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Abstract—RTL debug has become a resource-intensive bot- With the aim of alleviating the design debugging cost,
tleneck in modern VLSI CAD flows, consuming as much as several methodologies have been proposed over the years
32% of the total verification effort. This work aims to ad- 5 sutomate this process [4]-[16]. The output of a modern
vance the state-of-the-art in automated RTL debuggers, which . . - .
return all potential bugs in the RTL, called solutions, along automated deS|gn.debugger o s.et of potential bug locgtion
with corresponding corrections. First, an iterative algorithm is  referred to assolutions Each solution denotes a set of RTL
presented to compute the dominance relationships between RTL lines or blocks, where functional changes callarections
blocks. These relationships are leveraged to discoveimplied can rectify the erroneous behavior in the gi\/en counter-
solutions with every new solution, thus significantly reducing example. The automated debugger must realirsolutions,

the number of formal engine calls. Furthermore, a modern SAT | ith thei fi ith . bei . h
solver is tailored to detect debuggingnon-solutions, sets of RTL ~&/0Ng W €ir corrections, with engineers being givea

blocks guaranteed to be bug-free, and imply other non-solutions final task of identifying the real bug and fixing it.

using the precomputed RTL dominance relationships. Extensive  State-of-the-art automated debuggers make heavy use of
experiments on industrial designs show a three-fold reduction in formal tools, such a8oolean satisfiabilitf SAT) [11], quan-

the number of SAT calls due to solution implications, coupled tifiad boolean formula§13] and maximum satisfiability17].

with faster SAT run-times due to non-solution implications, Th d the deb : bl int it | f
resulting in a 2.63x overall speed-up in total SAT solving time, €y reduce the aebugging probliem Into a propositional for-

demonstrating the robustness and practicality of the proposed Mula whose satisfying assignments correspond to debugging
approach. solutions. As such, hundreds of formal engine calls arenofte
required to return all solutions, one at a time [15]. Withitgb
design sizes containing millions of synthesized gates and
I. INTRODUCTION hundreds of thousands of RTL lines, the heavy computational
With the growing size and complexity of VLSI designs,COSt qf such a high numper of formal engine callls limits the
the disparity between our ability to design and to veri ff(_actlveness and scalabmt_y of automated debugging\sué.
circuits, referred to as theerification gap has become a hIS.WOI’k proposes_technlques that (a) redyce the ”“’.“ber of
major concern [1]. Today, the ratio of verification engirseetrequ'red formal engine calls _and (b)_ e>_(ped|te the run-tlrhe_ 0
each call to the formal engine. This is done by leveraging

to designers in the industry reachesl for complex de- . . :

signs [2] and has been projected to increase almost Seva“gctural _dommance relationships between RTL companent
fold by 2015 [3]. However, despite the allocation of exteasi in the deS|g.n. . . .

resources in an effort to bridge the verification gap, desi%n'g‘ nol?eu IS Sa'dht? be asmgle-yertex dominatoof anc;\ther h
verification consumes on average more thaf of the VLSI odeuv It every pat romo to a primary outpgt Passes .t roug
design cycle [1]. u. Single-vertex dominators can be found in linear-time [18]

. e . . 19] and have been used for optimizing various CAD tasks,
Once functional verification discovers a discrepancy be- ;
. . e . e.g, test pattern generation [20], [21]. More recently, theyeha
tween a design and its specification,caunter-examplds

returned, consisting of a sequence of input stimuli thatlateh been leveraged in the gate-level debugger in [11], which per

a mismatch between the actual and expected response%c_c:EJr?13 an initial debugging pass on selected dominator gates

the design and its specification, respectively. Given a buggowever, state-of-the-art automated design debuggen=iepe

: ; o t the RTL-level [12], [14], where bugs occur in RTlocks
design and a counter-examptiesign debuggings the process . —
. e.g., an always block, anif statement, a module definition,
of tracking down the root cause of the observed erroneous . . . .
efc), corresponding to multiple-gate, multiple-outputcait

behavior. The latter is still a predominantly manual task 'Qéocks in the synthesized netlist. As such. it is difficult to

the industry, entailing the burdensome analysis of long arr]nake use of single-vertex dominators at the RTL-level. A

complex counter-examples [2]. Recent technical roadmag@s ablock a dominates another blodks if every path from every
market studies suggest that once a design fails verification

debugging it and fixing it can consume up32% of the total node m_b_to a primary output Passes through a _node n
verification effort [1]. a. In existing approaches for computing so-callediltiple-

vertexor generalizeddominators, the gates constituting each
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the design. Next, we apply our algorithm as a preprocessisgbsets ofn, respectively referring to the sets of primary
step to debugging, and leverage it in two ways. inputs, primary outputs and state elements (flip-flops) of
First, we prove that for each solution RTL block returned blor eachz € {x,y,s, n}, the Boolean variable; denotes the
the automated debugger, blocks that dominate it are separi#h element in the set. In general, boldZ) versus regularz
implied solutions. As such, the number of formal engingymbols differentiate sets or sequences from single asab
calls for finding all solutions can be significantly reduced We consider designs with single clock domains, although
using solution implications. Moreover, we show how to estrathe described theory is applicable to multiple synchronous
corrections for such implied solutions in linear time frohet clock domains using the techniques described in [26]. The
satisfying assignment corresponding to the original smhut authors of [26] show how to transform multiple synchronous
This can be thought of as pruning the solution space of tbvck domains into a single domain using a global, high-
debugging problem. frequency clock and by adding extra circuitry around fligaflo
We also use block dominance to prune the non-soluti@md latches. The interested reader is referred to [26], @s th
space of the debugging problem. We introduce the concefettails of this translation are beyond the scope of this pape
of non-solutions which are sets of blocks that cannot be Time-frame expansiofior k clock-cycles is the process
modified in any way to correct the counter-example. We shasf replicating, orunrolling, the combinational component of
that if a set ofn RTL blocks is a non-solution, then a se¢ k times, such that the next-state of each time-frame is
of n blocks they dominate can also be ruled out as a nogonnected to the current-state of the next time-frame, thus
solution. Detecting non-solutions and blocking the RTLdi® modeling the sequential behavior 6f For any variable (or
they dominate using blocking clauses during a SAT run ca@at of variables)z; (or z), symbol 2t (or z') denotes the
lead to significant time savings. In order to make such noBorresponding variable (or set of variables) in time-frame
solution implications possible and useful, we present a n&# the unrolled circuit. The behavior of during the tth
SAT branching scheme wheegror-selectvariables [11] are clock-cycle is formalized using the transition relatioegicate
decided upon first, allowing the early detection of originah-  7'(st, s'*! x* y*), which describes the dependence of the
solutions. We also prove that error-select variables aregfa primary outputsy’ and next-state!*! on the primary inputs
the careset[24] of the debugging problem, providing furtherx! and current-states’. The transition relationI’ can be
theoretical ground for moving them up in the SAT decisioBxtracted fronC and is normally given in Conjunctive Normal
tree. Finally, solution and non-solution implications al®wn Form (CNF), using the set of nodes$ as auxiliary variables.
to be valid for any error cardinality. An RTL design is translated into a gate-level netlist using
The proposed techniques are presented and implemenggglc synthesis. Such a gate-level sequential cir€uiain also
on top of a SAT-based automated RTL debug framework [1He represented as a directed graph. For convenience, we add
[12] using MINISAT 2.2.0 [25] as the back-end solver. Anan artificial sink noder to this graph, such that the set of
extensive set of experiments on real industrial desigmasindd nodes) = n U {r} and the set of edge& = {(ni,ny)|n

by our partners demonstrates the consistent benefits of {8 fanin ofn; in C} U {(yi,7)|Vy: € y}. We reserve the
presented framework. It is shown thét% of solutions are |etters w and v to refer to nodes inl/. Let fanout(v) =
discovered early due to solution implications, resultingai {,, ¢ V|(v,u) € E} and fanin(v) = {u € V|(u,v) € E}.
three'fold reduction in the aVerage number Of SAT SOlV@urthermore, the nodea of C are grouped into (poss|b|y
calls. This, COUpled with the fact thas% of all non-solutions Over|apping)b|ocks Each block consists of the Synthesized
are implied and blocked, results in3x overall speed-up in gates of a given block of RTL code, such asawaysblock
solving time. These results demonstrate the effectivearsls in verilog. Let B = {by, b, ... ,bys|} denote the set of all
practicality of our contributions. blocks, where each; C n is a collection of nodes. Note that

