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Abstract— RTL debug has become a resource-intensive bot-
tleneck in modern VLSI CAD flows, consuming as much as
32% of the total verification effort. This work aims to ad-
vance the state-of-the-art in automated RTL debuggers, which
return all potential bugs in the RTL, called solutions, along
with corresponding corrections. First, an iterative algorithm is
presented to compute the dominance relationships between RTL
blocks. These relationships are leveraged to discoverimplied
solutions with every new solution, thus significantly reducing
the number of formal engine calls. Furthermore, a modern SAT
solver is tailored to detect debuggingnon-solutions, sets of RTL
blocks guaranteed to be bug-free, and imply other non-solutions
using the precomputed RTL dominance relationships. Extensive
experiments on industrial designs show a three-fold reduction in
the number of SAT calls due to solution implications, coupled
with faster SAT run-times due to non-solution implications,
resulting in a 2.63x overall speed-up in total SAT solving time,
demonstrating the robustness and practicality of the proposed
approach.

I. I NTRODUCTION

With the growing size and complexity of VLSI designs,
the disparity between our ability to design and to verify
circuits, referred to as theverification gap, has become a
major concern [1]. Today, the ratio of verification engineers
to designers in the industry reaches2:1 for complex de-
signs [2] and has been projected to increase almost seven-
fold by 2015 [3]. However, despite the allocation of extensive
resources in an effort to bridge the verification gap, design
verification consumes on average more than50% of the VLSI
design cycle [1].

Once functional verification discovers a discrepancy be-
tween a design and its specification, acounter-exampleis
returned, consisting of a sequence of input stimuli that exhibits
a mismatch between the actual and expected responses of
the design and its specification, respectively. Given a buggy
design and a counter-example,design debuggingis the process
of tracking down the root cause of the observed erroneous
behavior. The latter is still a predominantly manual task in
the industry, entailing the burdensome analysis of long and
complex counter-examples [2]. Recent technical roadmaps and
market studies suggest that once a design fails verification,
debugging it and fixing it can consume up to32% of the total
verification effort [1].
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With the aim of alleviating the design debugging cost,
several methodologies have been proposed over the years
to automate this process [4]–[16]. The output of a modern
automated design debugger is a set of potential bug locations,
referred to assolutions. Each solution denotes a set of RTL
lines or blocks, where functional changes calledcorrections
can rectify the erroneous behavior in the given counter-
example. The automated debugger must returnall solutions,
along with their corrections, with engineers being given the
final task of identifying the real bug and fixing it.

State-of-the-art automated debuggers make heavy use of
formal tools, such asBoolean satisfiability(SAT) [11], quan-
tified boolean formulas[13] and maximum satisfiability[17].
They reduce the debugging problem into a propositional for-
mula whose satisfying assignments correspond to debugging
solutions. As such, hundreds of formal engine calls are often
required to return all solutions, one at a time [15]. With typical
design sizes containing millions of synthesized gates and
hundreds of thousands of RTL lines, the heavy computational
cost of such a high number of formal engine calls limits the
effectiveness and scalability of automated debugging software.
This work proposes techniques that (a) reduce the number of
required formal engine calls and (b) expedite the run-time of
each call to the formal engine. This is done by leveraging
structural dominance relationships between RTL components
in the design.

A nodeu is said to be asingle-vertex dominatorof another
nodev if every path fromv to a primary output passes through
u. Single-vertex dominators can be found in linear-time [18],
[19] and have been used for optimizing various CAD tasks,
e.g., test pattern generation [20], [21]. More recently, they have
been leveraged in the gate-level debugger in [11], which per-
forms an initial debugging pass on selected dominator gates.
However, state-of-the-art automated design debuggers operate
at the RTL-level [12], [14], where bugs occur in RTLblocks
(e.g., an always block, an if statement, a module definition,
etc), corresponding to multiple-gate, multiple-output circuit
blocks in the synthesized netlist. As such, it is difficult to
make use of single-vertex dominators at the RTL-level. A
block a dominates another blockb if every path from every
node in b to a primary output passes through a node in
a. In existing approaches for computing so-calledmultiple-
vertexor generalizeddominators, the gates constituting each
block are not fixed in advance. Instead, nodes are grouped to
form blocks during the algorithm, and according to certain
conventions (e.g., the smallest subset of fanouts collectively
dominating a node [22], [23]). In contrast, we are interested
in computing dominance relationships among blocks of nodes
defineda priori by a hierarchical RTL design.

Our initial contribution is an algorithm that iteratively
computes all the dominator RTL blocks of each RTL block in
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the design. Next, we apply our algorithm as a preprocessing
step to debugging, and leverage it in two ways.

First, we prove that for each solution RTL block returned by
the automated debugger, blocks that dominate it are separate
implied solutions. As such, the number of formal engine
calls for finding all solutions can be significantly reduced
using solution implications. Moreover, we show how to extract
corrections for such implied solutions in linear time from the
satisfying assignment corresponding to the original solution.
This can be thought of as pruning the solution space of the
debugging problem.

We also use block dominance to prune the non-solution
space of the debugging problem. We introduce the concept
of non-solutions, which are sets of blocks that cannot be
modified in any way to correct the counter-example. We show
that if a set ofn RTL blocks is a non-solution, then a set
of n blocks they dominate can also be ruled out as a non-
solution. Detecting non-solutions and blocking the RTL blocks
they dominate using blocking clauses during a SAT run can
lead to significant time savings. In order to make such non-
solution implications possible and useful, we present a new
SAT branching scheme whereerror-selectvariables [11] are
decided upon first, allowing the early detection of originalnon-
solutions. We also prove that error-select variables are part of
the careset[24] of the debugging problem, providing further
theoretical ground for moving them up in the SAT decision
tree. Finally, solution and non-solution implications areshown
to be valid for any error cardinality.

The proposed techniques are presented and implemented
on top of a SAT-based automated RTL debug framework [11],
[12] using MINI SAT 2.2.0 [25] as the back-end solver. An
extensive set of experiments on real industrial designs obtained
by our partners demonstrates the consistent benefits of the
presented framework. It is shown that66% of solutions are
discovered early due to solution implications, resulting in a
three-fold reduction in the average number of SAT solver
calls. This, coupled with the fact that25% of all non-solutions
are implied and blocked, results in a3x overall speed-up in
solving time. These results demonstrate the effectivenessand
practicality of our contributions.

The paper is organized as follows. Section II contains
preliminaries on automated design debugging and dominators.
Section III presents our iterative algorithm for computingdom-
inance relationships between blocks and proves its correctness.
Section IV shows how to leverage block dominators for on-
the-fly solution implications in design debugging. SectionV
introduces debugging non-solutions and describes the use of
block dominators to imply non-solutions. Section VI discloses
the details of our tailored SAT solver, which can detect original
non-solutions in order to imply further non-solutions based on
block dominators. Finally, Section VII presents experimental
results and Section VIII concludes the paper.

II. PRELIMINARIES

The following notation is used throughout the paper. Given a
sequential circuitC, the symboln denotes the set of all nodes
in C. The symbolsx, y and s label (possibly overlapping)

subsets ofn, respectively referring to the sets of primary
inputs, primary outputs and state elements (flip-flops) ofC.
For eachz ∈ {x,y, s,n}, the Boolean variablezi denotes the
ith element in the setz. In general, bold (z) versus regular (z)
symbols differentiate sets or sequences from single variables.

We consider designs with single clock domains, although
the described theory is applicable to multiple synchronous
clock domains using the techniques described in [26]. The
authors of [26] show how to transform multiple synchronous
clock domains into a single domain using a global, high-
frequency clock and by adding extra circuitry around flip-flops
and latches. The interested reader is referred to [26], as the
details of this translation are beyond the scope of this paper.

Time-frame expansionfor k clock-cycles is the process
of replicating, orunrolling, the combinational component of
C k times, such that the next-state of each time-frame is
connected to the current-state of the next time-frame, thus
modeling the sequential behavior ofC. For any variable (or
set of variables)zi (or z), symbol zti (or zt) denotes the
corresponding variable (or set of variables) in time-framet

of the unrolled circuit. The behavior ofC during the tth
clock-cycle is formalized using the transition relation predicate
T (st, st+1,xt,yt), which describes the dependence of the
primary outputsyt and next-statest+1 on the primary inputs
xt and current-statest. The transition relationT can be
extracted fromC and is normally given in Conjunctive Normal
Form (CNF), using the set of nodesnt as auxiliary variables.

