A Failure Triage Engine Based On Error Trace
Signature Extraction

Zissis Poulos', Yu-Shen Yang? Andreas Veneris'

'Dept. of ECE, University of Toronto, Toronto, Canada. {zpoulos, veneris} @eecg.toronto.edu
2Vennsa Technologies Inc., Toronto, Canada, terry @ vennsa.com

Abstract—The ever growing demand for functionally robust and
error-free industrial electronics necessitates the development of
techniques that will prohibit the propagation of functional errors
to the final tape-out stage. This paramount requirement in the
semiconductor world is imposed by the equivocal observation that
functional errors slipping to silicon production introduce immense
amounts of cost and jeopardize chip release dates. Functional
verification and debugging are burdened with the tedious task of
guaranteeing logic functionality early in the design cycle.

In this paper, we present an automated method for the very
first stage of functional debugging, called failure triage. Failure
triage is the task of analyzing large sets of failures, grouping
together those that are likely to be caused by the same design error,
and then allocating those groups to the appropriate engineers for
fixing. The introduced framework instruments techniques from the
machine learning domain combined with the root cause analysis
power of modern SAT-based debugging tools, in order to exploit
information from error traces and bin the corresponding failures
using clustering algorithms. Preliminary experimental results indi-
cate an average accuracy of 93% for the proposed failure triage
engine, which corresponds to a 43% improvement over conventional
automated methods.

Index Terms—Failure Triage, Design Debugging, Regression
Tests, Clustering

I. INTRODUCTION

The galloping pace at which integrated circuit designs grow
in size and complexity has inevitably led to a struggle in the
semiconductor industry to introduce full automation in each level
of the design process. However, Register Transfer Level (RTL)
design abstraction still suffers from human introduced errors that
can manifest themselves in a manifold of ways during various
design stages. As such, in typical VLSI CAD flows, engineers
spend a considerable amount of time in simulation, verification
and rigorous testing before tape out. Since verification constitutes
up to 70% of the time needed for design cycles, with debugging
dominating the verification effort [1], industry is at a constant
lookout for advanced and sophisticated automated debugging
strategies.

State of the art debugging tools employ powerful formal
engines to ease the debugging effort [2], [3], [4]. When a failure
is discovered during verification, automated root cause analysis
specifies a set of possible error locations in the design. This
valuable information aids the engineer to discover the actual
cause of the failure. However, in modern IC designs that undergo
development, nightly regression tests usually result in a large
set of failures. If those failures are not thoroughly assigned
to the rightful engineers for fixing, then the engineer’s lack
of familiarity with the erroneous behaviour might nullify the
benefits of the automated debugger.

In the context of regression verification flows, failure triage is
defined as the proccess of determining failures that are likely
to share the same root cause, grouping them together, and
passing those groups to the appropriate engineer(s) for fixing.
Today, there are two widely adopted approaches for failure
triage. The first is to assign the task to a single engineer, who’s
responsibility is to monitor and analyze failures on a daily basis,
and determine the best suited engineer for further root cause
analysis. Indisputably, the efficacy of this strategy highly relies

on the engineer’s intuitive skills and inherent understanding of
the system’s behaviour. The second approach is fully automated
and refers to the use of scripts to bin failures based on their
corresponding error messages. Normally, the main downside of
the first approach is its manual nature and cost in terms of
time, whereas the latter automated one suffers from frequent
inaccuracy in failure classification.

In this work we provide, for the first time, a formal definition
of failure triage in a debugging context, and a failure triage
framework for the first phase of design debugging. More specif-
ically, the contributions of this work are as follows. First, we
introduce the concept of failure proximity, a speculative metric
for determining the similarity or dissimilarity between failures,
regarding the likelihood of sharing the same root cause. Our
method is based on exploiting error signatures from the resulting
error trace after simulation. Those signatures are extracted from
error excitation and propagation paths that are determined by
modern design debugging tools. Second, we describe a heuristic
to guess the actual number of co-existing errors in the design
when no prior knowledge is assumed. In other words, our
heuristic tries to predict the number of non-overlapping groups
that have to be formed during triage. Last, we employ an hierar-
chical clustering algorithm to combine the extracted information
and classify the various failures appropriately. The developed
failure triage framework is tested on three different designs, to
demonstrate its efficiency and applicability.