The paper is organized as follows. Section Il containfe same node can belong to more than one block because
preliminaries on automated design debugging and domisiatasf the hierarchical nature of RTL. The sett(b;) denotes the
Section Il presents our iterative algorithm for computéfam-  outputs of blockb;. In the unrolled circuit, the séi! (out(b?))
inance relationships between blocks and proves its coesst contains the (output) nodes of blodl; in time-frame ¢.
Section IV shows how to leverage block dominators for orginally, for each node, we letout =1 (v) = {b;|v € out(b;)}
the-fly solution implications in design debugging. Sectvn denote the set of blocks in whichis an output.

introduces debugging non-solutions and describes the Use oconsider the sequential circuit in Figure 1(a). The blocks
block dominators to imply non-solutions. Section VI dis#e

the details of our tailored SAT solver, which can detectiogag
non-solutions in order to imply further non-solutions lthea
block dominators. Finally, Section VII presents experitaén
results and Section VIII concludes the paper.

b1 b3 b4

T1ip>

Il. PRELIMINARIES
) o . @¢c, B (b) Graph representation af,

The following notation is used throughout the paper. Given a B
sequential circuit, the symboln denotes the set of all nodes

. . . Fig. 1. A sequential circuit with blocks
in C. The symbolsx, y and s label (possibly overlapping)



{b1,by,bs,by,bs} are shown in dotted boxes. We haveutputs or by directly modifying the CNF of the transition
out(by) = {x1}, out(bs) = {¢1,92} and out(by) = relation. Next, this enhanced circuit is replicated usiinget
{gs}. Furthermore,out=1(g3) = {ba}, out~'(s;) = {bs}, frame expansion for the length of the counter-exanipland
out™(g1) = {b3} andout~'(r) = (). Note thaty; andy, such that for all time-frames outputsout(b!) are controlled
are primary output labels foys and go, respectively, and by the same error-select variablg Figure 2 illustrates this,
do not represent separate nodes. Figure 1(b) presents wiere eacle; is shown as an enable on the side of gates in
corresponding directed graph, including the artificiaksin  out(b!), across all time-frames This allows the SAT solver
to modify the outputs of bloclb; across all time-framedby
A. Single-Vertex Dominators settinge; = 1 to “fix” any potential errors inb;.

Then, a set of constraints are applied to the initial state,
the primary inputs and primary outputs in order to ensure
%hat given the initial statebs(s') and primary input values
dx(x!,...,x") in the counter-example, the primary outputs

. . 1 PR
{u € V|u dominatesv} consists of nodes that dominate yield their expectedvalues @y (y",...,y") given by the

. . . . ecifications.®y can also be expressed as a set of prop-
As a convention, we consider that a node dominates |tse§P. . Y o€ exp . . prop
. erties. Finally, an error cardinality constraibty (e) is added,
Furthermore, to ease the presentation, we assume that e

Very. Bl ] . )
node has a path to(i.e., all dangling logic has been removed se1¥|ng 2 i1 €i 10 a pre-specified constan{. The resulting

The immediate dominatoof a nodev (v # r), denoted by propositional formula is given by:
idom(v), is a provably unique node (u # v) that dominates k

In a directed grapl€ = (V, E,r) with a single output sink
r €V, anodeu € V is said to be a structural single-verte
post-dominator, or simplgominator of a nodev € V, if every
path fromv to the sinkr passes through. The setdom(v) =

v and is dominated by all the nodes ifvm(v) — {v}. It Debug = |\ Ton(s',s",x",y", €) A s(s)A @
can be shown that for alb € V — {r}, dom(v) = {v} U = i . .
idom(v) U idom(idom(v)) U --- U {r} [27]. Therefore it is Px(x',...,x )ALy (y,....¥y") APn(e)

sufficient to compute all immediate dominators, which cagnere 7, ,(st,s!*1, xt,y*, e) refers to the transition relation

be done inO(|E| + [V]) time [18], [19]. In the directed predicate of the enhanced circuit at time-frame

graph shown in Figure 1(bYom(z1) = {z1,91,51,93,7},  Each assignmenti®= {ei,. .., ez} satisfyingDebug (1)

dom(xg) = {xa,r}, idom(z1) = {g1}, idom(x2) = {r}. corresponds to a debugging solution, and the SAT solver must
In this work, we are interested in finding dominance ring all such satisfying assignments to This is normally

lationships between blocks if§, rather than between nodesygne by iteratively blocking each satisfying assignmemais

in V. Section 1l out_lines_our approach, a_nd discusses Why plocking clause and re-solvinfebug until the problem

methods for computing single-vertex dominators, as well @acomes unsatisfiable. In a satisfying assignment where som

existing techniques for computing multiple-vertex domima .. — 1 the values obut(b!) across all time-frames=1... k

are not applicable in a design debugging setting. represent a sequence adrrections which would correct the

erroneous behavior in the counter-example.
B. Design Debugging

This section describes SAT-based design debugging [1El
and introduces relevant notation, which is used through
the paper. Given an erroneous desgra set of blocks3, a . i ) X
counter-example of length (along with its expected outputs)In the first time-frame and0, 1) in the sec.ond, as well as
and an error cardinalityv, the task of an automated desigr?XDECteq OUtpUt@hy2>.: 41’ 1) anq (0,0) n the first and :
debugger is to find all sets o¥ blocks that can be responsiblesecond time-frames. This yields a mismatch in the secord tim

for the counter-example. More precisely, each returneabfsetframe at the outpu_yz, since the bquY cireuit y|eld_§§ =1
N blocks{bs,,...,bs, }, where{ii,...,in} C {1,...,|B]} The.cor_respondlng design erugglrjlg formula?o?i;s 2|||us-
can be modified to rectify the erroneous behavior exhibitdtpted in Figure 2. The constraints = 5y, Px = j2,772;
in the counter-example. We refer to each such setNof
blocks as asolution of cardinality N. SAT-based automated s ol
design debugging [11], [12] encodes the debugging problem
as a propositional formula whose satisfying assignments co
respond to debugging solutions. The following are the steps
to translate design debugging into a SAT problem. We @ise
and B given in Figure 1(a) as an example for illustrating the
encoding process. Figure 2 is an illustration of the resglti
design debugging encoding for a two-cycle counter-example
First, a set oferror-selectvariablese = {ey,..., ¢35} are
added to the circuit, such that settirg = 1 disconnects
gates inout(b;) from their fanins, making them free variables,
whereas setting; = 0 does not modify the circuit. This can be
achieved by inserting special multiplexers or switchedatlb

ample 1 Consider the sequential circuit in Figure 1(a) to
a buggy implementation. We are also given a two-cycle
counter-example with initial state, inputs (z1,z2) = (1,1)

Fig. 2. Design debugging formulation



and &y = ylyly?y3 are shown in boxes, whil@®y is  Algorithm 1: Compute Block Dominators
omitted for brevity. ForN = 1, {bo} and {bs} will be input : Directed graplC = (V, E, r), blocks B
returned by the solver as separate solutions, and are thevef  oytput: Block dominator relatiorD
considered potentially buggy blocks. Corrections for tohu
{b,} (respectively{bs}) consist of the satisfying assignments
to {z2} (respectively{gi,g=}) during the two time-frames. 2 // For each node v, conpute out'[v]
For instance, in any correction for solutiofbs}, 3 must be 3 foreach v € V' do out~![v] + 0);
set to0. 4 foreach b; € b do

s | foreach v € out[b;] do out™'[v] - out™'[v] Uby;

V < REVERSEPOSTORDERINGCT, 7);

IIl. DOMINANCE BETWEENBLOCKS .
6 // Conpute the relation d

In this section, an iterative algorithm is presented foy d[r] « 0;
computing the dominator RTL blocks of every RTL block. g foreachv ¢ V — {r} do d[v] + B;
9 changed < true;
Definition 1 A blockb; dominates another blodk;, denoted 15 while changed do
as b;Db;, if and only if every path from every nodeln to changed + false;
a primary output iny passes through a node in;. 12 | foreachu € V in reverse postordedo
blocks < (Vype fanout(u] (d[v] Uout[v]);
if blocks # d[u] then
d[u] « blocks;
changed < true;

Assuming that internal (non-output) block nodes cannot be
primary outputs, any path to a primary output exiting a block
must pass through one of its outputs. Furthermore all psimar L
outputs are connected to the artificial sink As such, the 16
block dominator relatiod C B x B can be formalized using
restricted quantifier notation [28] as follows:

b;Db; < Yo[v € out(b;)].¥p[v % 7].3ufu € p].(u € out(b;))
2)

17 foreach v € V do d[v] < d[v] U out~[o];

18 // Conpute the relation D
19 foreach b; € B do D[b;] < Ny,eoutp, dlv);

where a pattp : v % r is a sequence of nodes startinguat

and ending at. The right-hand-side of Equation 2 reddisr ) ] ] ) ) .

all verticesu in out(b;), and for all pathsp fromv to r, there 1S not applicable in a design debugging setting, where itircu
exists a vertex: in p, such thatu € out(b;)". blocks are defined in advance by the hierarchical RTL design.