An RTL design is translated into a gate-level netlist using
logic synthesis. Such a gate-level sequential circuitC can also
be represented as a directed graph. For convenience, we add
an artificial sink noder to this graph, such that the set of
nodesV = n ∪ {r} and the set of edgesE = {(ni, nj)|ni

is a fanin ofnj in C} ∪ {(yi, r)|∀yi ∈ y}. We reserve the
letters u and v to refer to nodes inV . Let fanout(v) =
{u ∈ V |(v, u) ∈ E} and fanin(v) = {u ∈ V |(u, v) ∈ E}.
Furthermore, the nodesn of C are grouped into (possibly
overlapping)blocks. Each block consists of the synthesized
gates of a given block of RTL code, such as analwaysblock
in Verilog. Let B = {b1,b2, . . . ,b|B|} denote the set of all
blocks, where eachbi ⊆ n is a collection of nodes. Note that
the same nodev can belong to more than one block because
of the hierarchical nature of RTL. The setout(bi) denotes the
outputs of blockbi. In the unrolled circuit, the setbt

i (out(bt
i))

contains the (output) nodes of blockbi in time-frame t.
Finally, for each nodev, we letout−1(v) = {bj |v ∈ out(bj)}
denote the set of blocks in whichv is an output.

Consider the sequential circuit in Figure 1(a). The blocks
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Fig. 1. A sequential circuit with blocks
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{b1,b2,b3,b4,b5} are shown in dotted boxes. We have
out(b1) = {x1}, out(b3) = {g1, g2} and out(b4) =
{g3}. Furthermore,out−1(g3) = {b4}, out−1(s1) = {b5},
out−1(g1) = {b3} and out−1(r) = ∅. Note thaty1 and y2
are primary output labels forg3 and g2, respectively, and
do not represent separate nodes. Figure 1(b) presents the
corresponding directed graph, including the artificial sink r.

A. Single-Vertex Dominators

In a directed graphC = (V,E, r) with a single output sink
r ∈ V , a nodeu ∈ V is said to be a structural single-vertex
post-dominator, or simplydominator, of a nodev ∈ V , if every
path fromv to the sinkr passes throughu. The setdom(v) =
{u ∈ V |u dominatesv} consists of nodes that dominatev.
As a convention, we consider that a node dominates itself.
Furthermore, to ease the presentation, we assume that every
node has a path tor (i.e., all dangling logic has been removed).

The immediate dominatorof a nodev (v 6= r), denoted by
idom(v), is a provably unique nodeu (u 6= v) that dominates
v and is dominated by all the nodes indom(v) − {v}. It
can be shown that for allv ∈ V − {r}, dom(v) = {v} ∪
idom(v) ∪ idom(idom(v)) ∪ · · · ∪ {r} [27]. Therefore it is
sufficient to compute all immediate dominators, which can
be done inO(|E| + |V |) time [18], [19]. In the directed
graph shown in Figure 1(b),dom(x1) = {x1, g1, s1, g3, r},
dom(x2) = {x2, r}, idom(x1) = {g1}, idom(x2) = {r}.

In this work, we are interested in finding dominance re-
lationships between blocks inB, rather than between nodes
in V . Section III outlines our approach, and discusses why
methods for computing single-vertex dominators, as well as
existing techniques for computing multiple-vertex dominators
are not applicable in a design debugging setting.

B. Design Debugging

This section describes SAT-based design debugging [11]
and introduces relevant notation, which is used throughout
the paper. Given an erroneous designC, a set of blocksB, a
counter-example of lengthk (along with its expected outputs)
and an error cardinalityN , the task of an automated design
debugger is to find all sets ofN blocks that can be responsible
for the counter-example. More precisely, each returned setof
N blocks{bi1 , . . . ,biN }, where{i1, . . . , iN} ⊆ {1, . . . , |B|},
can be modified to rectify the erroneous behavior exhibited
in the counter-example. We refer to each such set ofN

blocks as asolution of cardinality N . SAT-based automated
design debugging [11], [12] encodes the debugging problem
as a propositional formula whose satisfying assignments cor-
respond to debugging solutions. The following are the steps
to translate design debugging into a SAT problem. We useC
andB given in Figure 1(a) as an example for illustrating the
encoding process. Figure 2 is an illustration of the resulting
design debugging encoding for a two-cycle counter-example.

First, a set oferror-selectvariablese = {e1, . . . , e|B|} are
added to the circuit, such that settingei = 1 disconnects
gates inout(bi) from their fanins, making them free variables,
whereas settingei = 0 does not modify the circuit. This can be
achieved by inserting special multiplexers or switches at block

outputs or by directly modifying the CNF of the transition
relation. Next, this enhanced circuit is replicated using time-
frame expansion for the length of the counter-examplek, and
such that for all time-framest, outputsout(bt

i) are controlled
by the same error-select variableei. Figure 2 illustrates this,
where eachei is shown as an enable on the side of gates in
out(bt

i), across all time-framest. This allows the SAT solver
to modify the outputs of blockbi across all time-framesby
settingei = 1 to “fix” any potential errors inbi.

Then, a set of constraints are applied to the initial state,
the primary inputs and primary outputs in order to ensure
that given the initial stateΦS(s

1) and primary input values
ΦX(x1, . . . ,xk) in the counter-example, the primary outputs
yield their expectedvalues ΦY (y

1, . . . ,yk) given by the
specifications.ΦY can also be expressed as a set of prop-
erties. Finally, an error cardinality constraintΦN (e) is added,
setting

∑|B|
i=1 ei to a pre-specified constantN . The resulting

propositional formula is given by:

Debug =

k
∧

t=1

Ten(s
t, st+1,xt,yt, e) ∧ ΦS(s

1)∧ (1)

ΦX(x1, . . . ,xk) ∧ ΦY (y
1, . . . ,yk) ∧ ΦN (e)

whereTen(s
t, st+1,xt,yt, e) refers to the transition relation

predicate of the enhanced circuit at time-framet.
Each assignment toe = {e1, . . . , e|B|} satisfyingDebug (1)

corresponds to a debugging solution, and the SAT solver must
find all such satisfying assignments toe. This is normally
done by iteratively blocking each satisfying assignment using
a blocking clause and re-solvingDebug until the problem
becomes unsatisfiable. In a satisfying assignment where some
ei = 1, the values ofout(bt

i) across all time-framest = 1 . . . k
represent a sequence ofcorrections, which would correct the
erroneous behavior in the counter-example.

Example 1 Consider the sequential circuit in Figure 1(a) to
be a buggy implementation. We are also given a two-cycle
counter-example with initial state0, inputs 〈x1, x2〉 = 〈1, 1〉
in the first time-frame and〈0, 1〉 in the second, as well as
expected outputs〈y1, y2〉 = 〈1, 1〉 and 〈0, 0〉 in the first and
second time-frames. This yields a mismatch in the second time-
frame at the outputy2, since the buggy circuit yieldsy22 = 1.

The corresponding design debugging formulation is illus-
trated in Figure 2. The constraintsΦS = s̄11, ΦX = x1
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Fig. 2. Design debugging formulation
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and ΦY = y11y
1
2 ȳ

2
1 ȳ

2
2 are shown in boxes, whileΦN is

omitted for brevity. ForN = 1, {b2} and {b3} will be
returned by the solver as separate solutions, and are therefore
considered potentially buggy blocks. Corrections for solution
{b2} (respectively{b3}) consist of the satisfying assignments
to {x2} (respectively{g1, g2}) during the two time-frames.
For instance, in any correction for solution{b2}, x2

2 must be
set to0.

III. D OMINANCE BETWEEN BLOCKS

In this section, an iterative algorithm is presented for
computing the dominator RTL blocks of every RTL block.

Definition 1 A blockbj dominates another blockbi, denoted
asbjDbi, if and only if every path from every node inbi to
a primary output iny passes through a node inbj .

Assuming that internal (non-output) block nodes cannot be
primary outputs, any path to a primary output exiting a block
must pass through one of its outputs. Furthermore all primary
outputs are connected to the artificial sinkr. As such, the
block dominator relationD ⊆ B ×B can be formalized using
restricted quantifier notation [28] as follows:

bjDbi ⇔ ∀v[v ∈ out(bi)].∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj))

(2)
where a pathp : v

p
 r is a sequence of nodes starting atv

and ending atr. The right-hand-side of Equation 2 reads“for
all verticesv in out(bi), and for all pathsp from v to r, there
exists a vertexu in p, such thatu ∈ out(bj)” .