The remainder of this paper is organized as follows. Section II
reviews background and presents basic concepts on satisfiability
based design debugging. Section III defines the problem of fail-
ure triage, and introduces the proposed failure triage framework
along with our new metrics and heuristics. Finally, Section IV
provides experimental results and Section V concludes the paper.

II. PRELIMINARIES
A. Design Debugging

Design debugging commences once a failure occurs during
RTL verification. This failure is usually caught by testbench
simulation using checkers at the output of the circuit and various
formal properties written in an assertion language (i.e. Sys-
temVerilog Assertions, Property Specification Language). The
goal of functional debugging is to find a set of error locations,
or suspects, which could potentially be responsible for the
observed failure during verification [3]. Satisfiability-based (or
SAT-based) debuggers formulate the problem as a SAT instance
for the resulting error trace [4]. Such debuggers return sets
of error locations in the design where a change can fix the
erroneous behaviour for the given error trace. These locations
can be internal signals or RTL modules. Moreover, modern
mechanics allow the automated debugger to additionally return
error propagation paths. Error propagation paths show exactly
how an excited error propagates through elements of the circuit to
reach the point where the checker was triggered or the assertion
failed. Note, that each suspect location belongs to one or more
error propagation paths, since there are potentially many ways
that an error can cause a failure. Apparently, the set of suspects

returned by the debugger is an over-approximation of the actual
error location; the exhaustive search of the underlying SAT
engine will guarantee that the actual error belongs to the returned
set of suspects.

The deep details of SAT-based debugging will not concern
us here. Rather, we are interested in exploiting the output of
the automated debugger. In what follows we provide notation
that will be used throughout this paper when referring to design
debugging concepts.

B. Notation

Let’s assume an erroneous design, D, that fails verification
because of a single or multiple errors in the RTL. Let also £
denote the corresponding error trace that demonstrates how the
failure occurs. Also assume that the design includes a set of
checkers at the Primary Outputs (POs) and various assertions
on different internal signals. For the purposes of catching a
failure, assertions can be viewed as more complex checkers.
Therefore, for the remainder of the paper, the notion of checkers
will include assertions as well. When a mismatch between the
expected values and the simulated ones in £ is identified at a
checker, we say that the checker is active for error trace £. Let
us use set C = {cy,ca,...,¢|c|} to denote all |C| active checkers
in the design under test. Note that for regression flows, usually
multiple checkers will be active for £, corresponding to many
failure points during simulation. For each active checker c¢; there

is a set of activation times T; = {t},¢2,...,t!"1} indicating |T;|
times at which the checker was triggered (caught the failure(s)).

According to the above, D, &£, an active c;, and tf can uniquely
define a failure F}. So 7/ = {¢;,t!}, where i uniquely defines
the checker that fails, and j defines the time the failure occurs. In
our work, the design and the error trace are unique so we ommit
them for simplicity. As such, a set of failures can be defined as
F={F:c¢eCt €T}

When the above information is passed to an automated root

cause analysis tool, for each failure]—'ij , a set of possible error

locations (suspects) in D is returned. Let’s denote that set as S;.
Also, a set of error propagation paths is determined, denoted as
P

Fig 1, shows an example of a failure occurring during simu-
lation and the result of the debugger. The thick line refers to the
actual error and its propagation path in the failing design, while
the shaded area corresponds to the suspects and their propagation
paths. Since the suspect set is an over-approximation of the actual
error location, the actual error propagation path that led to the
failure will be included in the returned result. _

Note that both the suspect set S; and propagation set P;
contain information about the time (in cycles) when a possible
error was excited and at what cycles the erroneous values were
propagated to the point where the checker was triggered. As
one can see from Fig 1, the approximation of the actual error
propagation paths can significantly aid the engineer in the search
for the actual error.

III. FAILURE TRIAGE
A. Problem Definition

From what was described in Section II, it becomes apparent
that for single failures the task of debugging is straightforward;
with some insight, the failure will be assigned to the appropriate
engineer, who in turn will invoke the debugger and exploit
the returned information to detect the real error. In real life
scenarios though, this is not usually the case. What happens
when regression verification returns dozens or even hundreds of
failures?