We let the setD(b;) = {b;|b,Db;} consist of blocks In this work, the block dominator relatiob on the set of
that dominateb;. Note thatbiDt])i eiccording to (2). Consider blocks B is computed in two steps. First, the block dominators
the sequential circuit given in Figure 1(a). Although is ©f €ach node € V' are computed. Then, these block-to-node
not dominated byg; or g. separately, blockby = {z5} is dominators are used to compute the block-to-block dominato

dominated by block; = {g1, g2} relation D.
The relationD on the blocksB of C in Figure 1(b) is
illustrated in Figure 3. Unlike single-vertex dominatoss,
block does not necessarily have a unique immediate do
inator block. This can be seen for blodk, in Figure 3.
As such, algorithms for calculating single-vertex immeégia The block-to-node dominator relatioh C B x V can be
dominators cannot be used for computing block dominatofgymalized as : B
On the other hand, in existing approaches for computing so- p
called generalizedor multiple-vertex dominators [22], [23], bjdv < Vp[v ~ r].3ulu € p|.(u € out(b;)) 3)
[29], block boundaries are not defined in advance. Insteagle let the setd(v) = {b,|b;dv} consist of blocks that
nodes are assembled into multiple-vertex dominators en-tijominate nodev. For instance, in Figure 1(b)(z;) =
fly according to certain conventions,g, the smallest subset {b,, by, by, b5}, d(z3) = {bs, bs} andd(s;) = {b4, bs}.
of fanout(v) collectively dominating a node [22], [23]. This  Algorithm 1 shows our pseudocode for computing the block
dominator relatiorD. It first computes the set{{v) for every
v € V (lines 1to 17). This is done using an iterative algorithm,
@ where the set of block dominators of each node is initialized
to all blocks B and iteratively refined until it converges to
its actual block dominators. These block-to-node domisato

%® are subsequently used on line 19 to comfbtd,) for every

Definition 2 A block b; dominates a node), denoted as
H]j_dv, if and only if every path from to a primary output
In y passes through a node ;.

biGB.

On line 1, ¢T denotes the transpose of directed
graph C (i.e., C with edges reversed). The function
REVERSEPOSTORDERINGCT,7)  performs a  depth-

Fig. 3. Block dominator relatio® of C X T X
first search (DFS) ofC* starting from r, and sorts the



nodes indecreasing finishing timesin general, a reverse Line 17 then addsut~!(v) to everyd(v):

postordering is not unique. For instance, f6r given in

Figure 1(b), REVERSEPOSTORDERINGCT,7) can return d(r) =10 d(g2) = {bs} d(gs) = {ba}
(r, 92,93, 51, 91,22, 21). TraversingV in reverse postorder {(s,) = {by, bs} d(g1) = {b3, by, bs}

guarantees for each node < V that at least one of d(z2) = {ba,bs} d(z1) = {b1, bs, ba, bs}

v € fanout(u) is already visited by the time is traversed. ’ TR
This will reduce the number of iterations needed for
convergence when computing the setév) later in the
algorithm.

Lines 3 to 5 calculate the setat~!(v) for each node. The
algorithm for computing the set§v) for all nodesv (lines 7
to 16) is based on the traditional data-flow analysis algorit Lemma 1 Thewhile loop in Algorithm 1 terminates and the
for finding single-vertex dominators [27], [30]. Lines 7 a@d block-to-node dominator relatiod is correctly computed by
initialize each dominator sed(v) to all blocks B for v € the end of thdoreach loop on line 17.

V —{r}, and to the empty set far = r. In each iteration of

the while loop, the nodes are traversed in reverse postorder Proof: In [31], the authors describe a class of well-known
(as calculated on line 1) and a refined set of dominator blocksrative data-flow analysisalgorithms, which have a variety
is computed for each node on line 13. The computation of applications €.g.,in compiler optimization [32]) and are
this refined set of dominator blocks of each node on line 131t restricted to calculating dominators. It can be showvat th
the main difference with the data-flow analysis algorithm foAlgorithm 1 up to line 16 is a special case of Algorithm MK
single-vertex dominators. The new set of dominator blochs [31]. Using the results in [31], one can show that the block
of a nodeu € V is updated to be the intersection, over allo-node dominator relatiod is correctly computed by the end
v € fanout(u), of the dominator blocks of as well as the of the foreach loop on line 17. [ |
blocks in whichv is an output. If any of the setd(v) are
changed during an iteration.€., the if condition on line 14
is true), thewhile loop is executed again. Thehile loop
terminates after an iteration where all block-to-node dwator
sets remain unchanged. Line 17 adds the blocks in which node
v is an output, to the dominators of Finally, on line 19, the
block dominatorsD(b;) of each blockb; are computed by
intersecting the block dominators of each nodevin(b;).

Finally, line 19 intersects the block-to-node dominators
of the output nodes of each block to get the block-to-block
dominator relationD shown in Figure 3.

Theorem 1 Algorithm 1 correctly computes the block domi-
nator relationD.

Proof: D(b;) is computed online 19 4§, ¢ ,+(p,) d(v)-
Using Lemma 1, we get:

D(b;) = ﬂ {b;|Vp[v & 7].3ufu € p|.(u € out(b;))}
VYv€out(b;

Example 2 We will go through Algorithm 1 for the graph coutbs)

respresentation of the circuit in Figure 1(a), along witls it = {Pi[70[v € out(b:)]. plv % r].3ufu € p].(u € out (b))}

suspect blockd3, as shown in Figure 1(b). Let the reverse

pl(J)s?ordenng returned bR\I/EVVEIRSEI!’%uSTOR(D?ERINC{CT r) \t/)e which satisfies the definition of the block dominator relatio

(r, g2, 93,81, 91, X2, x1). After line 5, we have: D given in (2). ) ] ] ) u
The overall run-time of Algorithm 1 is normally dictated by
out™'(r) =10 out *(go) = {b3} out '(g3) = {by} the run-time of thevhile loop from line 10 to 16. Furthermore,

out=1(s1) = {bs} out~'(g1) = {bs} out~'(a2) = {bs} Fjuring each itergtion.of thevhile loop, line 13 clearly .dom— '
=1 (21) = {by} inates computation time. We assume that all dangling logic
ou = has been removed during preprocessing.,(every node has

After line 8, we haved(r) = 0 and for every others, @& Path tor), and as suchV| = O(|E|). Using an aggregate
d(v) = {b1, bs, by, by, bs}. Next, each iteration of thevhile analysis of all executions of line 13 during a single iteati
loop goes through every vertex in reverse postorder and of the while loop, it can be seen that line 13 performs a total
setsd(u) = Myue fanout(e) (d(v) Uout~1(v)). In the first of O(|E]) intersections and unions between two sets of size at

veE fanout(u :

. . ) H —1
iteration, the block-to-node dominators are set as follows MOSt|B| (sinced(v), out™ (v) C B). We assume that all sets
are implemented using ordered lists and therefore intBosec

d(r)=10 and unions can be done in linear time. As such, in a single
d(g2) = d(gz) = d(r) Uout =1 (r) = 0 iteration of thewhile loop, line 13 takeD(|B] - | E|) time.
d(s1) = d(gs) U out(gs) = {ba} Let ¢ denote the so-calletbop-connectednessf the di-

L rected graphC = (V, E,r), which refers to the maximum
d(g1) = d(s1) Uout™ (s1) = {bs, b5} number of back edgesin any cycle-free path inC. The
d(z2) = (d(g1) Uout ' (g1)) N (d(g2) Uout '(g2)) = {bs} back edges are defined according to the DFS performed in
d(z1) = d(g1) Uout~1(g1) = {bs, ba, bs} REVERSEPOSTORDERINGCT, 7) on line 1. Itis proven in [31]

that the number of iterations of thehile loop for this class
The second iteration of thehile loop does not modify any of of algorithms is bounded by+ 2. Hence, our algorithm takes
these sets, and as such the loop is exited. O(c- |B|-|E]) time.



