 3 spi 2 10 28 60 15 74 29
mips 1 4 278 93 9 59 22 usbf 1 10 737 334 14 148 58
mips 2 10 455 276 8 39 10 usbf 2 10 186 1152 132 1135 44
mips 3 5 134 458 7 39 6 usbf 3 10 18 244 2 16 7
mips 4 10 589 631 10 59 7 wb 1 10 3 123 1 16 5
mrisc 1 8 88 1126 5 39 10 wb 2 10 4 111 1 81 2
mrisc 2 7 190 1339 6 34 9 wb 3 10 5 79 1 19 2
mrisc 3 5 79 169 4 20 9 wb 4 10 4 98 1 81 2

mips_2). This can be explained as follows. The former case
is the ideal behavior where the second counter-example does
indeed find a different way to excite the design and cause the
assertion to fail. While the latter case finds a counter-example
similar to the original one but shifted in time.

When analyzing the run-time, there are two main contribu-
tors. The first is the extraction of MCISs, which depends on
the size of the design, number of input pins, and the length
of the counter-example. For many cases, such as mrisc_1
and wb_1, it is relatively fast. In the case of ddr2_1,
however, the excessive number of inputs (431) cause the
run-time of extracting the MCISs to be large. The other
contributor to overall run-time is multiple iterations of the loop
in Algorithm 1, which may require many calls to the formal
tool before a counter-example is found. However within the
1800 second timeout, 7 out of the 18 instances were able to
generate 15 counter-examples, and 16 out of the 18 were able
to generate at least 5. This shows that this technique is effective
in generating multiple counter-examples within a short amount
of time.

C. Assumption Debugging Methodology

This section presents experimental results for the overall
assumption debugging methodology from Section IV. For each
instance, counter-examples are generated within a time limit
of 1800 seconds up to a maximum of 10. Additionally, the
full assumption model from Section V-D is used to generate
and filter assumptions. Note that this may result in a different
number of candidate assumptions compared to the previous
subsection. Similarly, a cone of influence [6] optimization is
run on the failing assertion for each instance. Table V shows
the quantitative results of these experiments.

Table V is divided into two parallel sections. The columns
in each section list the instance name, number of counter-
examples generated, time to extract MCISs from the counter-
examples, time of the formal tool to generate that many
counter-examples, time to generate and filter candidate as-
sumptions, total number of candidate assumptions, and the
number of assumptions after filtering.

From columns 7 and 14, the absolute number of filtered
assumptions returned to the user is relatively small with an
average of 28. It is important that this number is not too large,
or else the list of assumptions may become unwieldy for a
user to analyze. Although most of the instances fall close to
this average, there is one outlier ddr2_2 with 333 returned
assumptions. This is due to the large number of input pins
which generates a significant number of candidate assumptions
(4094). However, the different categories of properties allow
one to narrow down the analysis. In this case, only analyzing
the unit Booleans assumptions proved most useful.

When analyzing run-time of generating and filtering can-
didates in columns 5 and 12, in most instances the time is
relatively small and both tasks can be completed within 60
seconds. However, ddr_1 and ddr_2 are again outliers,
where the former hit a time limit of 1800 seconds. Here, the
excessive number of input pins cause an exponential number
of generated assumptions in the more complex properties. In
these cases, it may be prudent to generate simpler properties
or limit the number of pins used to generate assumptions.

VII. CONCLUSION

In this work, a novel debug automation methodology for
missing input assumptions is presented. It begins by generating
multiple formal counter-examples for the failure along with a
function that encodes the input combinations that caused the
assertion to fail. This function is later used to generate a list
of fixed cycle assumptions that prevent the failures seen in
the counter-examples, which can then be used as hints for the
actual missing assumption. An extensive set of experimental
results show the efficiency of this work.

REFERENCES

[1] H. Foster, “Applied assertion-based verification: An industry perspec-
tive,” Foundations and Trends in Electronic Design Automation, vol. 3,
no. 1, pp. 1–95, 2009.

[2] S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[4] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp. 1138–1149, 2008.

[5] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design. Kluwer
Academic Publishers, 2003.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[7] A. Matsuda. (2011, May.) Overcoming the chal-
lenges of formal verification and debug. [On-
line]. Available: http://www.eetimes.com/design/eda-design/4216119/
Overcoming-the-challenges-of-formal-verification-and-debug

[8] B. Keng, S. Safarpour, and A. Veneris, “Automated debugging of
SystemVerilog assertions,” in Design, Automation and Test in Europe,
2011, pp. 323–328.

[9] OpenCores.org, 2007. [Online]. Available: http://www.opencores.org
[10] M. H. Liffiton and K. A. Sakallah, “On Finding All Minimally Un-

satisfiable Subformulas,” in Int’l Conf. on Theory and Applications of
Satisfiability Testing, 2005, pp. 173–186.

[11] J. Marques-Silva and J. Planes, “Algorithms for maximum satisfiability
using unsatisfiable cores,” in Design, Automation and Test in Europe,
2008, pp. 408–413.

[12] M. H. Liffiton and K. A. Sakallah, “Generalizing Core-Guided Max-
SAT,” in Int’l Conf. on Theory and Applications of Satisfiability Testing,
2009, pp. 481–494.

[13] Cadence Design Systems, “Incisive Formal Verifier,” 2012. [Online].
Available: http://www.cadence.com/products/ld/formal verifier/pages/
default.aspx

[14] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502–518.

