Automated Debugging of Missing Assumptions

Brian Keng', Evean Qin3, Andreas Veneris'2, Bao Le'

Abstract—Formal verification has increased efficiency by de-
tecting corner case design bugs but it has also introduced new
challenges when failures are detected. Once a counter-example is
returned by a formal tool, the user typically does not know If the
failure is caused by a design bug, an incorrectly written assertion,
or a missing assumption. Previous work in debug automation
has focused on the former two cases. This paper introduces a
novel methodology to automatically debug missing assumptions.
It begins by generating multiple formal counter-examples for the
error. Next, a function is extracted from these counter-examples
that encodes the input combinations that cause the assertion
to fail. This function is later used to generate a list of fixed
cycle assumptions that prevent failures similar to the generated
counter-examples. These filtered assumptions can then be used
as hints for the actual missing assumption. Further, if a missing
assumption is not the cause of the failure, the method offers the
additional benefit that the counter-examples it generates can be
utilized to debug the RTL and/or the assertion. An extensive set of
experimental results on OpenCores designs and assertions show
that the number of generated assumptions can be reduced by an
average of 38% using ten counter-examples, while an average of
28 assumptions is returned to the user.

I. INTRODUCTION

Functional debugging today has become a bottleneck taking
up 60% of the total verification time [1]. To cope with
this burden, many debugging techniques [2]-[4] have been
introduced to automatically localize design errors and improve
debugging efficiency. At the same time, techniques such as
formal property checking and assertion-based verification [5]
have grown in popularity, leading to new challenges that
extend beyond traditional design error debugging.

Formal property checkers [6] aim to increase verification
efficiency by exhaustively verifying an assertion encoding the
design intent. In the ideal case, if an assertion is violated,
the formal tool returns a single counter-example allowing
detection and debugging of corner case design bugs. However,
as documented in industry reports [7], debugging formal
counter-examples can be challenging, as the engineer does not
have confidence whether the observed failure is due to a design
bug, an incorrectly written assertion, or a missing assumption.
Despite the need for designer intervention to determine the
actual root-cause of the failure, previous work [4], [8] in debug
automation has shown to be effective in aiding the designer in
the former case. Today, diagnosing missing assumptions still
poses a significant bottleneck in formal verification flow as
they can cause up to 50% of the formal failures [7].

Assumptions are necessary in formal verification as they
model the design’s intended environment and ensure that
Register Transfer Level (RTL) bugs can be detected. Debug-
ging missing assumptions can be a challenging task because
— unlike assertions — they are rarely explicitly documented.
Instead, they are expressed implicitly by either the design
specification or the functionality of adjacent design blocks.
For the engineer, this can lead to a tedious “guess-and-
check” iterative debugging process, introducing multiple time-
consuming calls to the formal tool. To alleviate this pain and

LUniversity of Toronto, ECE Department, Toronto, ON M5S 3G4 ({briank,
veneris, lebao} @eecg.toronto.edu)

2University of Toronto, CS Department, Toronto, ON M5S 3G4
3Vennsa Technologies, Inc., Toronto, ON M5V 3B1 (evean@vennsa.com)

make formal technology effective to its full potential, more
debug automation is needed to help analyze the behavior of the
counter-example and identify candidate missing assumptions.

Identifying missing assumptions has been researched before
in the context of compositional verification, software model
checking and reactive system synthesis [9]-[11]. More re-
cently, a technique to tackle this problem in a hardware formal
verification context has shown promising results [12]. Given a
counter-example due to a missing assumption, this technique
generates a list of fixed cycle assumptions that prevent the as-
sertion failure under conditions similar to the original counter-
example. In essence, the goal for these added assumptions is
to be used as hints by the engineer to identify the missing
assumption or to provide confidence that the problem is most
likely into the RTL and/or the assertion and not into the
assumption(s) itself. Results from that paper [12] on a handful
of instances are encouraging despite their dependence on a
single counter-example, a fact which may severely limit the
quality of these generated assumptions.

In this work, we present an automated assumption debug-
ging methodology. The proposed work is based upon the
framework developed in [12] but overcomes its limitations as
it provides higher quality assumptions that can be used during
debugging. It also complements other debugging techniques
as it provides additional information through new counter-
examples. In detail, the contributions of the work are twofold.
At first, a novel algorithm is presented to generate multiple
distinct counter-examples from a single assertion failure by
iteratively extracting constraints from previous counter-exam-
ples and re-running the formal tool. As an added benefit, when
a missing assumption is not the root-cause of the observed
failure, the generated counter-examples can be used by the
engineer to improve the resolution of existing automated tools
when debugging incorrect assertions [8] and/or RTL design
errors [3]. Next, a method of using multiple distinct counter-
examples to improve the quality of results of the assumption
debugging methodology is also presented.