IV. LEVERAGING BLOCK DOMINANCE IN DESIGN blocks that dominate them{b;,,...,b; } C B, can also be
DEBUGGING. SOLUTION IMPLICATIONS extended to a cardinalityv solution.

In this section, we show how to leverage the relatbn ~ Formally, for anyn[l <n < NJ:
to imply debugging solutions. In effect, given a solution K

n

consisting of a set of blocks, we show that we can replace | [ Debug A /\ eim> is SAT | A (b;,.Db; )

each block by any of its dominator blocks to get another m=1 m=1

solution. Formally, it is proven that for each known solatif " )

Debug (1) of the form{b;,,...,b;, }, every set of the form = [(Debug A /\ ejm> is SAT|  (4)
{bj“. .. ,ij} such that<bj1, Ce 7ij> S D(b“) X e X m=1

D(b;, ) is also a solution ofDebug. This is an implication Proof: In what follows, we refer to the left-hand-side

of Theorem 2, which is more general because it is also usgdspectively right-hand-sideSAT formula of the implication
in Section V. Furthermore, Corollary 1 shows that correwio as the LHS (respectively RHS). Let denote any satisfying
for each implied solution can be obtained automaticallyrfroassignment of the LHS= Debug A A _, €;,,. Assuming
the satisfying assignment of the original solution. that A" _,(b;,.Db; ), we will construct an assignment’
First, due to the fixed length of a given counter-example, veatisfying the RHS= Debug A A\ _, e;.. to prove the claim.
define the following, slightly modified concept of dominatio  Given any set of variableg, we use the notationr(z)
(respectivelyn’(z)) to denote the truth assignment #0in
Definition 3 We say that a block; dominates another block the satisfying assignment (respectivelyr’). Clearly, every
b; within k cycles denoted ash;Dyb;, if and only if every variable in{e;,,...,e;,} must be set ta in 7(e). Further-
path containing at most state elements, starting from everymore, we let the remainingy — n error-select variables that
node inout(b;) to r passes through a node wut(b;). are setta in 7(e) be denoted bye;, ., ..., e;, }. Using this
qotation, the cardinalityv solution of the LHS corresponding

The following three Lemmas are used in the proof %6 = can simply be written agb; , ..., b;, }. We refer to this

Theorem 2 later in this section. In Lemma @]’ _, b

im  get asB.
H n “ ” H H
(respectivelyl J,,_, b;,.) denotes a “super-block” consisting We start by constructing’(e) from 7 (e). This is equivalent

of all nodes in blockd;, , . .., b;, (respectivelyb;y,..., bj,). 4, constructing a set of blockB’ that we will later show is

Lemma 2 For any n[l < n < |B], A"_, (b, Db, ) = a cardinality N solution of the RHS. Clearly, every variable

n " m=1 in {e;,,...,e;, } must be set ta in n’(e). Furthermore, for
(Un=1 05 ) B (Up1 i) everym=n+1,...,N:
Proof: If Vm[l < m < n], any path from any node (a) If e;, & {ej,,...,e;,}, we letn'(e;,,) = 1. In other

in out(b;, ) to a primary output passes through a node in  terms, if themth block in B is not already part of
out(b;, ), then clearly any path from any node in one of {bj,,...,b;.}, add it toB’.
out(b;,),...,out(b;,) to a primary output passes through a (b) Ife;, € {ej;,,...,e;, }, then3h € {1,...,n}, such that

node in one obut(b;,),..., out(b;,). | b;, Db;,, and we letr’(e;, ) = 1. In other terms, if the
mth block inB is one of{b,,,....b;, }, add the corre-

Lemma 3 For any k > 0, b;Db; = b;Dyb; sponding dominated block from withifb,;,,...,b; }
to B'.

Proof: If b;Db; then every path fronb, to a primary
output passes throudh. In particular, all paths to a primary
output with at mosk state elements also pass through =

We set every other error-select variable ¢an =’(e). The
total number of error-select variables assigned to 7' (e) is
exactly V, thus satisfyingd .

Lemma 4 If b;Dy¢b; in C, then in thek-cycle time-frame Using the scheme given above, we have:

expansion o€, every path from every nodke it (bt) (Vt[1 < B’ ={bj,,...,b; JU{bi ,,...,biyJU
t < k) to any primary output in{y’,...,y"} passes through - ' } ‘
2 node inout(b?) (for somet'[t < ¢/ < k). a (possibly empty) subset ¢b;,,...,b; }. (5)
) It is easy to show thaB’DB. We are already given that
Proof: True by construction. for eachm = 1...n, b;, Db, . Each of the blocks in the
We say thatn < N RTL blocks {b;,,...,b;,} can be gnar two subsets i’ shown in (5) already exists iB and
extendedo a debugging solution of cardinality if: therefore dominates itself by definition. As such, each Ibloc
n in B’ dominates at least one block B, and therefore, by
(Debug A /\ eim> is SAT. Lemma 2,B’DB. Furthermore, by Lemma 3, we gBt{D;B.
m=1 In the second half of this proof, we will use the fact that
l.e., if there existV — n other blocks{b; .,,...,b;,}, such B’'D;B in order to construct a satisfying assignmeitfor
that {b;,,...,b;, } is a cardinalityN solution. the RHSSAT formula from any satisfying assignmenbf the
LHS SAT formula. The assignment’ must set all the vari-
Theorem 2 Given an arbitrary set ol < N RTL blocks ables in Debug, which includes thek-time-frame expanded
{b;,,...,b;,} C B, if it can be extended to a debuggingrircuit obtained fronC as described in Subsection II-B. Ligt
solution of cardinality N, then replacing these blocks byn refer to this expanded circuie(g.,Figure 2). In what follows,



we refer to the blocks iB’ as {bj,,...,b;,} in order to of the assignments tfout(b} )|1 <n < N,1 <t < k}in
simplify notation. Let/ = {b} |1 < n < N,1 <t < k} .
(respectivelyJ = {b% |1 < n < N,1 <t < k}) denote ] ) .
the union of all nodes i (respectivelyB’) across all time- Proof: Consider Theorem 2 with = N. In its proof, we
frames ini{. Also, let out(I) (respectivelyout(.J)) refer to Showed how to build a satisfying assignmefibf the RHS of
the set of outputs of (respectively.J). We will partition the (4) given a satisfying assignmentof the LHS. In particular,
nodes in/ into three partsi{;, U; andix, as follows. we showed that the subset of coqespondmg td{; is the
Let ¢/, denote the transitive fanout afut(J) in ¢/. Let Same as the subset ofcorresponding t@/;. In other terms,
U; denote the nodes il that are in the transitive fanout of ™ (Us) = m(U;). Sinceld; is simply the transitive fanout
out(I), but not in{;. Finally, leti( consist of the remaining Of out(J) in U, the subset ofr’ corresponding taui(J) is
nodes i, outsidel/; andi/;. UsingB'D;B and Lemma 4, also the_ same as the subse_trroéorrespondlng t_@ut(J). As
we can imply that any path fromut(I) to a primary output such, given a satisfying assignmenfor the original solution

must pass throughut(.J). As a result, these partitions of {Pii;---»Piv}, @ sequence of corrections for the implied
can be represented by the diagram shown in Figure 4. solution {b;,,...,b,, } simply consists of the assignments
in 7 t0 out(J) = {out(b} )|1 <n < N,1 <t <k} [ ]
b5 A Py Intuitively, Theorem 2 and Corollary 1 show that if the SAT
out(I) U solver returns a given debugging solution, we can immelgiate
out(J) R imply that all its dominators are also solutions, and we can
extract their corresponding corrections from the satmfyi
U, assignment of the original solution. This eliminates ak th
additional SAT solver calls to find these dominating solusio
oy oy of and their corrections, therefore significantly expedititig

Fig. 4. Partition ofi/ debugging process.

Note that in Figure 4, the output constraints are separatgd pepugging Flow using Solution Implications
into two subsets®y = ®J A &%, where @y (respectively

®) denotes the output constraints applied at the OutloutssdjfThe flowchart in Figure 5 illustrates the overall design

Uy (respectivelyl/r). This separation is only needed for thi lebugging flow using on-the-fly solution implications. Algo
proof and is not required by our method. rithm 1 is first run to comput®(b;) for every blockb; € B.