We let the setD(bi) = {bj |bjDbi} consist of blocks
that dominatebi. Note thatbiDbi according to (2). Consider
the sequential circuit given in Figure 1(a). Althoughx2 is
not dominated byg1 or g2 separately, blockb2 = {x2} is
dominated by blockb3 = {g1, g2}.

The relationD on the blocksB of C in Figure 1(b) is
illustrated in Figure 3. Unlike single-vertex dominators,a
block does not necessarily have a unique immediate dom-
inator block. This can be seen for blockb1 in Figure 3.
As such, algorithms for calculating single-vertex immediate
dominators cannot be used for computing block dominators.
On the other hand, in existing approaches for computing so-
called generalizedor multiple-vertex dominators [22], [23],
[29], block boundaries are not defined in advance. Instead,
nodes are assembled into multiple-vertex dominators on-the-
fly according to certain conventions,e.g., the smallest subset
of fanout(v) collectively dominating a nodev [22], [23]. This

b2

b1

b4

b5

b3

Fig. 3. Block dominator relationD of C

Algorithm 1: Compute Block Dominators

input : Directed graphC = (V,E, r), blocksB
output: Block dominator relationD

1 V ← REVERSEPOSTORDERING(CT , r);

2 // For each node v, compute out−1[v]
3 foreach v ∈ V do out−1[v]← ∅;
4 foreach bi ∈ b do
5 foreach v ∈ out[bi] do out−1[v]← out−1[v] ∪ bi;

6 // Compute the relation d

7 d[r]← ∅;
8 foreach v ∈ V − {r} do d[v]← B;
9 changed← true;

10 while changed do
11 changed← false;
12 foreach u ∈ V in reverse postorderdo
13 blocks←

⋂

∀v∈fanout[u]

(

d[v] ∪ out−1[v]
)

;
14 if blocks 6= d[u] then
15 d[u]← blocks;
16 changed← true;

17 foreach v ∈ V do d[v]← d[v] ∪ out−1[v];

18 // Compute the relation D

19 foreach bi ∈ B do D[bi]←
⋂

∀v∈out[bi]
d[v];

is not applicable in a design debugging setting, where circuit
blocks are defined in advance by the hierarchical RTL design.

In this work, the block dominator relationD on the set of
blocksB is computed in two steps. First, the block dominators
of each nodev ∈ V are computed. Then, these block-to-node
dominators are used to compute the block-to-block dominator
relationD.

Definition 2 A block bj dominates a nodev, denoted as
bjdv, if and only if every path fromv to a primary output
in y passes through a node inbj .

The block-to-node dominator relationd ⊆ B × V can be
formalized as :

bjdv ⇔ ∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj)) (3)

We let the setd(v) = {bj |bjdv} consist of blocks that
dominate nodev. For instance, in Figure 1(b),d(x1) =
{b1,b3,b4,b5}, d(x2) = {b2,b3} andd(s1) = {b4,b5}.

Algorithm 1 shows our pseudocode for computing the block
dominator relationD. It first computes the setsd(v) for every
v ∈ V (lines 1 to 17). This is done using an iterative algorithm,
where the set of block dominators of each node is initialized
to all blocksB and iteratively refined until it converges to
its actual block dominators. These block-to-node dominators
are subsequently used on line 19 to computeD(bi) for every
bi ∈ B.

On line 1, CT denotes the transpose of directed
graph C (i.e., C with edges reversed). The function
REVERSEPOSTORDERING(CT , r) performs a depth-
first search (DFS) ofCT starting from r, and sorts the
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nodes in decreasing finishing times. In general, a reverse
postordering is not unique. For instance, forC given in
Figure 1(b), REVERSEPOSTORDERING(CT , r) can return
〈r, g2, g3, s1, g1, x2, x1〉. TraversingV in reverse postorder
guarantees for each nodeu ∈ V that at least one of
v ∈ fanout(u) is already visited by the timeu is traversed.
This will reduce the number of iterations needed for
convergence when computing the setsd(v) later in the
algorithm.

Lines 3 to 5 calculate the setsout−1(v) for each nodev. The
algorithm for computing the setsd(v) for all nodesv (lines 7
to 16) is based on the traditional data-flow analysis algorithm
for finding single-vertex dominators [27], [30]. Lines 7 and8
initialize each dominator setd(v) to all blocks B for v ∈
V − {r}, and to the empty set forv = r. In each iteration of
the while loop, the nodes are traversed in reverse postorder
(as calculated on line 1) and a refined set of dominator blocks
is computed for each node on line 13. The computation of
this refined set of dominator blocks of each node on line 13 is
the main difference with the data-flow analysis algorithm for
single-vertex dominators. The new set of dominator blocks
of a nodeu ∈ V is updated to be the intersection, over all
v ∈ fanout(u), of the dominator blocks ofv as well as the
blocks in whichv is an output. If any of the setsd(v) are
changed during an iteration (i.e., the if condition on line 14
is true), thewhile loop is executed again. Thewhile loop
terminates after an iteration where all block-to-node dominator
sets remain unchanged. Line 17 adds the blocks in which node
v is an output, to the dominators ofv. Finally, on line 19, the
block dominatorsD(bi) of each blockbi are computed by
intersecting the block dominators of each node inout(bi).

Example 2 We will go through Algorithm 1 for the graph
respresentation of the circuit in Figure 1(a), along with its
suspect blocksB, as shown in Figure 1(b). Let the reverse
postordering returned byREVERSEPOSTORDERING(CT , r) be
〈r, g2, g3, s1, g1, x2, x1〉. After line 5, we have:

out−1(r) = ∅ out−1(g2) = {b3} out−1(g3) = {b4}

out−1(s1) = {b5} out−1(g1) = {b3} out−1(x2) = {b2}

out−1(x1) = {b1}

After line 8, we haved(r) = ∅ and for every otherv,
d(v) = {b1,b2,b3,b4,b5}. Next, each iteration of thewhile
loop goes through every vertexu in reverse postorder and
sets d(u) =

⋂

∀v∈fanout(u)

(

d(v) ∪ out−1(v)
)

. In the first
iteration, the block-to-node dominators are set as follows:

d(r) = ∅

d(g2) = d(g3) = d(r) ∪ out−1(r) = ∅

d(s1) = d(g3) ∪ out−1(g3) = {b4}

d(g1) = d(s1) ∪ out−1(s1) = {b4,b5}

d(x2) =
(

d(g1) ∪ out−1(g1)
)

∩
(

d(g2) ∪ out−1(g2)
)

= {b3}

d(x1) = d(g1) ∪ out−1(g1) = {b3,b4,b5}

The second iteration of thewhile loop does not modify any of
these sets, and as such the loop is exited.

Line 17 then addsout−1(v) to everyd(v):

d(r) = ∅ d(g2) = {b3} d(g3) = {b4}

d(s1) = {b4,b5} d(g1) = {b3,b4,b5}

d(x2) = {b2,b3} d(x1) = {b1,b3,b4,b5}

Finally, line 19 intersects the block-to-node dominators
of the output nodes of each block to get the block-to-block
dominator relationD shown in Figure 3.

Lemma 1 Thewhile loop in Algorithm 1 terminates and the
block-to-node dominator relationd is correctly computed by
the end of theforeach loop on line 17.

Proof: In [31], the authors describe a class of well-known
iterative data-flow analysisalgorithms, which have a variety
of applications (e.g., in compiler optimization [32]) and are
not restricted to calculating dominators. It can be shown that
Algorithm 1 up to line 16 is a special case of Algorithm MK
in [31]. Using the results in [31], one can show that the block-
to-node dominator relationd is correctly computed by the end
of the foreach loop on line 17.

Theorem 1 Algorithm 1 correctly computes the block domi-
nator relationD.

Proof: D(bi) is computed on line 19 as
⋂

∀v∈out(bi)
d(v).

Using Lemma 1, we get:

D(bi) =
⋂

∀v∈out(bi)

{bj |∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj))}

= {bj |∀v[v ∈ out(bi)].∀p[v
p
 r].∃u[u ∈ p].(u ∈ out(bj))}

which satisfies the definition of the block dominator relation
D given in (2).

The overall run-time of Algorithm 1 is normally dictated by
the run-time of thewhile loop from line 10 to 16. Furthermore,
during each iteration of thewhile loop, line 13 clearly dom-
inates computation time. We assume that all dangling logic
has been removed during preprocessing (i.e., every node has
a path tor), and as such|V | = O(|E|). Using an aggregate
analysis of all executions of line 13 during a single iteration
of the while loop, it can be seen that line 13 performs a total
of O(|E|) intersections and unions between two sets of size at
most |B| (sinced(v), out−1(v) ⊆ B). We assume that all sets
are implemented using ordered lists and therefore intersections
and unions can be done in linear time. As such, in a single
iteration of thewhile loop, line 13 takesO(|B| · |E|) time.