An extensive set of experiments is performed over a wide
variety of OpenCor es [13] designs with SystemVerilog as-
sertions written from their specification documents. Multiple
counter-examples are shown to reduce the number of generated
assumptions by 38% on average while an average of 28
assumptions are returned to the user. This confirms the benefit
of the proposed approach.

The remaining paper is as follows. Section Il presents
background material. Section Il describes an overview of the
assumption debugging methodology, while Section IV present
the details of the proposed work. Section V presents the
experiments and Section VI contains the conclusion.

Il. PRELIMINARIES
A. Minimal Correction Sets and Unsatisfiable Cores

For a given unsatisfiable (UNSAT) Boolean formula ¢ in
conjunctive normal form (CNF), an UNSAT core is a subset
of clauses of ¢ that are unsatisfiable. A Minimal Unsatisfiable
Subset (MUS) is an UNSAT core where every proper subset
is satisfiable (SAT). A Minimal Correction Set (MCS) is a

minimal set of clauses of ¢ such that removing them will result
in ¢ being SAT. There exists a duality relationship between
MUSs and MCSs such that, if one has all MUSs, then all
MCSs can be computed and vice versa [14].

MCSs of ¢ can be computed by introducing a fresh re-
laxation variable to each clause. If the variable is active,
then the clause is effectively removed from the problem.
By additionally introducing cardinality constraints on these
relaxation variables, one can find all minimal sets of relaxation
variables which will result in ¢ being SAT. Each one of these
solutions represents an MCS corresponding to the associated
relaxation variables. This idea has been used extensively in
modern Max-SAT solvers [15], [16] to compute MCSs as well
as design debugging [3], [4] applications.

B. Minimally Unsatisfiable Input Sets and Debugging Missing
Assumptions

Let I represent the initial state, X the counter-example input
vector, T the unrolled circuit transition relation, and P the
property to be checked. The unrolled counter-example in CNF,
denoted by ¢, is given by:

¢p=1-X-T-P 1)

Equation 1 is UNSAT by construction because the counter-
example exposes an assertion failure.

Let C* denote the k' Minimal Correction Input Set
(MCIS), defined as a minimal set of input unit clauses of X
that when removed, will result in ¢ being SAT i.e., C¥ is the
minimal set of input clauses to remove to correct the failure.
This is analogous to the idea of a MCSs except with respect
to only input unit clauses.

Let U* denote the k' Minimal Unsatisfiable Input Subset
(MUIS), defined as a minimal unsatisfiable set of input unit
clauses such that 7 - 7 - P - U* is still UNSAT ie., U* is
the minimal set of input clauses needed to expose the failure.
Similarly, U* is analogous to MUSs except with respect to
input unit clauses.

Each U* represents a minimal set of input combinations
from the counter-example that can directly excite the assertion
failure. The disjunction of all U* represents all combinations
of inputs from the counter-example that can lead to the
assertion failure, given by:

F=U+..+U" (2)

As shown in [12], this function can be computed by first
calculating all C'* using relaxation variables, and then building
F using a duality relationship analogous to the one between
MUSs and MCSs. Thus, F' can be re-written in terms of C*,
where c¥ represents the i input unit clause of C*:

oy @

Given an assertion failure due to missing assumptions and
its associated counter-example, the technique in [12] uses
the function from Equation 3 to aid in debugging missing
assumptions. This is accomplished in several steps. First, F'
from Equation 3 is extracted from the given counter-example.
Next, a list of candidate fixed-cycle assumptions on primary
inputs are generated from a dictionary model. Each candidate
input assumption, A, can be filtered out by creating a SAT
instance, v, as such:

_0 0 k
F=cy-... Cleo)| + o4y

b=F-A (4

Formal Property
i

Counter—example
Extract
MCISs

Generate
Assumptions

Generate Multiple |

nter—Examples !
Counte| a pes3 MCISs

Generate
Assumptions

Candidates
h 4

Filter
» Assumptions

Pruned Assumptions

Filtered Assumptions
Assumption Debugging Methodology

Fig. 1.
If 4 is SAT, then the assumption cannot prevent the assertion
failure in the given counter-example (implicitly encoded in F')
and should be pruned. Otherwise, A prevents a failure similar
to the given counter-example and can be returned to the user.
The end result is a list of assumptions that can prevent failures
similar to those by the given counter-example, allowing the
engineer to either potentially use the assumption directly, or
build a strong intuition for the actual missing assumption.