We know that givene;, — 1,...,e;,, — 1, there exist Next, the automated debugger builds the CNF oébug

assignments to the nodeslifi, {, andiA satisfying the LHS. and passes it to the SAT solver. If it IINSAT, the flow

Let w(Ur), m(Uy) andw(Ur) refer to these assignments. wderminates. Of[her.W|se, a SOIUUC{M%’ o ‘.’b"N} 1S returned..
want to find assignments’(24;), (i) and #'(Ur), such A simple implication engine takes in this solution, and gsin

that givene;, — 1,...,¢;, — 1, the RHS is satisfied. Thesel'® Fr.e'col.mg“teld t.b'OCkAd;m'E.‘"‘tor Ire'at"ﬁ." gjge(;gfbs all
aSSignmentS are found as follows. neWy Imp led solutions. ocC |ng clause IS adae ug

First consider the subset of output constraints applied fg{ e_ach of these |mplled solu_t|0n§, as weI_I as the orlgmal
the outputs oz, denoted byB% in Figure 4. Sincer(Uz) solution. The resulting debuggmg mstance. is given again t
satisfiesb” and the input constraints téy (i.e. d5A® ) are the automated debugger, and this process is repeatedhetil t
the same in the LHS and the RHS, settin@i(z) = 7(Ug) problem becomesNSAT.
will also satisfy®% in the RHS.

Next, considerl/;. Note that any path fromut(I) to a
primary output must pass throught(J). Also, settinge;, =
1,...,ej, = 1 in the RHS disconnectsut(.J) from their
fanins. Therefore, there are no output constraints applied
Uy (i.e, U; is dangling logic in the RHS). As such ()
can simply “propagate” the values of(U/) in U;. C.B by, by, Py, N

Finally, since the nodes inut(J) are disconnected from ‘
their fanins in the RHS, the SAT solver is free to pick any
assignment for these variables. Furthermore, setti(igr) =
m(Ug) already assigned any inputs#y coming fromify to
the same values as the LHS. Therefore, we can simply pick
7' (Uy) = m(Uy), which will satisfy ®/. in Figure 4. This Algorithm 1 | D | Implication
completes the satisfying assignmeritto all the variables in Engine
Ur, Uy andUg in the RHS. Therefore, the RHS 8AT. W
Corollary 1 Given a solution{b;,,...,b;, } and its corre- M
sponding satisfying assignment of Debug, a sequence of
corrections for each implied solutiofb;,,...,b,,} consists

Example 3 Consider the sequential circuit in Figure 1(a) and
the corresponding design debugging formulation illustthin
Figure 2, with N = 1. Assume thab C B x B has been com-
puted using Algorithm 1. Let the solver first return the solut

Automated
Debugger

implied solutions

Fig. 5. Solution Implication Flow Chart



{by}. SinceD(bs) = {bs, b3}, the solution{bs} (along with these dominated blocks. This prunes its search space and
its corrections) can be immediately implied, eliminatin@AT therefore speeds-up the completion time of the SAT call.

call. After adding the corresponding blocking clauses) and

(é3) to Debug, the solver returndJNSAT, indicating that all Example 4 Consider the sequential circuit in Figure 1(a) and

solutions have been found. the corresponding design debugging formulation illustdain
Figure 2, usingN = 1. We know that block, dominatesb,
V. LEVERAGING BLOCK DOMINANCE IN DESIGN andbs. If by is known to be a non-solution, using Theorem 3,
DEBUGGING: NON-SOLUTION IMPLICATIONS we can imply thab; andb; are each separate non-solutions.

We can therefore automatically add the clauses) and (e5)

In this section, we define the concept ofi@an-solution We
lg_prune the search space éfebug.

show that the reverse of the computed block dominance
lationships can be leveraged to perfonon-solution implica-  \whereas Theorem 2 can be used to imply solutions of

tions, thus pruning the search-space of the debugging problem qinajity N given each returned solution by the SAT solver,

In Section VI, we present a tailored SAT solver which is ablg, ;der to be able to use Theorem 3 one must first be able
to learn and detect original non-solutions much fastedite ., yetect non-solutions. This can only be made possible by
to earlier non-solution implications and expedited runes. modifying the SAT solver.

As opposed to a solution, any set of blocks whose e way to identify non-solution blocks is by monitoring
outputs can in no way be simultaneously modified to corregl, nad clauses of the forta; \V - -V &,). However the SAT
the counter-example can be referred to as a non-solution. Waver rarely learns such clauses. Ingtead learned clarse
extend this concept to sets of< N blocks as follows. more complex and usually involve many other variables along

o ) ) with the error-select variables. Another way to detect kdoc
Definition 4 Given an erroneous desigf, a set of block®3, 4t are single-block non-solutions is to examine the fbrce

a counter-example of length along with the corresponding assignments oBoolean constraint propagatio(BCP) after

expected outputs and an error cardinality, {b;, . c 'bi.} each solver restart (when the decision stack is empty).nifeso
wltl.klll\?siTN is anon-solutionif and only if DebugAA\,,,_1 €. ¢, — o by unit propagation given an empty decision stack,
is )

then the solver has “learned” thaf is a non-solution block.

In other terms, a set ofi < N blocks is ann-block However, from our experiments, virtually all such non-si@n
non-solution if it cannot be extended to any solution dylocks are Iearne(_j during the last solver restart in the last
cardinality N. The following theorem proves that sets of@ll to the all-solution SAT procedure (after all solutidmave
blocks dominated by non-solutions are also non-solutions. Peen found), leaving little room for improvements using non
solution implications.

Theorem 3 Given an erroneous design a set of blocks3,

a counter-example of length along with the corresponding VI. A TAILORED SAT SOLVER

expected outputs and an error cardinaldy, if {bj,,...,b;, } In this section, we describe a new SAT branching scheme

withn < N is a non-solution oDebug and A" _; b;, Db, ., for design debugging, where error-select variables arildec

then{b;,,...,b;, } is also a non-solution. upon first. This allows the early learning (and simple détexgt
Proof: Let: of non-solutions, making non-solution implications usefu

n

n
®; = Debug A /\ ei. ®; = Debug A /\ e, A. Our SAT Branching Scheme

m=1 m=1 We force the SAT solver to first decide on all error-select

Using Theorem 2, we have: variables €). The rest of this subsection provides several
N motivations for this choice. Furthermore, we force the splv
<(<I>1v SAT) A /\ b, Db; > = (®; SAT) to always assign error-select variables_that are decided (
’ o not forced due to BCP) td before trying to set them to

n 0. The reason for doing this is to learn and detect non-
o (®; UNSAT) V - ( /\ b;,. Dbim) V (®; SAT) solutions, and is explained in detail in Subsection VI-BcOn
m=1 all the error-select variables are assigned, the solves use
n the standard decision heuristice.d., VSIDS [33]) for the
& (®; UNSAT) < (/\ b;,.Db; A (®; UNSAT)) remaining variables.
m=1 Motivation: A SAT solver can assign variables in any order.
B The first motivation for assigning the error-select vamabl
Intuitively, Theorem 3 shows that if we are able to identifyarly in the decision tree relates to their importance aed th
a non-solutionj.e., a set of blocks that we cannot modify inimpact on other variable decisions in the SAT solving preces
any way to fix the given counter-example, we can immediatelyor example, where; = 1, the internal nodes of block;
imply that all blocks dominated by this non-solution areoalsbecome dangling, and therefore they are don't-cares. Als, suc
non-solutions. This information can be procured to the SAdssigning the nodes ih;, as well as their fanouts, is useless
solver by adding blocking clauses to divert it from considgr if e; is later assigned ta.