Regression simulation of large systems usually ends with
multiple checkers and assertions failing. Moreover, knowledge to
determine the responsible engineer(s) for each failure is limited

i

o

sindinQO
Apowiud

M

.

sindinQ
Aowild

Y
SuspectsES',] 7:):&]
7

(b) Error propagation paths returned by the debugger

Fig. 1. Single failure and the result of root cause analysis

in most cases. Regularly, this will introduce unnecessary time
overhead as the problem will be passed from one engineer to
another until the rightful owner is found. To add more pain, if
failures sharing the same root cause are not grouped together
for fixing, then multiple engineers waste time trying to resolve
the same design error. The task of determining the relationship
between various failures is not trivial though.

Traditional methods, such as error message grouping (using
scripts) or manual analysis commonly fail to identify the re-
lationship between pairs of failures [5]. Fig. 2 illustrates two
typical cases were conventional approaches would fail. Fig. 2(a)
illustrates a case where, due to different stimulus, an error
propagates through different paths and is eventuallgf captured by
two different checkers c¢;, and ¢4, at times t% and tj respectively.
Conventional techniques will wrongly group the corresponding
failures separately, as there is not enough knowledge available
to determine their relationship. The opposite scenario can also
happen. Fig. 2(b) illustrates two distinct errors bein§ caught
by the same checker cs, although at different times ¢5 and #3.
Traditionally, the failures will be put into the same group, which
is not the desired result.

Failure triage aims to alleviate the aforementioned issue,
by grouping similar failures together and passing them to the
suitable engineer(s) for further root cause analysis. Using the
notation and concepts presented in Section II we can define
failure triage as follows.

Definition 1: Given an error trace £ for an erroneous
design D, and a set of failures F', failure triage is a complete
partitioning of F into a set of N subsets/groups denoted as
G ={91,92,---,9Nn} such that the following rules apply:

e There is no failure F} € F that does not belong to some
gk (jointly exhaustive)

e Each failure F] belongs exactly to one gi. (mutually
exclusive)

o FEach group g;. contains failures that have a high probability
of originating from the same design error.

Obviously, in order to produce a failure grouping that will be

)

Eror |

1

: message :
| grouping/ |
' Manual
\
\

sindino

analysis

W, Alowud

I

I

1
)
]

Ay

e tags i!d—.'H‘{.,t. o n

//—-\\
, Error \
/messcge\
o1 grouping \

o | |
§ t\ Manual |

i
a2 \ analysis
2 /

(b) Same checker failing because of different errors

Fig. 2. Incorrect grouping by conventional techniques

practically accurate enough, it is essential to address three major
aspects of the problem:
o What defines that two failures are similar, and what the
opposite.
o Approximately, how many errors co-exist in the design, so
that a realistic number of groups will be produced.
o How do we form those groups by making pairwise compar-
isons between all failures.
The following subsections describe our work on all the above
concerns.

B. Failure Proximity

In this subsection we propose a speculative metric called
failure proximity, as a means of expressing the similarity or
dissimilarity between two distinct failures. Failure proximity is
generated by information that can be extracted from the error
trace and the result of a simple debugging step.

For a given error trace, the way a distinct error is excited,
and the way the erroneous values propagate through and affect
elements of the circuit can be viewed as a signature for that
error. Error propagation paths returned by a modern debugger can
establish a correlation between the failure and the culprit. Hence,
from a single error that causes two distinct failures, similar
signatures will be identified, and vice versa. As a result, an
effort to identify commonality between error propagation paths
can potentially lead to a good criterion for distinguishing various
failures with respect to their root cause.

The result of an automated debugger for the examples of
Fig. 2 is illustrated in Fig. 3. Note that intersecting the error
propagation paths is one simple way of identifying relationships.
However, there are two observations that can refine this analysis.
First, if the same checker is active for a pair of failures, then
the resulting propagation paths will eventually converge towards
the checker. This does not provide useful information so should
be discarded. Second, if different checkers are active because
of the same error, then the error propagation paths should
eventually converge towards the actual error, traversing from
POs to Primary Inputs (PIs). The latter, is useful information
and should be promoted. Along these lines, it becomes obvious
that convergence and divergence of error propagation paths along
with suspect intersection is a stronger approximation of the
relationship between two failures.