Let c denote the so-calledloop-connectednessof the di-
rected graphC = (V,E, r), which refers to the maximum
number of back edgesin any cycle-free path inC. The
back edges are defined according to the DFS performed in
REVERSEPOSTORDERING(CT , r) on line 1. It is proven in [31]
that the number of iterations of thewhile loop for this class
of algorithms is bounded byc+2. Hence, our algorithm takes
O(c · |B| · |E|) time.
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IV. L EVERAGING BLOCK DOMINANCE IN DESIGN

DEBUGGING: SOLUTION IMPLICATIONS

In this section, we show how to leverage the relationD

to imply debugging solutions. In effect, given a solution
consisting of a set of blocks, we show that we can replace
each block by any of its dominator blocks to get another
solution. Formally, it is proven that for each known solution of
Debug (1) of the form{bi1 , . . . ,biN }, every set of the form
{bj1 , . . . ,bjN } such that〈bj1 , . . . ,bjN 〉 ∈ D(bi1) × · · · ×
D(biN ) is also a solution ofDebug. This is an implication
of Theorem 2, which is more general because it is also used
in Section V. Furthermore, Corollary 1 shows that corrections
for each implied solution can be obtained automatically from
the satisfying assignment of the original solution.

First, due to the fixed length of a given counter-example, we
define the following, slightly modified concept of domination.

Definition 3 We say that a blockbj dominates another block
bi within k cycles, denoted asbjDkbi, if and only if every
path containing at mostk state elements, starting from every
node inout(bi) to r passes through a node inout(bj).

The following three Lemmas are used in the proof of
Theorem 2 later in this section. In Lemma 2,

⋃n

m=1 bim

(respectively
⋃n

m=1 bjm ) denotes a “super-block” consisting
of all nodes in blocksbi1 , . . . ,bin (respectivelybj1 , . . . ,bjn ).

Lemma 2 For any n[1 ≤ n ≤ |B|],
∧n

m=1(bjmDbim) ⇒
(
⋃n

m=1 bjm)D (
⋃n

m=1 bim)

Proof: If ∀m[1 ≤ m ≤ n], any path from any node
in out(bim) to a primary output passes through a node in
out(bjm), then clearly any path from any node in one of
out(bi1), . . . , out(bin) to a primary output passes through a
node in one ofout(bj1), . . . , out(bjn).

Lemma 3 For any k ≥ 0, bjDbi ⇒ bjDkbi

Proof: If bjDbi then every path frombi to a primary
output passes throughbj . In particular, all paths to a primary
output with at mostk state elements also pass throughbj .

Lemma 4 If bjDkbi in C, then in thek-cycle time-frame
expansion ofC, every path from every node inout(bt

i) (∀t[1 ≤
t ≤ k]) to any primary output in{yt, . . . , yk} passes through
a node inout(bt′

j ) (for somet′[t ≤ t′ ≤ k]).

Proof: True by construction.
We say thatn ≤ N RTL blocks {bi1 , . . . ,bin} can be

extendedto a debugging solution of cardinalityN if:
(

Debug ∧
n
∧

m=1

eim

)

is SAT.

I.e., if there existN − n other blocks{bin+1
, . . . ,biN }, such

that {bi1 , . . . ,biN } is a cardinalityN solution.

Theorem 2 Given an arbitrary set ofn ≤ N RTL blocks
{bi1 , . . . ,bin} ⊆ B, if it can be extended to a debugging
solution of cardinalityN , then replacing thesen blocks byn

blocks that dominate them,{bj1 , . . . ,bjn} ⊆ B, can also be
extended to a cardinalityN solution.

Formally, for anyn[1 ≤ n ≤ N ]:
[(

Debug ∧
n
∧

m=1

eim

)

is SAT

]

∧
n
∧

m=1

(bjmDbim)

⇒

[(

Debug ∧
n
∧

m=1

ejm

)

is SAT

]

(4)

Proof: In what follows, we refer to the left-hand-side
(respectively right-hand-side)SAT formula of the implication
as the LHS (respectively RHS). Letπ denote any satisfying
assignment of the LHS= Debug ∧

∧n

m=1 eim . Assuming
that

∧n

m=1(bjmDbim), we will construct an assignmentπ′

satisfying the RHS= Debug ∧
∧n

m=1 ejm to prove the claim.
Given any set of variablesz, we use the notationπ(z)

(respectivelyπ′(z)) to denote the truth assignment toz in
the satisfying assignmentπ (respectivelyπ′). Clearly, every
variable in{ei1 , . . . , ein} must be set to1 in π(e). Further-
more, we let the remainingN − n error-select variables that
are set to1 in π(e) be denoted by{ein+1

, . . . , eiN }. Using this
notation, the cardinality-N solution of the LHS corresponding
to π can simply be written as{bi1 , . . . ,biN }. We refer to this
set asB.

We start by constructingπ′(e) from π(e). This is equivalent
to constructing a set of blocksB′ that we will later show is
a cardinalityN solution of the RHS. Clearly, every variable
in {ej1 , . . . , ejn} must be set to1 in π′(e). Furthermore, for
everym = n+ 1, . . . , N :

(a) If eim 6∈ {ej1 , . . . , ejn}, we let π′(eim) = 1. In other
terms, if themth block in B is not already part of
{bj1 , . . . ,bjn}, add it toB′.

(b) If eim ∈ {ej1 , . . . , ejn}, then∃h ∈ {1, . . . , n}, such that
bimDbih , and we letπ′(eih) = 1. In other terms, if the
mth block inB is one of{bj1 , . . . ,bjn}, add the corre-
sponding dominated block from within{bi1 , . . . ,bin}
to B′.

We set every other error-select variable to0 in π′(e). The
total number of error-select variables assigned to1 in π′(e) is
exactlyN , thus satisfyingΦN .

Using the scheme given above, we have:

B′ ={bj1 , . . . ,bjn} ∪ {bin+1
, . . . ,biN }∪

a (possibly empty) subset of{bi1 , . . . ,bin}. (5)

It is easy to show thatB′
DB. We are already given that

for eachm = 1 . . . n, bjmDbim . Each of the blocks in the
other two subsets inB′ shown in (5) already exists inB and
therefore dominates itself by definition. As such, each block
in B′ dominates at least one block inB, and therefore, by
Lemma 2,B′

DB. Furthermore, by Lemma 3, we getB′
DkB.

In the second half of this proof, we will use the fact that
B′

DkB in order to construct a satisfying assignmentπ′ for
the RHSSAT formula from any satisfying assignmentπ of the
LHS SAT formula. The assignmentπ′ must set all the vari-
ables inDebug, which includes thek-time-frame expanded
circuit obtained fromC as described in Subsection II-B. LetU
refer to this expanded circuit (e.g.,Figure 2). In what follows,
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we refer to the blocks inB′ as {bj1 , . . . ,bjN } in order to
simplify notation. LetI = {bt

in
|1 ≤ n ≤ N, 1 ≤ t ≤ k}

(respectivelyJ = {bt
jn
|1 ≤ n ≤ N, 1 ≤ t ≤ k}) denote

the union of all nodes inB (respectivelyB′) across all time-
frames inU . Also, let out(I) (respectivelyout(J)) refer to
the set of outputs ofI (respectivelyJ). We will partition the
nodes inU into three parts,UI , UJ andUR, as follows.

Let UJ denote the transitive fanout ofout(J) in U . Let
UI denote the nodes inU that are in the transitive fanout of
out(I), but not inUJ . Finally, letUR consist of the remaining
nodes inU , outsideUI andUJ . UsingB′

DkB and Lemma 4,
we can imply that any path fromout(I) to a primary output
must pass throughout(J). As a result, these partitions ofU
can be represented by the diagram shown in Figure 4.

UI

UJ

UR
out(J)

out(I)

ΦS ∧ ΦX

ΦJ
YΦR

Y ΦR
Y

Fig. 4. Partition ofU

Note that in Figure 4, the output constraints are separated
into two subsets:ΦY = ΦJ

Y ∧ ΦR
Y , whereΦJ

Y (respectively
ΦR

Y ) denotes the output constraints applied at the outputs of
UJ (respectivelyUR). This separation is only needed for this
proof and is not required by our method.