What follows formalizes this motivation by proving that the The following Lemma shows that, using our decision
error-select variables are part of thareset[24] variables of scheme, assigning amy to 0 on the rightmost path in the
a design debugging problem. According to [24], a comple®AT decision tree indicates thdb,} is a single-block non-
assignment on careset variables is a “gateway” to a satigfyisolution.
assignment, and branching on these variables first can speed
up SAT solvers by an order of magnitude. Lemma 5 For any 4, if every error-select variable in

In [24], a constrained circuits one where certain variables{e1, ..., e;} is set to0 by the SAT solver, thefib;} is a
are constrained to Boolean values. For instance, the @amstr single block non-solution.
circuit corresponding tdebug for the circuit in Figure 1(a)
is shown in Figure 2. Given a constrained circuit and
corresponding CNF formulé@, a partial assignment is said
to be aminimally satisfying assignmef¥MSA) if and only if:

i Proof: Recall that our decision scheme forces the solver
ttso first set each error-select variable tobefore trying to
set it to 0. Thus, by constructiong; = 1 has already been
tried under every assignment combinatioreto. .., e;_;, and

(a) BCP cannot be applied ob| further. cannot be extended to a satisfying assignment. This means th

(b) @[> can be shown to be satisfiable by assigning alhepyg A e; is UNSAT, which implies that{b,} is a single-
remaining unassigned inputs in its constrained circUijock non-solution. ]

to arbitrary values and using BCP.
(c) Unassigning at least one variablesirwould violate (@) Example 5 Consider the partial SAT decision tree in Fig-

or (b). ure 6(a), where error-select lines do not correspond to the
Here, ®|, denotes® where the variables inr have been blocks in Figure 1(a). Each set of blocks shown under a dashed
assigned to their values in. line indicates a non-solution detected by the solver using

Lemma 5. For instance, as soon @sis assigned t®, since
Definition 5 A non-empty se§ of variables is acaresebf & itS Only ancestore, is also assigned t, {b,} is detected
if every variable inS is assigned in every MSA df. as al-block non-solution. The solver implies that every block
that b, dominates is also a non-solution, by Theorem 3 with
n = 1. As such, we can add clauses of the fde) for every

Theorem 4 The error-select variables belong to thecareset block b; that hasbs in its dominatorsD(b; ).

of Debug.

Proof: Assume towards a contradiction that a certain 1) The General Case. DetectingBlock Non-Solutions:
error-select variablee; does not belong to the careset of . .
Debug. Then there must exist an MSA of Debug where Theorem 5 For anyn < N and for anyi > n, if ¢; is set to

e; is unassigned. By (b)p|, must be satisfiable under any0, and every error-select variable ife, ..., e;—1} is set to0
combination of assignments to the error-select variabésm by the SAT solver except— 1 of them, say{e;,,....e;,_,}
7, includinge; = 0 ande; = 1. This cannot be true becausevhich are set to1, then {b; ,...,b; _,,b;} is ann-block

assigninge; to 0 or 1 in a certain combination of error-selectnon-solution.
assignments will change the number of error-select vagabl
set to1, thus violating the error cardinality constraidty in
at least one of the cases.

Proof: Once again, our decision scheme forces the solver
to first set each error-select variable ttdoefore trying to set
it to 0. This means that every time the solver sets an error-
The second, and more important, reason for assigning telect variable:; to 0, it does so because it has exhausted the
error-select variables early is that it allows the solver to; = 1 branch and hence; = 0 is implied under the partial
learn non-solution blocks much faster. This in turn enablessignment t@,,...,e;_; abovee; in the decision tree.
non-solution implications in order to prune the SAT search As such, starting from the first error-select variable tlsat i
space earlier and therefore more effectively. Subsectibn \set to0, which is implied by any previous error-select variable
B discusses how to detect learned non-solutions using @ssignments ta (if any), it is easy to show by induction that
branching scheme. every error-select variable assignmen¢tcan be implied from
any previous error-select variable assignmentg.tén other

B. Detecting Non-Solutions terms:

To simplify the presentation of this subsection, let us assu ¢; = 0 is forced due to;, =1,...,¢;, , =1

without loss of generality that the error-select variapesich < Debug — ((ej, N+~ Nej, ,) = &)

are branched upon first in our SAT solver, are decided in the < Debug — (€5, V -~V &, _, V&)
order_of <e},...,e|B|>._Accord|ng to our branchln_g scheme Debug A (ej, A~ Nej._, Ae;) is UNSAT
explained in Subsection VI-A, the SAT solver first assigns " )

e; = 1. If the solver later switches te; = 0 without finding = {bji,...,Db b} is ann-block non-solution.

a satisfying assignment under = 1, this means that; = 1 ™
cannot be extended to a satisfying assignment. Hence, 0

is true for all satisfying assignments (if any exidtk., (¢;) Example 6 The partial SAT decision tree in Figure 6(b)
has been learned ar{db, } is a single-block non-solution.  shows non-solutions of one and two blocks, detected using

Jn—11
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modified SAT solver is able to detegtblock non-solutions,
wherel < n < N, of the form{b,,, ..., b;, }. Each such non-
o solution is immediately passed to a reverse implicatiorireng
{{,1} which uses the pre-computed block dominator relafibho
UNSAT a generate all implied non-solutions. These are passed lmack t
1 the SAT solver, which adds the corresponding clauses togprun
the search-space of the problem.

Example 7 Consider the sequential circuit in Figure 1(a) and
the corresponding design debugging formulation illustthin
Figure 2. Assume thaV = 1, and that the modified SAT solver

\{{,2’}/ detects the non-solutiofib,}. Sinceby € D(b;) and by €
UNSAT D(bs), the non-solutiongb;} and {bs} can be implied by
@n=1 the reverse implication engine. As such, the clauge$ and

(e5) are added toDebug, immediately pruning the solution

Fig. 6. Detectingn-block nonsolutions
search-space.

Theorem 5. For instance, as soonasis assigned t®, since

its only ancestor assigned tois e, , we know thaf by, b3} is VII. EXPERIMENTAL RESULTS

a 2-block non-solution. Each of the blocks in this non-solutio This section presents the experimental results for seiutio
can be replaced by a block it dominates to get another noand non-solution implication-based design debugging in an
solution, by Theorem 3 witlh = 2. As such, we can add industrial setting. All experiments are run using a singleec
clauses of the fornfe; Vv e;) for everyb; and b; dominated of an 5-2400 3.1 GHz workstation with8 GB of RAM

by bs and bs, respectively. and a timeout of3600 seconds. The proposed debugging
framework is implemented on top of a state-of-the-art SAT-
C. Restart Heuristic based debugger based on [11], [12], [15], with a Verilog fron

end to allow for RTL diagnosis. For non-solution implicatin

Modern SAT solvers have periodiestarts usually oc- )
we tailor the debugger’s back-end SAT solver,INVEAT-

curring after a certain number of conflicts. A restart clea

assignments of all variables (including all decisions) levhi V220 [25]-

keeping the learned clauses. We modify the existing restartE'ght mdus_tr:adl Vgnlog deg&gr:jsbfrom Q%enc_orles [34] and
mechanism to enhance non-solution detection as follows.'[W0 commercial designs provided by our industrial partrages

no non-solutions have been learned during a solver restéﬁ,ed in our experiments. For_ each des?gn, several debugging
we generate a random number(l < r < |B|), and swap instances are generated by inserting different errors timo

the order of the error-select variables below and abovd |e\§iee3|gp. The I?TL er.rodrs th.af are |njecte_|<zihare based on the
r in the decision tree. The reasoning behind this is to avo perience of our industrial partners. ese are common

spending too much time in parts of the search-space wher folgner mlsFakes such as wrong s‘Fat'e transitions, Irorre
is hard to detect and therefore imply non-solutions, operators or incorrect module instantiations [15]. Sualrer

typically translate to multiple gate-level changes. Theoer
D. Debugging Flow using Solution and Non-Solution Implierus design is then run through an industrial simulaton wit
. the accompanying testbench, where a failure is detected and
cations . X
) ) ) _a counter-example is recorded. Each bldgke B consists
The flowchart in Figure 7 illustrates the overall desigRy the synthesized gates corresponding to a (set of) line(s)
debugging flow using both solution and non-solution impliyy the RTL implementing an assignment, an if statement, a
cations. This is an extension to the flow in Figure 5. Oyphqqyle definition, an instantiation, etc. Our RTL debugging

tool useshounded model debuggif®MD) [15], which is an

C,B Og, Oy, Dy, N orthogonal debugging optimization that helps deal withglon
[ ) l counter-.exar.nples. BMD first examines the Idsttme-f.rame.s
Automated Debugger ., - (d=40in th|s_ paper) of the cou_nter-exam_ple, and iteratively
Reverse Implic. n-solutio Modified analyzes earlier time-frames until all solutions are faufide
Engine mﬁl_iggiuﬂons SAT Solver reasoning b_ehlnd.lt Is that th(_a bug is most qften. (although no
5 — . always) excited within a few time-frames of it being obsekve
implied solutions In our experimentstrad refers to the “traditional” debugging

Algorithm 1 | D | Implication solutio

Engine

Fig. 7. Solution and Non-Solution Implication Flow Chart

flow (without solution or non-solution implications)}-impl
includes only solution implications as illustrated in Figlb,
—impl includes only non-solution implications, and finally
+impl—impl includes both as shown in Figure 7.