To identify the information described above, we perform the
following steps.

For a pair of failures, say F/ , F, !, and their corresponding
error propagation paths P/ , Pp:

1) Divide each propagation path into W time windows of
equal length (in cycles). Let’s denote as P (’Pk o) those
subsequences of Pj (P}L) that belong to the window with
index ¢g:1<¢q< W

2) For each time window q, compute the intersection of the
paths, P/ N'PL . as well as the union P} U P! . Then
generate a sequence of mutual paths over total paths per
window, denoted as M, where:

2mpk2|
QUPk2|

{| 1ﬂPk1| P

Pl w m7Dllc,w|}
[P UPL P

|Pi],w UPIlc,W|
(1

3) Detect all increasing and decreasing subsequences in M,
named M;,. and M. respectively, starting from the last
window W and moving backwards in time. Then define
the following function:

1, if window q belongs to M,

score(q) = 0, if window q belongs to Me.

Intuitively, M contains information about the convergence
or divergence of error paths from POs to PIs. In Eq.1, each
ratio is within the range of [0, 1], and essentially quantifies the
contribution of mutual paths compared to the total number of
paths that cross each window. When ratios increase from POs to
PIs, this indicates convergence of error paths, and vice versa.

Then, for a pair of failures F; and .F,i our proposed failure

proximity metric, denoted as D(F; ,F; ,i) is given by:

O’P
D(F!, F}) Z(bl X score(q)) 2)
qg=1 UPk q|
D
a - ! fi[
e 2l -0z
=) o + S 3
£8 S EE
T | =<
= T X F7

PinP P; Pi

(a) Convergence of error paths

Primary
Inputs

Py P3P;NP3
(b) Divergence of error paths

Fig. 3. Similarity/dissimilarity of error propagation paths

error count =4 error 4

f; =4
f, =3
f, =3

error 2

dist(F{, F})

2t error 3

Fig. 4. Clustering for 10 failures and 4 clusters

Remark that, Eq.2 expresses failure relation by using the ratio
of mutual paths over total paths per window. Moreover, the score
function discards diverging paths in the calculation by zeroing
out the respective intersections, while promoting converging
paths. Implementation-wise, windows can belong both to the end
(beginning) of a decreasing subsequence and to the beginning
(end) of an increasing one. Those windows always count towards
the increasing subsequence. It is easy to confirm that D(F7, f,i)
is within the range of [0, W]. The closer to W the metric is, the
more similar the failures are, and vice versa.

C. Error count estimation

As it will be described later, the underlying hierarchical
clustering algorithm that performs the grouping of failures needs
to know a priori the number of clusters that have to be formed.
Ideally, this number should be equal to the number of the errors.
However, in most cases there is no prior knowledge of how many
errors are actually caught by the error trace. Therefore, an initial
guess has to be made to specify a termination condition for the
failure triage process.

For that purpose, we design a simple heuristic as a pre-
processing step.

1) Perform pair-wise intersections 31'] NSt to identify mutual
suspects.

2) For each suspect s,, record the number of failures for
which the suspect is mutual. We refer to this number as
frequency f, of suspect s,,. If a suspect s,, is not mutual
for any of the failures, the its frequency is assumed to be
1.

3) If m is the total number of distinct suspects, then from
the set {fi,f2,...,fm} extract the average fo,q =

m

(; fi)/m.

Then our error count estimation is given by:

o PFW 3)
f avg

Suspect frequencies provide a means of expressing how sus-
pects are allocated among the various failures. The intuition
behind this heuristic is as follows. If no mutual suspects exist
then f,,, = 1 and the error count estimation will correctly
predict that e = |F'|, because then each failure is caused by
a unique error. On the other hand, the existence of mutual
suspects and the number of failures those suspects are mutual
for, will increase fq.4, and in turn will cause the error count
estimation to drop, based on Eq.3. This translates to the fact that
we expect some of the errors to cause multiple failures when
failures share multiple common suspects. Therefore, Eq.3 offers

[REGRESSION
\ SIMULATION

ERROR TRACE

FAILURE SET

| ERROR
| PROPAGATION
PATHS

AUTOMATED
DEBUGGER

/" FAILURE |
| PROXIMITY —
CALCUALTION

FAILURE
| CLUSTERING

SUSPECTS

ERROR COUNT
ESTIMATION (N)

<

DEFINE NEW
NUM. OF
CLUSTERS

FAILURE
GROUP g

e FAILURE
GROUP gn
~—

=
SUSPECT SUSPECT SUSPECT
MG \RANKING \RANKING
AN J
Y

[DETAILED ROOT
\ CAUSE ANALYSIS

Fig. 5. Failure triage framework

a loose approximation of how many failures we expect to be
caused by the same error on average.