I1l. ASSUMPTION DEBUGGING FLOW

This section presents an overview of our methodology for
debugging missing assumptions in a formal property checking
environment. Although the overall flow is presented in the
context of debugging missing input assumptions, as noted
earlier, the work here can still be valuable in debugging
other types of formal failures such as RTL design errors or
incorrectly written assertions. This is because a key by-product
of our flow (i.e., generating multiple formal counter-examples)
can be utilized by “traditional” automated techniques [3], [4],
[8] to aid debugging for all types of failures.

The overall methodology is shown in Figure 1 and consists
of two major phases. Given an assertion failure and its
associated counter-example, the first phase attempts to iter-
atively generate multiple formal counter-examples. For each
counter-example, MCISs are extracted and used to generate
constraints which are then passed back into the formal tool.
These constraints ensure that another distinct counter-example
is found. This process is repeated until the formal tool cannot
return any more counter-examples, or a desired number of
vectors has been reached.

The second phase iteratively generates input assumptions
that can prevent failures similar to those seen in the existing
counter-examples. This is accomplished by using a model of
simple assumption structures and filtering them based on the
MCIS constraints extracted from the counter-examples. The
resulting filtered assumptions are returned to the user and can
either be used as suggestions for the missing assumptions, or
as hints to which signals and expressions might be needed.

This flow improves debugging efficiency in two ways. First,
multiple counter-examples can greatly improve debugging of
formal failures regardless of their type because they provide a
more general representation of the assertion failure, benefiting
both manual and automated debugging [3], [4], [8]. Second,
the assumptions returned by the methodology improve upon
previous work by generating easy-to-understand properties
based upon common assumption structures. The next section
describes the phases of our methodology in detail.

IV. GENERATING MULTIPLE COUNTER-EXAMPLES

In a typical formal flow when an assertion fails, the formal
tool generates a single counter-example to be used later
in debugging. Multiple counter-examples are beneficial for
debugging because they allow a broader view of the root-
cause of failure and may improve the resolution of automated
debugging techniques [3], [8]. Despite the benefits of multiple
counter-examples, existing formal property checkers do not
support this feature. In the past, there has been some work
to generate diverse SAT solutions [17], although there is
guarantee as to how different the counter-example will be.

The difficulty in this process is not simply generating a
second counter-example, but rather generating a useful second
counter-example that causes the assertion to fail in a different
manner. The following sub-sections describe a method to gen-
erate multiple formal counter-examples that are quantitatively
different from each other. It also outlines how to apply them
to filter candidate input assumptions and improve quality of
the final result.

A. Minimal Correction Input Sets as Blocking Constraints

In the context of debugging, a failure can be viewed as
a counter-example exciting an error, propagating its effect
through design components, and causing an assertion to fail.
This corresponds to the unrolled (in time) CNF of the counter-
example from Equation 1. The initial states and input vector
propagate through the clauses that model the design, and
cause a conflict with the modeled property. The corresponding
clauses can be abstractly viewed as a set of MUSs. As
such, a natural way to quantify two counter-examples as
being different is when the observed failures occur with no
identical MUSs. This leads to the following definition of
distinct counter-examples:

Definition 1 Given two counter-examples R and S, and their
respective unrolled CNF instances from Equation 1, ¢ and
¢s, let Mp and Mg represent the set of all MUSs from ¢r
and ¢g, respectively. Counter-examples R and S are said to
be distinct iff M, N M, = 0.

Using this definition, we can generate multiple distinct
counter-examples by preventing previously seen MUSs from
occurring again. To prevent a MUS, we need to ensure at least
one of its clauses is not present. Since the circuit behavior
should not change, only the clauses corresponding to the
primary input vector should be blocked to prevent previ-
ously found MUSs. This corresponds directly to generating a
blocking constraint on the inputs to prevent previously found
MUISs. Using the duality between MUISs and MCISs, this
constraint can be computed from a single MCIS.