We know that givenei1 = 1, . . . , eiN = 1, there exist
assignments to the nodes inUI , UJ andUR satisfying the LHS.
Let π(UI), π(UJ ) andπ(UR) refer to these assignments. We
want to find assignmentsπ′(UI), π′(UJ) and π′(UR), such
that givenej1 = 1, . . . , ejN = 1, the RHS is satisfied. These
assignments are found as follows.

First consider the subset of output constraints applied at
the outputs ofUR, denoted byΦR

Y in Figure 4. Sinceπ(UR)
satisfiesΦR

Y and the input constraints toUR (i.e., ΦS∧ΦX ) are
the same in the LHS and the RHS, settingπ′(UR) = π(UR)
will also satisfyΦR

Y in the RHS.
Next, considerUI . Note that any path fromout(I) to a

primary output must pass throughout(J). Also, settingej1 =
1, . . . , ejN = 1 in the RHS disconnectsout(J) from their
fanins. Therefore, there are no output constraints appliedon
UI (i.e., UI is dangling logic in the RHS). As such,π′(UI)
can simply “propagate” the values ofπ′(UR) in UI .

Finally, since the nodes inout(J) are disconnected from
their fanins in the RHS, the SAT solver is free to pick any
assignment for these variables. Furthermore, settingπ′(UR) =
π(UR) already assigned any inputs toUJ coming fromUR to
the same values as the LHS. Therefore, we can simply pick
π′(UJ ) = π(UJ), which will satisfy ΦJ

Y in Figure 4. This
completes the satisfying assignmentπ′ to all the variables in
UI , UJ andUR in the RHS. Therefore, the RHS isSAT.

Corollary 1 Given a solution{bi1 , . . . ,biN } and its corre-
sponding satisfying assignmentπ of Debug, a sequence of
corrections for each implied solution{bj1 , . . . ,bjN } consists

of the assignments to{out(bt
jn
)|1 ≤ n ≤ N, 1 ≤ t ≤ k} in

π.

Proof: Consider Theorem 2 withn = N . In its proof, we
showed how to build a satisfying assignmentπ′ of the RHS of
(4) given a satisfying assignmentπ of the LHS. In particular,
we showed that the subset ofπ′ corresponding toUJ is the
same as the subset ofπ corresponding toUJ . In other terms,
π′(UJ) = π(UJ). SinceUJ is simply the transitive fanout
of out(J) in U , the subset ofπ′ corresponding toout(J) is
also the same as the subset ofπ corresponding toout(J). As
such, given a satisfying assignmentπ for the original solution
{bi1 , . . . ,biN }, a sequence of corrections for the implied
solution {bj1 , . . . ,bjN } simply consists of the assignments
in π to out(J) = {out(bt

jn
)|1 ≤ n ≤ N, 1 ≤ t ≤ k}.

Intuitively, Theorem 2 and Corollary 1 show that if the SAT
solver returns a given debugging solution, we can immediately
imply that all its dominators are also solutions, and we can
extract their corresponding corrections from the satisfying
assignment of the original solution. This eliminates all the
additional SAT solver calls to find these dominating solutions
and their corrections, therefore significantly expeditingthe
debugging process.

A. Debugging Flow using Solution Implications

The flowchart in Figure 5 illustrates the overall design
debugging flow using on-the-fly solution implications. Algo-
rithm 1 is first run to computeD(bi) for every blockbi ∈ B.
Next, the automated debugger builds the CNF ofDebug

and passes it to the SAT solver. If it isUNSAT, the flow
terminates. Otherwise, a solution{bi1 , . . . ,biN } is returned.
A simple implication engine takes in this solution, and using
the pre-computed block dominator relationD, generates all
newly implied solutions. A blocking clause is added toDebug

for each of these implied solutions, as well as the original
solution. The resulting debugging instance is given again to
the automated debugger, and this process is repeated until the
problem becomesUNSAT.

Example 3 Consider the sequential circuit in Figure 1(a) and
the corresponding design debugging formulation illustrated in
Figure 2, withN = 1. Assume thatD ⊆ B×B has been com-
puted using Algorithm 1. Let the solver first return the solution
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{b2}. SinceD(b2) = {b2,b3}, the solution{b3} (along with
its corrections) can be immediately implied, eliminating aSAT
call. After adding the corresponding blocking clauses(ē2) and
(ē3) to Debug, the solver returnsUNSAT, indicating that all
solutions have been found.

V. L EVERAGING BLOCK DOMINANCE IN DESIGN

DEBUGGING: NON-SOLUTION IMPLICATIONS

In this section, we define the concept of anon-solution. We
show that the reverse of the computed block dominance re-
lationships can be leveraged to performnon-solution implica-
tions, thus pruning the search-space of the debugging problem.
In Section VI, we present a tailored SAT solver which is able
to learn and detect original non-solutions much faster, leading
to earlier non-solution implications and expedited run-times.

As opposed to a solution, any set ofN blocks whose
outputs can in no way be simultaneously modified to correct
the counter-example can be referred to as a non-solution. We
extend this concept to sets ofn ≤ N blocks as follows.

Definition 4 Given an erroneous designC, a set of blocksB,
a counter-example of lengthk along with the corresponding
expected outputs and an error cardinalityN , {bi1 , . . . ,bin}
with n ≤ N is a non-solutionif and only ifDebug∧

∧n

m=1 eim
is UNSAT.

In other terms, a set ofn ≤ N blocks is ann-block
non-solution if it cannot be extended to any solution of
cardinality N . The following theorem proves that sets of
blocks dominated by non-solutions are also non-solutions.

Theorem 3 Given an erroneous designC, a set of blocksB,
a counter-example of lengthk along with the corresponding
expected outputs and an error cardinalityN , if {bj1 , . . . ,bjn}
with n ≤ N is a non-solution ofDebug and

∧n

m=1 bjmDbim ,
then{bi1 , . . . ,bin} is also a non-solution.

Proof: Let:

Φi = Debug ∧
n
∧

m=1

eim Φj = Debug ∧
n
∧

m=1

ejm

Using Theorem 2, we have:
(

(Φi SAT) ∧
n
∧

m=1

bjmDbim

)

⇒ (Φj SAT)

⇔ (Φi UNSAT) ∨ ¬

(

n
∧

m=1

bjmDbim

)

∨ (Φj SAT)

⇔ (Φi UNSAT)⇐

(

n
∧

m=1

bjmDbim ∧ (Φj UNSAT)

)

Intuitively, Theorem 3 shows that if we are able to identify
a non-solution,i.e., a set of blocks that we cannot modify in
any way to fix the given counter-example, we can immediately
imply that all blocks dominated by this non-solution are also
non-solutions. This information can be procured to the SAT
solver by adding blocking clauses to divert it from considering

these dominated blocks. This prunes its search space and
therefore speeds-up the completion time of the SAT call.

Example 4 Consider the sequential circuit in Figure 1(a) and
the corresponding design debugging formulation illustrated in
Figure 2, usingN = 1. We know that blockb4 dominatesb1

andb5. If b4 is known to be a non-solution, using Theorem 3,
we can imply thatb1 andb5 are each separate non-solutions.
We can therefore automatically add the clauses(ē1) and (ē5)
to prune the search space ofDebug.

Whereas Theorem 2 can be used to imply solutions of
cardinalityN given each returned solution by the SAT solver,
in order to be able to use Theorem 3 one must first be able
to detect non-solutions. This can only be made possible by
modifying the SAT solver.

One way to identify non-solution blocks is by monitoring
learned clauses of the form(ē1 ∨ · · · ∨ ēn). However the SAT
solver rarely learns such clauses. Instead, learned clauses are
more complex and usually involve many other variables along
with the error-select variables. Another way to detect blocks
that are single-block non-solutions is to examine the forced
assignments ofBoolean constraint propagation(BCP) after
each solver restart (when the decision stack is empty). If some
ei = 0 by unit propagation given an empty decision stack,
then the solver has “learned” thatbi is a non-solution block.
However, from our experiments, virtually all such non-solution
blocks are learned during the last solver restart in the last
call to the all-solution SAT procedure (after all solutionshave
been found), leaving little room for improvements using non-
solution implications.

VI. A TAILORED SAT SOLVER

In this section, we describe a new SAT branching scheme
for design debugging, where error-select variables are decided
upon first. This allows the early learning (and simple detection)
of non-solutions, making non-solution implications useful.