D. Failure triage framework

The information that is embedded in the metrics described
above, should be exploited for the last step of our framework
which is the formation of groups of similar failures. To achieve
this, we employ a hierarchical clustering algorithm [6].

Groups of failures are formed in a bottom-up fashion (agglom-
erative) by merging clusters that are likely to contain failures that
are related. The merging stops when e (error count estimation)
clusters are formed. Clustering algorithms use the notion of
distance to define the relation between elements and clusters
of elements. The smaller the distance is, the more related the
elements are. In a clustering analysis context, the distance for a
pair of observed failures 77 , F, is defined as:

_ D(F.F)
w

The decision to merge two clusters is determined by a linkage
criterion. In this work, we use Ward’s Method [7], where at each
step we merge the pair of clusters that leads to minimum increase
in total within-cluster variance after merging. Ward’s method
tends to create “round” clusters, which proved to be appropriate
for our framework; similar failures tend to appear close to each
other in a compact manner.

dist(F, Fl)y=1 “4)

Fig. 4 illustrates an example of clustering for 10 distinct
failures. Distances from Eq.4 between failures can be con-
sidered as Euclidean distances to define the position of each
failure on a 2D plane [6]. By using Eq.3 we can constrain
the number of clusters to be formed, so that they are equal
to our estimation of how many errors should be considered.
Since the frequencies of various suspects are already available
to us, they can be provided as an output of the triage engine
as well. Moreover, those frequencies can be sorted in order to
generate a ranking for each suspect based on its appearance in
the clustered failures. Therefore, for each group of failures the
engineers that will pursue further root cause analysis, have both
the error propagation paths and the suspect frequencies/ranking
available. This valuable information can provide guidance for
pin-pointing the actual error or can aid the engineer to identify
possibly problematic groupings. The clustering algorithm can be
executed with the error count estimation initially, but it depends
on the engineer to figure out if this is an accurate assumption,
and accordingly adjust the constraint and re-run the clustering
algorithm. Based on the partial stages described above, Fig. 5
depicts the whole failure triage flow.

It should be clarified that the debugging step preceding the
clustering process requires manual effort from the engineer(s).
However, this does not add any overhead to the whole debugging
flow. Rather, this manual task is simply moved earlier in the
flow in order to generate the necessary signatures for failure
clustering. As such, it will not have to be repeated once the
groups of failures are passed to the rightful engineers.

IV. EXPERIMENTAL RESULTS

This section presents preliminary experimental results for the
proposed failure triage framework. All experiments were con-
ducted on a single core of an Intel Core i5 3.1 GHz workstation
with 8GB of RAM. Three OpenCores [8] designs were used for
the evaluation. The underlying automated debugging tool used
for extracting the suspect locations and error propagation paths
was implemented based on [4]. A platform coded in Python
was developed to parse the returned results of the debugger,
calculate the relevant metrics and perform hierarchical clustering
on the resulting failures. For each design, a set of different
errors was injected each time by modifying the RTL description.
The injected RTL errors might correspond to a single signal
or multiple signals. In the latter case, the module containing
all the erroneous signals is considered as the error location
when modules are selected as suspect locations. The prosposed
framework does not add any new asserions or checkers to the
designs. Rather, it exploits the existing ones. In total, twelve
different regression simulations were run, generating a different
number of failures each time, caused by a different set of errors
in the design.

In order to evaluate how various parameters affect the accuracy
of the resulting failure grouping, experiments were conducted by
selecting different values for the number of windows described
in Section III and the type of suspects (signals, modules).
Fig. 6 illustrates accuracy results depending on the above
parameters. The engine’s accuracy is calculated by the ratio
(1 _ misclassified failures

total failures
as a failure belonging to the wrong group. If a set of failures

that are caused by the same error are wrongly split into two
or more groups then only the group with the most failures is
determined to contain correctly classified failures. The rest are
considered misclassified.