Table | presents the characteristics of each design debgiggi
instance, as well as the number of solutions and the run-
times of trad with N = 1. The first column gives the
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TABLE |

TRADITIONAL RTL DEBUG, N =1 Fig. 8. Percentage of implied solutions and non-solutions
100 T T T T T T T T
trad -
Instance [n| |B| k # overh SAT 90f
sol (s) (s) 2 ool ‘
vga-1 89402 | 1741 423 | 77 4.6 14.3 £ ‘
vga-2 89402 | 1741 | 11308 | 23 | 11.7 216 3 70
vga-3 89412 | 1593 465 | 21 | 104 42.7 L ol ‘
vga-4 89412 | 1593 465 | 30 | 339 67.2 g ‘
vga-5 89626 | 1534 34 | 46 | 55.7 | 110.2 3 s0f
ddr2-1 58399 | 2779 27 | 373 6.5 96.5 2 4 ‘
ddr2-2 64915 | 2777 27 | 509 6.9 90.2 3 ‘ ‘
ddr2-3 64915 | 2777 29 | 392 7.1 88.4 7 30
ddr2-4 58399 | 2779 29 | 373 6.6 785 = 20 ‘
dma-1 299862 | 8460 28 | 526 | 56.2 | 434.8 E ‘ ‘
dma-2 191386 | 7874 35 | 468 | 15.6 | 196.4 £ 10
dma-3 191397 | 6354 28 | 379 | 127 | 1103 0 ‘
dma-4 191375 7479 27 | 227 11.8 65.5 5 10 15 20 25 30 35 40
dma-5 299838 | 8460 7 | 205 19.3 72.6 Debugging instances
dma-6 301812 | 8460 20 | 134 | 41.0 59.8
mips789-1 | 63417 | 2747 31 | 241 | 127 | 109.7 PR Hime i
mips789-2 | 63241 | 25850 ST o6 T 305 176 +impl—impl, columnSAT_shows th_e SAT solver run-time in
Mips789-3 | 63241 | 2750 52 7162 | 102 108 second_s, whereas columirapr _and impr-o show the speed-
usb-1 35158 | 3397 32 | 422 6.9 96.2 up achieved by that debugging method ovexd, where
Usg'g 3211”28 gjg; 1(1)2 i’*é; 22“;’ 5;82 impr excludes andimpr-o includes the common overhead
usn- . . . .
Usbd 35396 3118 =T 157 =5 165 showp under. cplummver.h in Table I. The run-time of
usb-5 33346 | 3555 27 | 132 6.2 19.8 Algorithm 1 is included in speed-up calculations. Finally,
usb-6 39183 | 4389 21 | 151 6.2 28.8 under+impl—impl, columnssol impl and non-sol implgive
rsdecoder-1] 13564 | 2044 | 112 | 396 | 3.1 | 603  the percentage of implied solutions to all solutions andlieap
rsdecoder-2| 13978 2044 142 | 308 4.1 T/O Iuti I uti ively. Sifé
Rpdmc-1 11805 960 50 216 571 7.0 non-solutions to all non-solutions, respectively. Sif¢e- 1,
hpdmc-2 13181 | 1135 42 | 176 2.1 85 all non-solutions are single-block here.
hpdmc-3 11547 | 1079 i R B W R Figure 8 shows the percentages of implied solutions to
hpdmc-4 12849 | 1135 25 | 152 1.2 8.5 i - . .
hpdmc-5 11548 | 10]0 53175 10 15.9 all solu_t|ons and_|mpl|ed non-solutions to all non-so_InBo
hpdmc-6 12834 | 1129 22 | 135 11 6.2 sorted in increasing order. On averag8% of all solutions
mf!SC'% };ggg gég 3(1] g‘é gg 1(13123 are implied, resulting in a three-fold reduction in the nemb
mrisc- . . . . . .
ee3 7596 . 0T 31 EG 146 of SAT solver runs. This per'cen.tage of implied solut!ons
designl-1 | 690766 | 11738 27 [ 241 | 134.8 | 1960.7 goes up to91% for vga-5, indicating that more than nine
design1-2 45632 | 9156 29 | 166 48 | 1126 out of ten solutions are found without a SAT call. Figure 8
ign1-3 | 203718 | 10258 151 | 127 | 289 | 114.4 ;
design also shows that, on averag2;% of all non-solutions are
design2-1 | 875837 | 2592 132 | 99 | 135 11.8 imolied b tailored SAT sol Fi 9 plots th b
design2-2 | 875837 | 2502 638 T 87 1 364 50 implied by our tailore solver. Figure 9 plots the number
design2-3 | 875837 | 2363 338 | 117 | 27.1 19.7 of found solutions versus run-time farad, +impl and

+impl—impl for designl-2. It can be seen that whiiad
instance name, which consists of the design name and raturns solutions at roughly equal time intervaldmpl and
appended number indicating a different inserted error. THgmMpl—impl discover solutions at a much faster rate due to
following three columns respectively show the number afolution implications. The rate of solution discovery deges
circuit nodes|n| in the cone-of-influence of the counterfor both with time, mainly because implied solutions in tate
example, the number of block#3|, the number of clock- SAT calls might have already been found (or implied) in
cyclesk in the counter-example. Columns sols and overh previous calls. Returning most solutions early is bendficia
respectively refer to the total number of returned solitj@nd because the engineer can start examining returned saution
the run-time overhead in seconds for setting up the problegarlier, while the debugger continues to run. Moreover, as
(i.e., generating the CNF aDebug). This overhead includes expected, Figure 9 demonstrates that non-solution intjics
graph optimizations such as dangling logic removal. No&t thspeed-up SAT calls ir-impl —impl compared tot+impl.
the # sols and overh numbers are common to all debugging Figure 10 plots the SAT run-times of each-gimpl, —impl
flows. Finally, columrtrad SATgives the total SAT solver run- and+impl —impl versus those afrad on a logarithmic scale,
time for returning all solutions with the traditional delgigg along with the 1x, 2x, 3x and 10x lines, clearly showing
flow. This is the sum of all SAT calls, including the last calthe superiority of our approaches. The geometric means of
which yields UNSAT. the speed-ups fromtrad to each of +impl, —impl and
Table Il presents the experimental resultsfampl, —impl  +impl—impl are shown in the last line of Table Il to ReO7x,
and +impl—impl, for the same debugging instances as the45x and 2.63x excluding common overhead, arid75Xx,
ones shown in Table I. ColumAlg. 1 gives the run-time in 1.33x and2.02x including overhead. In most cases, higher per-
seconds of Algorithm 1 for computing the block dominatocentages of implied solutions and non-solutions mean leds a
relation D, which is run as a preprocesing step in eaclaster SAT calls, which result in less total SAT solving time
of these three flows. Next, for each efimpl, —impl and For instance, in design1-80% of solutions and8% of non-
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TABLE Il
RTL DEBUG USINGDOMINANCE, N =1
+impl —impl +impl—impl