A. Our SAT Branching Scheme

We force the SAT solver to first decide on all error-select
variables (e). The rest of this subsection provides several
motivations for this choice. Furthermore, we force the solver
to always assign error-select variables that are decided (i.e.,
not forced due to BCP) to1 before trying to set them to
0. The reason for doing this is to learn and detect non-
solutions, and is explained in detail in Subsection VI-B. Once
all the error-select variables are assigned, the solver uses
the standard decision heuristics (e.g., VSIDS [33]) for the
remaining variables.

Motivation: A SAT solver can assign variables in any order.
The first motivation for assigning the error-select variables
early in the decision tree relates to their importance and their
impact on other variable decisions in the SAT solving process.
For example, whenei = 1, the internal nodes of blockbi

become dangling, and therefore they are don’t-cares. As such,
assigning the nodes inbi, as well as their fanouts, is useless
if ei is later assigned to1.
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What follows formalizes this motivation by proving that the
error-select variables are part of thecareset[24] variables of
a design debugging problem. According to [24], a complete
assignment on careset variables is a “gateway” to a satisfying
assignment, and branching on these variables first can speed
up SAT solvers by an order of magnitude.

In [24], a constrained circuitis one where certain variables
are constrained to Boolean values. For instance, the constraint
circuit corresponding toDebug for the circuit in Figure 1(a)
is shown in Figure 2. Given a constrained circuit and its
corresponding CNF formulaΦ, a partial assignmentπ is said
to be aminimally satisfying assignment(MSA) if and only if:

(a) BCP cannot be applied onΦ|π further.
(b) Φ|π can be shown to be satisfiable by assigning all

remaining unassigned inputs in its constrained circuit
to arbitrary values and using BCP.

(c) Unassigning at least one variable inπ would violate (a)
or (b).

Here, Φ|π denotesΦ where the variables inπ have been
assigned to their values inπ.

Definition 5 A non-empty setS of variables is acaresetof Φ
if every variable inS is assigned in every MSA ofΦ.

Theorem 4 The error-select variablese belong to thecareset
of Debug.

Proof: Assume towards a contradiction that a certain
error-select variableei does not belong to the careset of
Debug. Then there must exist an MSAπ of Debug where
ei is unassigned. By (b),Φ|π must be satisfiable under any
combination of assignments to the error-select variables not in
π, including ei = 0 and ei = 1. This cannot be true because
assigningei to 0 or 1 in a certain combination of error-select
assignments will change the number of error-select variables
set to1, thus violating the error cardinality constraintΦN in
at least one of the cases.

The second, and more important, reason for assigning the
error-select variables early is that it allows the solver to
learn non-solution blocks much faster. This in turn enables
non-solution implications in order to prune the SAT search
space earlier and therefore more effectively. Subsection VI-
B discusses how to detect learned non-solutions using our
branching scheme.

B. Detecting Non-Solutions

To simplify the presentation of this subsection, let us assume
without loss of generality that the error-select variables, which
are branched upon first in our SAT solver, are decided in the
order of 〈e1, . . . , e|B|〉. According to our branching scheme
explained in Subsection VI-A, the SAT solver first assigns
e1 = 1. If the solver later switches toe1 = 0 without finding
a satisfying assignment undere1 = 1, this means thate1 = 1

cannot be extended to a satisfying assignment. Hence,e1 = 0

is true for all satisfying assignments (if any exist).I.e., (ē1)
has been learned and{b1} is a single-block non-solution.

The following Lemma shows that, using our decision
scheme, assigning anyei to 0 on the rightmost path in the
SAT decision tree indicates that{bi} is a single-block non-
solution.

Lemma 5 For any i, if every error-select variable in
{e1, . . . , ei} is set to 0 by the SAT solver, then{bi} is a
single block non-solution.

Proof: Recall that our decision scheme forces the solver
to first set each error-select variable to1 before trying to
set it to 0. Thus, by construction,ei = 1 has already been
tried under every assignment combination toe1, . . . , ei−1, and
cannot be extended to a satisfying assignment. This means that
Debug ∧ ei is UNSAT, which implies that{bi} is a single-
block non-solution.

Example 5 Consider the partial SAT decision tree in Fig-
ure 6(a), where error-select lines do not correspond to the
blocks in Figure 1(a). Each set of blocks shown under a dashed
line indicates a non-solution detected by the solver using
Lemma 5. For instance, as soon ase2 is assigned to0, since
its only ancestore1 is also assigned to0, {b2} is detected
as a1-block non-solution. The solver implies that every block
that b2 dominates is also a non-solution, by Theorem 3 with
n = 1. As such, we can add clauses of the form(ēi) for every
blockbi that hasb2 in its dominatorsD(bi).

1) The General Case. Detectingn-Block Non-Solutions:

Theorem 5 For anyn ≤ N and for anyi ≥ n, if ei is set to
0, and every error-select variable in{e1, . . . , ei−1} is set to0
by the SAT solver exceptn− 1 of them, say{ej1 , . . . , ejn−1

}
which are set to1, then {bj1 , . . . ,bjn−1

,bi} is an n-block
non-solution.

Proof: Once again, our decision scheme forces the solver
to first set each error-select variable to1 before trying to set
it to 0. This means that every time the solver sets an error-
select variableej to 0, it does so because it has exhausted the
ej = 1 branch and henceej = 0 is implied under the partial
assignment toe1, . . . , ej−1 aboveej in the decision tree.

As such, starting from the first error-select variable that is
set to0, which is implied by any previous error-select variable
assignments to1 (if any), it is easy to show by induction that
every error-select variable assignment to0 can be implied from
any previous error-select variable assignments to1. In other
terms:

ei = 0 is forced due toej1 = 1, . . . , ejn−1
= 1

⇔ Debug → ((ej1 ∧ · · · ∧ ejn−1
)→ ēi)

⇔ Debug → (ēj1 ∨ · · · ∨ ējn−1
∨ ēi)

⇔ Debug ∧ (ej1 ∧ · · · ∧ ejn−1
∧ ei) is UNSAT

⇔ {bj1 , . . . ,bjn−1
,bi} is ann-block non-solution.

Example 6 The partial SAT decision tree in Figure 6(b)
shows non-solutions of one and two blocks, detected using
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Fig. 6. Detectingn-block nonsolutions

Theorem 5. For instance, as soon ase3 is assigned to0, since
its only ancestor assigned to1 is e2 , we know that{b2,b3} is
a 2-block non-solution. Each of the blocks in this non-solution
can be replaced by a block it dominates to get another non-
solution, by Theorem 3 withn = 2. As such, we can add
clauses of the form(ēi ∨ ēj) for everybi and bj dominated
by b2 andb3, respectively.

C. Restart Heuristic

Modern SAT solvers have periodicrestarts, usually oc-
curring after a certain number of conflicts. A restart clears
assignments of all variables (including all decisions) while
keeping the learned clauses. We modify the existing restart
mechanism to enhance non-solution detection as follows. If
no non-solutions have been learned during a solver restart,
we generate a random numberr (1 ≤ r ≤ |B|), and swap
the order of the error-select variables below and above level
r in the decision tree. The reasoning behind this is to avoid
spending too much time in parts of the search-space where it
is hard to detect and therefore imply non-solutions.

D. Debugging Flow using Solution and Non-Solution Impli-
cations

The flowchart in Figure 7 illustrates the overall design
debugging flow using both solution and non-solution impli-
cations. This is an extension to the flow in Figure 5. Our
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modified SAT solver is able to detectn-block non-solutions,
where1 ≤ n ≤ N , of the form{bi1 , . . . ,bin}. Each such non-
solution is immediately passed to a reverse implication engine,
which uses the pre-computed block dominator relationD to
generate all implied non-solutions. These are passed back to
the SAT solver, which adds the corresponding clauses to prune
the search-space of the problem.

Example 7 Consider the sequential circuit in Figure 1(a) and
the corresponding design debugging formulation illustrated in
Figure 2. Assume thatN = 1, and that the modified SAT solver
detects the non-solution{b4}. Sinceb4 ∈ D(b1) and b4 ∈
D(b5), the non-solutions{b1} and {b5} can be implied by
the reverse implication engine. As such, the clauses(ē1) and
(ē5) are added toDebug, immediately pruning the solution
search-space.

VII. E XPERIMENTAL RESULTS

This section presents the experimental results for solution
and non-solution implication-based design debugging in an
industrial setting. All experiments are run using a single core
of an i5-2400 3.1 GHz workstation with8 GB of RAM
and a timeout of3600 seconds. The proposed debugging
framework is implemented on top of a state-of-the-art SAT-
based debugger based on [11], [12], [15], with a Verilog front-
end to allow for RTL diagnosis. For non-solution implications,
we tailor the debugger’s back-end SAT solver, MINISAT-
V2.2.0 [25].