From the observed results in Fig. 6, it can be concluded that
accuracy rises to acceptable levels when internal signals are
selected as suspects and error propagation paths are split into
a relatively large number of windows. This can be justified as
follows.

). A misclassified failure is defined

100

average accuracy (%)

10 50 100 200 300
windows (W)

(a) Module suspect locations

average accuracy (%)

10 50 100 200 300
windows (W)

(b) Signal suspect locations

Fig. 6. Effect of window number and suspect type on clustering accuracy

There are cases where more than one errors exist within the
same design module. In those cases, the error count estimation
will be rather optimistic and frequently generate less clusters
compared to the actual number of design errors. Still, the group
of failures that are caused by errors inside this module will be
correct in most cases. Since the frequency of this module will
be high in the suspect ranking for that group, it will aid the
engineer to look for a error within the module; and this is usually
acceptable for debugging purposes. However, we are interested
in a more refined search. One that will provide the engineer
with information regarding the actual number of errors within
any module. Selecting internal signals as suspects provides a
more detailed grouping, although it will sometimes generate a
pessimistic error count estimation. This is due to noise included
in Eq.2, because of the plethora of suspects that are mutual
only for a subset of failures that should be put in the same
group. However, the suspect ranking can help the engineer realise
that two distinct groups should be merged together (i.e. if their
distances are close and the same suspect appears high in the
ranking for both groups). In that sense, failure triage can be
manually re-executed by decrementing the number of generated
clusters by one.

The number of windows also has a great impact on accuracy.
Here, it is straightforward to realise that with a small number
of windows it is hard to identify convergence and divergence of
error paths, although their common propagation sub-paths will be
determined. In other words, the smaller the number of windows
is, the closer to a naive intersection of error paths this method
moves. On the other extreme, the number of windows could
be at most equal to the number of cycles of the shortest error
propagation path whenever two paths are compared. Therefore,
each window will include one cycle from one path and possibly
multiple cycles from the other one. In that case, the way the error
reaches before and propagates after every cycle is essentially
discarded. This can potentially ignore valuable information or
create very short decreasing and increasing subsequences in the
calculation of Eq.1, that do not reflect to actual divergence and
convergence of paths respectively.

Along these lines, the average accuracy ranges from 67.1%

TABLE I
PROPOSED FAILURE TRIAGE ENGINE PERFORMANCE

accuracy
circuit | # gates | # errors |F| e triage(N =) | triage(N = # errors) | script erro(r]\;ank éz)ivg) time (sec)

4 9 (15 4 100% 100% 78% 1 12.7

fpu 83303 5 12 (20) 6 83% 100% 67% 1 13.8
6 15 (24) 6 100% 100% 60% 1 16.4

7 20 (31) 7 95% 95% 65% 1.14 19.1

3 8 (14 4 88% 100% 75% 1 14.3

vga 72292 4 9 (15) 6 78% 89% 67% 1.17 152
5 13 (22) 5 100% 100% 54% 1 17.9

6 19 (29) 7 89% 95% 68% 1.14 18.8

2 5(8) 2 100% 100% 60% 1 12.0

spi 1724 3 8 (13) 3 100% 100% 63% 1 12.7
4 10 (16) 5 90% 100% 60% 1 134

5 12 (16) 5 100% 100% 67% 1 15.7

AVG: 93 % 98 % 65% 15.2

with module suspects and 10 windows, up to 93% with signal
suspects and 200 windows. An increase of 6.9% in accuracy is
observed when switching from module suspects to signal sus-
pects, for all window numbers. Likewise, as the window number
increases, accuracy can improve up to 21.6% for module suspects
and 14.3% for signal suspects. The minimum accuracy observed
among all configurations was 61% for the spi design, for a
testcase with 5 errors. The maximum number of windows for
our experiments was 200, since the length of error propagation
paths never exceeded 400 cycles. Notice that there is no benefit
of arbitrarily increasing the number of windows. Rather, we
observed a decrease of 3.1% in average accurcay when increasing
the number of windows from 200 to 300. This drop in accuracy
is in compliance with our observations presented in the previous
paragraph.