Instance | Alg. 1 SAT impr impr-o SAT impr impr-o sol non-sol SAT impr impr-o

(s) (s) x) () (s) x) x) impl (%) | impl (%) (s) (x) x)
vga-1 0.3 124 1.1x 1.1x 10.8 1.3x 1.2x 54% 21% 6.7 2X 1.6x
vga-2 1.1 80.7 2.6X 2.4X 202.4 1.1x 1.1x 7% 14% 75.0 2.8X 2.6x
vga-3 0.9 15.2 2.7x 2X 54.9 0.8x 0.8x 76% 6% 24.1 1.7x 1.5X
vga-4 2.2 24.5 2.5X 1.7x 54.7 1.2x 1.1x 90% 9% 35.0 1.8x 1.4x
vga-5 2.3 45.8 2.3X 1.6x 16.5 5.8X 2.2X 91% 36% 7.5 11.2x 2.5X
ddr2-1 0.2 46.9 2X 1.9x 70.8 1.4x 1.3x 54% 60% 40.6 2.4x 2.2x
ddr2-2 0.2 40.6 2.2x 2X 69.5 1.3x 1.3x 55% 56% 41.6 2.2X 2X
ddr2-3 0.2 31.6 2.8x 2.5x 63.4 1.4x 1.4x 72% 67% 36.1 2.4x 2.2x
ddr2-4 0.2 35.3 2.2X 2X 95.8 0.8x 0.8x 52% 21% 45.0 1.7x 1.6x
dma-1 2.0 170.4 2.5X 2.1x 323.5 1.3x 1.3x 7% 28% 161.9 2.7x 2.2X
dma-2 0.7 87.1 2.2X 2.1x 56.9 3.4x 2.9x 75% 40% 37.5 5.1X 3.9X
dma-3 0.7 64.8 1.7x 1.6x 87.8 1.2x 1.2x 66% 24% 45.3 2.4x 2.1x
dma-4 0.3 33.5 1.9x 1.7x 10.7 5.9x 3.4x 74% 62% 6.5 9.6x 4.1x
dma-5 2.1 38.3 1.8x 1.5X 48.3 1.4x 1.3x 53% 19% 31.3 2.2X 1.7x
dma-6 2.0 23.8 2.3X 1.5X 53.2 1.1x 1x 62% 29% 25.8 2.1X 1.5X
mips789-1 0.6 36.4 3X 2.5x 95.8 1.1x 1.1x 80% 1% 45.0 2.4x 2.1x
mips789-2 0.5 67.9 1.7x 1.6x 9.2 | 12.1x 4.6x 83% 55% 4.8 | 22.1x 5.4x
mips789-3 0.5 16.6 2.4X 1.9x 30.4 1.3x 1.2x 62% 6% 17.2 2.3x 1.8x
usb-1 0.2 39.5 2.4X 2.2X 56.9 1.7x 1.6x 57% 31% 37.5 2.5X 2.3X
usb-2 0.2 343.6 1.5x 1.5x 150.4 3.4X 3.1x 64% 60% 102.6 5X 4.3X
usb-3 0.2 8.2 2.4X 1.9x 15.9 1.3x 1.2x 61% 25% 8.6 2.3x 1.8x
usb-4 0.0 7.0 2.4X 1.7x 14.4 1.1x 1.1x 67% 11% 8.3 2X 1.5x
usb-5 0.2 8.2 2.4X 1.8x 16.0 1.2x 1.2x 54% 7% 10.4 1.9x 1.5x
usb-6 0.3 11.7 2.4x 1.9x 22.0 1.3x 1.2x 70% 53% 9.4 3X 2.2X
rsdecoder-1 0.2 28.9 2.1x 2X 87.8 0.7x 0.7x 44% 71% 45.3 1.3x 1.3x
rsdecoder-2 0.2 T/O N/A N/A T/O N/A N/A 59% 14% | 2940.5 00 %)
hpdmc-1 0.0 4.7 2.3X 1.9x 6.5 1.7x 1.5x 64% 25% 3.8 2.9x 2.2X
hpdmc-2 0.0 4.7 1.8x 1.6x 6.7 1.3x 1.2x 66% 8% 3.7 2.3X 1.8x
hpdmc-3 0.0 7.7 2.2X 2X 9.3 1.9x 1.7x 73% 20% 5.7 3X 2.6x
hpdmc-4 0.0 3.7 2.3x 2X 5.3 1.6x 1.5x 72% 6% 2.8 3Xx 2.4X
hpdmc-5 0.0 11.2 1.4x 1.4x 114 1.4x 1.4x 49% 13% 7.3 2.2X 2X
hpdmc-6 0.0 2.6 2.4X 2X 4.4 1.4x 1.3x 67% 11% 2.6 2.4x 2X
mrisc-1 0.1 5.6 2X 1.5x 9.6 1.2x 1.1x 76% 3% 4.5 2.5x 1.7x
mrisc-2 0.1 7.0 2.3x 1.7x 14.5 1.1x 1.1x 73% 2% 6.6 2.4x 1.7x
mrisc-3 0.1 5.9 2.4X 1.7x 13.4 1.1x 1.1x 74% 3% 5.7 2.5X 1.8x
designl-1 2.8 | 1351.8 1.4x 1.4x | 1621.1 1.2x 1.2x 61% 6% | 1095.2 1.8x 1.7x
designi1-2 0.0 45.7 2.5X 2.3X 63.9 1.8x 1.7x 80% 58% 27.4 4.1x 3.6X
design1-3 0.4 34.4 3.3X 2.3X 100.2 1.1x 1.1x 84% 3% 35.9 3.2X 2.2x
design2-1 3.1 6.4 1.2x 1.1x 10.5 0.9x 0.9x 68% 10% 6.4 1.2x 1.1x
design2-2 3.1 2.7 1x 1x 6.0 0.7x 0.9x 52% 1% 3.0 1x 1x
design2-3 3.1 12.2 1.3x 1.1x 16.2 1x 1x 75% 5% 10.3 1.5x 1.2x
mean [ [ [ 2.07x | 1.75x | [ 1.45x | 1.33x | 68% | 25% | [ 2.63x | 2.02x

TABLE Il
RTL DEBUG USINGDOMINANCE, N = 3
trad +impl—impl(n = 1) +impl—impl(n =1, 2, 3)
Instance [n| |B] k # overh [ SAT | Alg.1 [ SAT impr | impr-o [ SAT impr impr-o
sol (s) (s) (s) (s) *) (x) (s) x) x)

vga-6 90759 | 1850 | 172 222 13.2 114 0.2 4.7 2.3X 1.4x 4.4 2.4x 1.4x

vga-7 89626 | 1534 34 166 7.4 | 111.0 2.3 48.2 2.2X 2X 48.3 2.2X 2X

ddr2-5 58399 | 2779 29 373 19.0 78.4 0.2 37.4 2.1x 1.7x 37.5 2.1x 1.7x

ush-7 36180 | 3477 18 165 19.1 20.3 0.2 7.6 2.6X 1.5x 7.5 2.6X 1.5x

hpdmc-7 11879 | 1079 48 219 6.6 11.8 0.0 6.0 1.9x 1.4x 4.5 2.6X 1.6x

hpdmc-8 11061 961 45 207 10.6 8.4 0.0 4.1 2.1x 1.3x 3.5 2.4X 1.3x

hpdmc-9 11548 | 1080 48 192 2.0 17.9 0.0 8.6 2.1x 1.9x 8.5 2.1x 1.9x

hpdmc-10 12849 | 1135 25 152 13.9 8.5 0.0 2.8 3X 1.3x 2.8 3X 1.3x

mrisc-4 18052 968 41 182 12.7 16.1 0.1 6.7 2.4X 1.5x 6.6 2.4X 1.5x

mrisc-5 17526 958 40 163 7.0 14.6 0.1 6.0 2.4X 1.6x 5.7 2.5X 1.7x

design2-4 | 875837 | 2863 58 | 1491 43.7 | 532.0 3.1 | 337.5 1.6x 1.5x | 308.2 1.7x 1.6x

mean 2.21X 1.55x 2.35X 1.59x

solutions are implied, yielding 4.1x speed-up in total SAT due to solution and non-solution implications.

run-time, compared to the avera@®3x speed-up. However, Finally, Table Il shows experimental results for eleven
this is not always true because of the unpredictable behavitebugging instances witth = 3. Here, trad is compared
of SAT solvers. Furthermore, we have not found any clet two versions of-+impl—impl, first only allowing non-
relationships between design parameters and improvemesufutions ofn = 1 blocks, then non-solutions of up to= 3
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blocks. The columns of Table IIl are structured similarly t&ig. 10. Performance Results

those of Tables | and Il. We can see that detecting and imglyin
non-solutions of up to three blocks increases the geometric
mean of the speed-up efimpl—impl relative totrad from
2.28x to 2.42x excluding common overhead, and franb5x

to 1.58x including overhead.

VIIl. CONCLUSION

We first presented an iterative algorithm for computing
dominance relationships between the blocks of an RTL design
We showed how to leverage these dominance relationships
in an automated RTL debugger to expedite the discovery of
potentially buggy RTL blocks, as well as the clearance of
blocks guaranteed to be correct. This was done by using
solution and non-solution implications. Our methods redlic
the number of SAT calls three-fold and speed-up each caIIi
resulting in a2.63x overall speed-up in total SAT solving[l]
time, as demonstrated on an extensive set of experiments on
industrial designs. [12]

In the future, we plan to use dominance relationships
between RTL blocks to group and rank all potential bugs. [13]
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