Eight industrial Verilog designs from OpenCores [34] and
two commercial designs provided by our industrial partnersare
used in our experiments. For each design, several debugging
instances are generated by inserting different errors intothe
design. The RTL errors that are injected are based on the
experience of our industrial partners. These are common
designer mistakes such as wrong state transitions, incorrect
operators or incorrect module instantiations [15]. Such errors
typically translate to multiple gate-level changes. The erro-
neous design is then run through an industrial simulator with
the accompanying testbench, where a failure is detected and
a counter-example is recorded. Each blockbi ∈ B consists
of the synthesized gates corresponding to a (set of) line(s)
in the RTL implementing an assignment, an if statement, a
module definition, an instantiation, etc. Our RTL debugging
tool usesbounded model debugging(BMD) [15], which is an
orthogonal debugging optimization that helps deal with long
counter-examples. BMD first examines the lastd time-frames
(d = 40 in this paper) of the counter-example, and iteratively
analyzes earlier time-frames until all solutions are found. The
reasoning behind it is that the bug is most often (although not
always) excited within a few time-frames of it being observed.
In our experiments,trad refers to the “traditional” debugging
flow (without solution or non-solution implications),+impl
includes only solution implications as illustrated in Figure 5,
−impl includes only non-solution implications, and finally
+impl−impl includes both as shown in Figure 7.

Table I presents the characteristics of each design debugging
instance, as well as the number of solutions and the run-
times of trad with N = 1. The first column gives the
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TABLE I

TRADITIONAL RTL DEBUG, N = 1

Instance |n| |B| k

trad
# overh SAT

sol (s) (s)

vga-1 89402 1741 423 77 4.6 14.3
vga-2 89402 1741 11308 23 11.7 216
vga-3 89412 1593 465 21 10.4 42.7
vga-4 89412 1593 465 30 33.9 67.2
vga-5 89626 1534 34 46 55.7 110.2
ddr2-1 58399 2779 27 373 6.5 96.5
ddr2-2 64915 2777 27 509 6.9 90.2
ddr2-3 64915 2777 29 392 7.1 88.4
ddr2-4 58399 2779 29 373 6.6 78.5
dma-1 299862 8460 28 526 56.2 434.8
dma-2 191386 7874 35 468 15.6 196.4
dma-3 191397 6354 28 379 12.7 110.3
dma-4 191375 7479 27 227 11.8 65.5
dma-5 299838 8460 7 205 19.3 72.6
dma-6 301812 8460 20 134 41.0 59.8
mips789-1 63417 2747 31 241 12.7 109.7
mips789-2 63241 2580 22 166 20.5 117.6
mips789-3 63241 2750 24 162 10.2 40.8
usb-1 35158 3397 32 422 6.9 96.2
usb-2 35350 3401 106 322 24.6 519.5
usb-3 36180 3477 18 165 4.7 20.3
usb-4 35326 3118 56 157 7.2 16.5
usb-5 38346 3555 27 132 6.2 19.8
usb-6 39183 4389 21 151 6.2 28.8
rsdecoder-1 13564 2044 112 396 3.1 60.3
rsdecoder-2 13978 2044 142 308 4.1 T/O
hpdmc-1 11805 960 50 216 2.1 11.0
hpdmc-2 13181 1135 42 176 2.1 8.5
hpdmc-3 11547 1079 44 171 1.5 17.3
hpdmc-4 12849 1135 25 152 1.2 8.5
hpdmc-5 11548 1080 53 175 1.0 15.9
hpdmc-6 12834 1129 22 135 1.1 6.2
mrisc-1 17568 812 40 34 5.5 11.6
mrisc-2 18052 968 41 36 5.8 16.2
mrisc-3 17526 958 40 34 5.6 14.6
design1-1 690766 11738 27 241 134.8 1960.7
design1-2 45632 9156 29 166 4.8 112.6
design1-3 203718 10258 151 127 28.9 114.4
design2-1 875837 2592 132 99 13.5 11.8
design2-2 875837 2592 638 87 36.4 6.0
design2-3 875837 2863 338 117 27.1 19.7

instance name, which consists of the design name and an
appended number indicating a different inserted error. The
following three columns respectively show the number of
circuit nodes |n| in the cone-of-influence of the counter-
example, the number of blocks|B|, the number of clock-
cyclesk in the counter-example. Columns# sols and overh
respectively refer to the total number of returned solutions, and
the run-time overhead in seconds for setting up the problem
(i.e., generating the CNF ofDebug). This overhead includes
graph optimizations such as dangling logic removal. Note that
the # sols and overh numbers are common to all debugging
flows. Finally, columntrad SATgives the total SAT solver run-
time for returning all solutions with the traditional debugging
flow. This is the sum of all SAT calls, including the last call
which yieldsUNSAT.

Table II presents the experimental results for+impl , −impl
and +impl−impl , for the same debugging instances as the
ones shown in Table I. ColumnAlg. 1 gives the run-time in
seconds of Algorithm 1 for computing the block dominator
relation D, which is run as a preprocesing step in each
of these three flows. Next, for each of+impl , −impl and

Fig. 8. Percentage of implied solutions and non-solutions
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+impl−impl , columnSATshows the SAT solver run-time in
seconds, whereas columnsimpr and impr-o show the speed-
up achieved by that debugging method overtrad , where
impr excludes andimpr-o includes the common overhead
shown under columnoverh in Table I. The run-time of
Algorithm 1 is included in speed-up calculations. Finally,
under+impl−impl , columnssol impl and non-sol implgive
the percentage of implied solutions to all solutions and implied
non-solutions to all non-solutions, respectively. SinceN = 1,
all non-solutions are single-block here.

Figure 8 shows the percentages of implied solutions to
all solutions and implied non-solutions to all non-solutions,
sorted in increasing order. On average,68% of all solutions
are implied, resulting in a three-fold reduction in the number
of SAT solver runs. This percentage of implied solutions
goes up to91% for vga-5, indicating that more than nine
out of ten solutions are found without a SAT call. Figure 8
also shows that, on average,25% of all non-solutions are
implied by our tailored SAT solver. Figure 9 plots the number
of found solutions versus run-time fortrad , +impl and
+impl−impl for design1-2. It can be seen that whiletrad
returns solutions at roughly equal time intervals,+impl and
+impl−impl discover solutions at a much faster rate due to
solution implications. The rate of solution discovery decreases
for both with time, mainly because implied solutions in later
SAT calls might have already been found (or implied) in
previous calls. Returning most solutions early is beneficial
because the engineer can start examining returned solutions
earlier, while the debugger continues to run. Moreover, as
expected, Figure 9 demonstrates that non-solution implications
speed-up SAT calls in+impl−impl compared to+impl .

Figure 10 plots the SAT run-times of each of+impl , −impl
and+impl−impl versus those oftrad on a logarithmic scale,
along with the1x, 2x, 3x and 10x lines, clearly showing
the superiority of our approaches. The geometric means of
the speed-ups fromtrad to each of +impl , −impl and
+impl−impl are shown in the last line of Table II to be2.07x,
1.45x and 2.63x excluding common overhead, and1.75x,
1.33x and2.02x including overhead. In most cases, higher per-
centages of implied solutions and non-solutions mean less and
faster SAT calls, which result in less total SAT solving time.
For instance, in design1-2,80% of solutions and58% of non-
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TABLE II