In more detail, for the unrolled counter-example ¢ from
Equation 1 and MCIS C* = {co,...,¢/cx|}, removing C*
will break all MUISs (and thus all MUSs) in ¢ since their
removal will make the instance SAT. Since C* is minimal,
this is equivalent to reversing the polarity of the corresponding
input unit clauses in ¢, and it can be expressed as the following
blocking constraint B* for the k** MCIS:

Bk:c§~c]f~...-cfck‘ (5)

This blocking constraint can be used in conjunction with
the design and assertion to generate another distinct counter-
example using an additional call to the formal tool. The
following lemma describes this idea:

Lemma 1 For counter-example R, let ¢r be the unrolled
counter-example in CNF. If B* is the k" blocking constraint

of ¢g, then any counter-example that satisfies By, is distinct
from R.

Proof: From Equation 5, B* is the conjunction of all the
negations of the k** MCIS, C*. By definition, removing the
literals of C* from the ¢x will result in the instance bein%
SAT, effectively breaking all the MUSs from ¢r. Since C
is minimal and no proper subset has the property of being a
correction set, any SAT assignment will contain the negation of
all the literals of C*, precisely the expression B”. It follows
then that any counter-example that contains the assignment
from B* will necessarily not contain any MUSs from ¢,
and therefore it is distinct.]
As such, to generate a new distinct counter-example we can
use Lemma 1 and pass a blocking constraint in the form of
Equation 5 to the formal tool. If the formal tool returns a
counter-example, it implicitly guarantees that B* is satisfied,
resulting in a distinct counter-example.

B. A Practical Algorithm

Algorithm 1 shows the pseudo-code for generating multiple
counter-examples. The algorithm begins by generating the
first counter-example from the formal property checker and
extracting all MCISs from it (lines 2-5). The loop from line 6-
14 generates multiple counter-examples. For a given MCIS,
it will attempt to find a new counter-example. If successful
(line 9), this MCIS is saved in blocking to ensure that future
counter-examples remain distinct. This process greedily selects
new MCISs to add to blocking only when it can find a new
counter-example. Once the new counter-example is saved, a
new set of MCISs are extracted (lines 11-7), and the process
repeats using this new set of MCISs. The loop stops when
either none of MCISs combined with the existing constraints
in blocking can generate another counter-example, or when
the maximum number of user-specified counter-examples has
been reached. The following theorem confirms the benefits of
these counter-examples:

Theorem 1 All counter-examples returned by Algorithm 1 are
mutually distinct.

Proof: Each counter-example generated from the run of
the formal tool on line 8 will run under the set of blocking
constraints, blockingUC. By Lemma 1, any counter-examples
that derived any of the constraints in blocking U C will
be distinct from the newly generated one. Since blocking
constraints are added only when a new counter-example is
found, blocking U C' maintains a set of MCISs from each
of the previously seen counter-examples. Therefore, each
newly generated counter-example will respect these blocking
constraints and it will be mutually distinct.]

One important aspect of Algorithm 1 is that it iteratively
adds a blocking constraint in the form of Equation 5. This
could have alternatively been implemented using the disjunc-
tion of all blocking clauses from a single counter-example
i.e., the negation of Equation 3. However, our experience with
an industrial formal property checker shows that this latter
approach significantly slows down the tool causing time-outs
or bounded proofs, an observation that can be explained as
follows. Our blocking constraints are just unit clauses, which
are easily modeled within many different model checking
algorithms. Whereas, the disjunction of multiple MCISs can
be significantly more complicated to model (or at least require
specialized optimizations). This allows for a more generic
method without any need to use a specialized property checker.

Algorithm 1 Generating Multiple Counter-Examples
1: procedure MULTIPLECOUNTEREXAMPLES(mazx)

2: blocking =)

3: c-eXx = RUNFORMAL (blocking)

4: CEX = {c-ex}

5: MCIS = EXTRACTALLMCIS(c-ex)

6: while MCIS # () and —CEX— < max do
7 C =EXTRACTBLOCKING(MCIS)

8: c-eXx = RUNFORMAL(blocking U C)