Table I demonstrates detailed results for all twelve testcases
and three designs. These results are generated with signals as
suspects and 200 windows per error propagation path. The first
and second columns refer to the design name and its size (in
gates) respectively. The third and fourth columns contain the
actual number of errors that were injected into the design and
the number of total failures that the error trace caught. The
fifth column shows the error count estimation that the proposed
method generates for each testcase. Columns 6 to 8 include a
comparison in accuracy between the proposed failure triage flow
and a typical binning strategy based on a script that exploits error
message information. Specifically, columns 6 and 7 refer to the
accuracy of the failure triage flow when performed with our error
count estimation or with the actual number of errors respectively.
The ninth column presents the average rank of the suspect (in
the suspect ranking list) that corresponds to the actual error
location. The last column indicates the total time consumed by
the calculation of the two metrics and the hierarchical clustering
process.

It is ought to be mentioned that the actual number of failures
caught by simulation regression might be significantly larger than
the number presented in column 4 of Table I. However, a simple
script (not the one we compare to) is used to identify trivial
cases based on the error messages. As a result, multiple failures
collapse into single ones, and those are used for our evaluations.
In essence, we remove all trivial cases for our experiments,
since the collapsed failures are manifestations of the same failure
shifted in time. The above is a legitimately realistic approach
when hundreds of failures occur during simulation. The actual
numbers are given in parenthesis in column 4.

Based on Table I, the engine’s average accuracy reaches 93%
when the algorithm is executed with our initial guess (column
6) and may increase up to 98% when the engineer forces the
number of clusters to be equal to the number of errors in the
design. Generally, a good initial guess that reflects to the actual
number of errors was observed in seven out of twelve testcases.
In those cases, accuracy was 99% on average. On the other hand,

in cases where the error count estimation is off by one or two
clusters, accuracy drops to 86%. For the testcases in Table I,
a conventional approach that employs scripts to perform failure
grouping achieves an overall accuracy of 65% (i.e. one out of
three failures are misclassified). In that context, the proposed
method improves accuracy by 43% when the initial guess is
utilized; a solid improvement that indicates the potential and
applicability of the proposed framework. Moreover, the actual
error is assigned a high rank in the suspect ranking list per
cluster (column 9). Even if the highest rank is shared among
suspects, it can significantly guide root cause analysis or aid the
identification of bad clusters. Finally, computation of the two
metrics and the clustering procedure consume an average of 15.2
seconds in total, which is acceptable for the purposes of failure
triage.

V. CONCLUSION

In this work, a novel failure triage framework is proposed.
The algorithm extracts signatures from debugging results to
define relationship between various failures. Each signature is an
approximation of the location of the root cause of a given failure.
By determining mutuality between those signatures, failures that
have a high probability of sharing the same root cause are
grouped together. In order to quantify failure similarity and
dissimilarity we introduce the concept of failure proximity and
suggest a windowing scheme for its computation. Furthermore,
we devise a speculative metric to estimate the number of co-
existing errors. This also allows us to generate a ranking for
the possible error locations to further guide root cause analysis
and assign the grouped failures to the suitable engineer(s).
The applicability and efficacy of the failure triage engine is
demonstrated by experimental results within typical regression
test flows, which indicate a significant increase in grouping
accuracy compared to conventional automated methods.

REFERENCES

[1] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design.
Academic Publishers, 2003.

[2] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

[3] S. Huang and K. Cheng, Formal Equivalence Checking and Design Debug-
ging. Kluwer Academic Publisher, 1998.

[4] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24, no. 10,
pp. 1606-1621, 2005.

[5] S.Safarpour, B.Keng, Y.S.Yang, and E.Qin, “Failure triage: The neglected
debugging problem,” in Design and Verification Conference (DVCON), 2012.

[6] A. Jain and R. Dubes, “Algorithms for clustering data,” 1998.

[7]1 G. J. Szekely and M. L. Rizzo, “Hierarchical clustering via joint between-
within distances: Extending ward’s minimum variance method,” Journal of
Classification, vol. 22, no. 2, pp. 151-183, 2005.

[8] OpenCores.org, “http://www.opencores.org,” 2007.

Kluwer