RTL DEBUG USINGDOMINANCE, N = 1

Instance
+impl −impl +impl−impl

Alg. 1 SAT impr impr-o SAT impr impr-o sol non-sol SAT impr impr-o
(s) (s) (x) (x) (s) (x) (x) impl (%) impl (%) (s) (x) (x)

vga-1 0.3 12.4 1.1x 1.1x 10.8 1.3x 1.2x 54% 21% 6.7 2x 1.6x
vga-2 1.1 80.7 2.6x 2.4x 202.4 1.1x 1.1x 77% 14% 75.0 2.8x 2.6x
vga-3 0.9 15.2 2.7x 2x 54.9 0.8x 0.8x 76% 6% 24.1 1.7x 1.5x
vga-4 2.2 24.5 2.5x 1.7x 54.7 1.2x 1.1x 90% 9% 35.0 1.8x 1.4x
vga-5 2.3 45.8 2.3x 1.6x 16.5 5.8x 2.2x 91% 36% 7.5 11.2x 2.5x
ddr2-1 0.2 46.9 2x 1.9x 70.8 1.4x 1.3x 54% 60% 40.6 2.4x 2.2x
ddr2-2 0.2 40.6 2.2x 2x 69.5 1.3x 1.3x 55% 56% 41.6 2.2x 2x
ddr2-3 0.2 31.6 2.8x 2.5x 63.4 1.4x 1.4x 72% 67% 36.1 2.4x 2.2x
ddr2-4 0.2 35.3 2.2x 2x 95.8 0.8x 0.8x 52% 21% 45.0 1.7x 1.6x
dma-1 2.0 170.4 2.5x 2.1x 323.5 1.3x 1.3x 77% 28% 161.9 2.7x 2.2x
dma-2 0.7 87.1 2.2x 2.1x 56.9 3.4x 2.9x 75% 40% 37.5 5.1x 3.9x
dma-3 0.7 64.8 1.7x 1.6x 87.8 1.2x 1.2x 66% 24% 45.3 2.4x 2.1x
dma-4 0.3 33.5 1.9x 1.7x 10.7 5.9x 3.4x 74% 62% 6.5 9.6x 4.1x
dma-5 2.1 38.3 1.8x 1.5x 48.3 1.4x 1.3x 53% 19% 31.3 2.2x 1.7x
dma-6 2.0 23.8 2.3x 1.5x 53.2 1.1x 1x 62% 29% 25.8 2.1x 1.5x
mips789-1 0.6 36.4 3x 2.5x 95.8 1.1x 1.1x 80% 1% 45.0 2.4x 2.1x
mips789-2 0.5 67.9 1.7x 1.6x 9.2 12.1x 4.6x 83% 55% 4.8 22.1x 5.4x
mips789-3 0.5 16.6 2.4x 1.9x 30.4 1.3x 1.2x 62% 6% 17.2 2.3x 1.8x
usb-1 0.2 39.5 2.4x 2.2x 56.9 1.7x 1.6x 57% 31% 37.5 2.5x 2.3x
usb-2 0.2 343.6 1.5x 1.5x 150.4 3.4x 3.1x 64% 60% 102.6 5x 4.3x
usb-3 0.2 8.2 2.4x 1.9x 15.9 1.3x 1.2x 61% 25% 8.6 2.3x 1.8x
usb-4 0.0 7.0 2.4x 1.7x 14.4 1.1x 1.1x 67% 11% 8.3 2x 1.5x
usb-5 0.2 8.2 2.4x 1.8x 16.0 1.2x 1.2x 54% 7% 10.4 1.9x 1.5x
usb-6 0.3 11.7 2.4x 1.9x 22.0 1.3x 1.2x 70% 53% 9.4 3x 2.2x
rsdecoder-1 0.2 28.9 2.1x 2x 87.8 0.7x 0.7x 44% 71% 45.3 1.3x 1.3x
rsdecoder-2 0.2 T/O N/A N/A T/O N/A N/A 59% 14% 2940.5 ∞ ∞
hpdmc-1 0.0 4.7 2.3x 1.9x 6.5 1.7x 1.5x 64% 25% 3.8 2.9x 2.2x
hpdmc-2 0.0 4.7 1.8x 1.6x 6.7 1.3x 1.2x 66% 8% 3.7 2.3x 1.8x
hpdmc-3 0.0 7.7 2.2x 2x 9.3 1.9x 1.7x 73% 20% 5.7 3x 2.6x
hpdmc-4 0.0 3.7 2.3x 2x 5.3 1.6x 1.5x 72% 6% 2.8 3x 2.4x
hpdmc-5 0.0 11.2 1.4x 1.4x 11.4 1.4x 1.4x 49% 13% 7.3 2.2x 2x
hpdmc-6 0.0 2.6 2.4x 2x 4.4 1.4x 1.3x 67% 11% 2.6 2.4x 2x
mrisc-1 0.1 5.6 2x 1.5x 9.6 1.2x 1.1x 76% 3% 4.5 2.5x 1.7x
mrisc-2 0.1 7.0 2.3x 1.7x 14.5 1.1x 1.1x 73% 2% 6.6 2.4x 1.7x
mrisc-3 0.1 5.9 2.4x 1.7x 13.4 1.1x 1.1x 74% 3% 5.7 2.5x 1.8x
design1-1 2.8 1351.8 1.4x 1.4x 1621.1 1.2x 1.2x 61% 6% 1095.2 1.8x 1.7x
design1-2 0.0 45.7 2.5x 2.3x 63.9 1.8x 1.7x 80% 58% 27.4 4.1x 3.6x
design1-3 0.4 34.4 3.3x 2.3x 100.2 1.1x 1.1x 84% 3% 35.9 3.2x 2.2x
design2-1 3.1 6.4 1.2x 1.1x 10.5 0.9x 0.9x 68% 10% 6.4 1.2x 1.1x
design2-2 3.1 2.7 1x 1x 6.0 0.7x 0.9x 52% 1% 3.0 1x 1x
design2-3 3.1 12.2 1.3x 1.1x 16.2 1x 1x 75% 5% 10.3 1.5x 1.2x

mean 2.07x 1.75x 1.45x 1.33x 68% 25% 2.63x 2.02x

TABLE III

RTL DEBUG USINGDOMINANCE, N = 3

Instance |n| |B| k

trad +impl−impl(n = 1) +impl−impl(n = 1, 2, 3)
# overh SAT Alg. 1 SAT impr impr-o SAT impr impr-o

sol (s) (s) (s) (s) (x) (x) (s) (x) (x)

vga-6 90759 1850 172 222 13.2 11.4 0.2 4.7 2.3x 1.4x 4.4 2.4x 1.4x
vga-7 89626 1534 34 166 7.4 111.0 2.3 48.2 2.2x 2x 48.3 2.2x 2x
ddr2-5 58399 2779 29 373 19.0 78.4 0.2 37.4 2.1x 1.7x 37.5 2.1x 1.7x
usb-7 36180 3477 18 165 19.1 20.3 0.2 7.6 2.6x 1.5x 7.5 2.6x 1.5x
hpdmc-7 11879 1079 48 219 6.6 11.8 0.0 6.0 1.9x 1.4x 4.5 2.6x 1.6x
hpdmc-8 11061 961 45 207 10.6 8.4 0.0 4.1 2.1x 1.3x 3.5 2.4x 1.3x
hpdmc-9 11548 1080 48 192 2.0 17.9 0.0 8.6 2.1x 1.9x 8.5 2.1x 1.9x
hpdmc-10 12849 1135 25 152 13.9 8.5 0.0 2.8 3x 1.3x 2.8 3x 1.3x
mrisc-4 18052 968 41 182 12.7 16.1 0.1 6.7 2.4x 1.5x 6.6 2.4x 1.5x
mrisc-5 17526 958 40 163 7.0 14.6 0.1 6.0 2.4x 1.6x 5.7 2.5x 1.7x
design2-4 875837 2863 58 1491 43.7 532.0 3.1 337.5 1.6x 1.5x 308.2 1.7x 1.6x
mean 2.21x 1.55x 2.35x 1.59x

solutions are implied, yielding a4.1x speed-up in total SAT
run-time, compared to the average2.63x speed-up. However,
this is not always true because of the unpredictable behavior
of SAT solvers. Furthermore, we have not found any clear
relationships between design parameters and improvements

due to solution and non-solution implications.
Finally, Table III shows experimental results for eleven

debugging instances withN = 3. Here, trad is compared
to two versions of+impl−impl , first only allowing non-
solutions ofn = 1 blocks, then non-solutions of up ton = 3
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blocks. The columns of Table III are structured similarly to
those of Tables I and II. We can see that detecting and implying
non-solutions of up to three blocks increases the geometric
mean of the speed-up of+impl−impl relative to trad from
2.28x to 2.42x excluding common overhead, and from1.55x
to 1.58x including overhead.

VIII. C ONCLUSION

We first presented an iterative algorithm for computing
dominance relationships between the blocks of an RTL design.
We showed how to leverage these dominance relationships
in an automated RTL debugger to expedite the discovery of
potentially buggy RTL blocks, as well as the clearance of
blocks guaranteed to be correct. This was done by using
solution and non-solution implications. Our methods reduced
the number of SAT calls three-fold and speed-up each call,
resulting in a2.63x overall speed-up in total SAT solving
time, as demonstrated on an extensive set of experiments on
industrial designs.

In the future, we plan to use dominance relationships
between RTL blocks to group and rank all potential bugs.
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