9: if c-ex # () then

10 blocking = blocking U C

11 CEX = CEX U c-ex

12: MCIS = EXTRACTALLMCIS(c-ex)
13: end if

14: end while
15: return CEX
16: end procedure

C. Applications for Debugging Missing Input Assumptions

As mentioned in Section I1-B, a single counter-example can
be used to filter a candidate assumption A using Equation 4.
The filtering function F" used to rule out candidate assumptions
is derived directly from a set of MCISs. If Algorithm 1 is
used to derive multiple counter-examples, all MCISs from
each counter-example are indirectly generated as a by-product.
These can be used to generate a set of filtering functions
Fy,...,Fy for N counter-examples, respectively, which can
naturally be combined to extend the filtering function and
generate the following instance:

v=F+..+Fy)-A (6)

The disjunction of all the F; in Equation 6 correspond to all
the MUISs for each of the counter-examples. This implicitly
encodes all the input behaviors that led to the observed
assertion failures in the given counter-examples. Similar to
Equation 4, if the instance is SAT, then the assumption is not
strong enough to prevent at least one of the observed failures.
Otherwise, the assumption is generalized enough to prevent
all the observed failures and should be returned to the user.

It should be noted that although we present this filtering
function in the context of pruning generated assumptions, it
is equally valid to say that this function can be used to test
manually generated assumptions by the engineer. Thus, the
filtering function can provide quick feedback to determine if
a given assumption can prevent the failure(s) present in the
current counter-example(s).

D. Assumption Model

Table | shows a summary of the model used to generate
candidate missing input assumptions that is similar to [12].
Each row corresponds to one of four categories of properties
presented in SystemVerilog. These categories correspond to
simple unit Booleans, combined Boolean operators, one-hot
operators, and stability expressions. An assumption is gen-
erated by taking the property and using the same clock and
reset as the target failing assertion. Each assumption is then
checked against the filtering function to determine if it should
be returned to the user. In the table, i nput refers to a single
bit primary input pin, while bus refers to a semantic grouping
of primary input pins.

TABLE |
ASSUMPTION MODEL

[Category | Model
Unit input, Tinput
Booleans
(uni t)
Combined | <unit> & <unit>,
Booleans <unit> & <unit> & <unit>,
<unit> | <unit>,
<unit> | <unit>| <unit>
One-hot $onehot (bus), $onehot O(bus),
$onehot ({<unit>, <unit>}),
$onehot ({<unit>, <unit> <unit>})
Stability $stabl e(bus), bus == 0
input |=> linput, !input |=> input
TABLE Il
DESIGN INFORMATION
Design # # #
Name G(akt)es Flops | Inputs
cpu 509 T 1270 51
ddr2 55.5 | 2475 431
hpdmc 9.8 431 210
mips 51.1 2250 82
mrisc 9.9 1372 69
pci 60.3 | 3886 162
Spi 1.7 133 16
usbf 332 | 1954 128
wb 40 98 143

V. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
methodology. All experiments are performed on a single core
of an Intel Core i5 3.1 GHz quad-core workstation with 16
GB of RAM. A commercial property checker [18] is used
with default settings to perform all formal checks, while the
extraction of MCISs as well as generation and filtering of
candidate assumptions are all implemented in C++, using
M ni sat [19] as the SAT engine. Nine designs are selected
for evaluation from OpenCores [13] with assertions written
based upon their specification documents.

For each of the gathered designs and assertions, the formal
property checker is run and any failure is considered to be an
instance of a missing assumption. The instances listed in the
following tables correspond to a single failing assertion and
are labeled by appending a number to the design name.

Table 11 presents information for each of the designs used
in the experimental results. The columns of the table list
the design name, number of gates (including state elements),
number of state elements, and number of primary input pins.

A. Generating Multiple Counter-Examples

This subsection presents experimental results for the pro-
posed approach to generate multiple counter-examples from
Section IV. Experiments in this subsection are conducted
for each instance by running Algorithm 1 to generate as
many counter-examples as possible within 1800 seconds to
a maximum of 15. Next, using either 1, 5, 10, or 15 counter-
examples, candidate assumptions are generated and filtered to
examine if multiple counter-examples are useful in reducing
the number of generated assumptions. To simplify the exper-
iments, combined and one-hot type properties from Table |
are omitted when generating assumptions. Additionally, each
pin of an input bus is also used in unit Boolean properties
so that we have a sufficient set of properties across all
input pins. Note that a cone of influence [6] optimization is
run on the failing assertion of each instance, resulting in a
potentially different number of total generated assumptions

TABLE Il
MULTIPLE COUNTER-EXAMPLE EXPERIMENTS

Instance # MCIS | Form | Tot Filt Using n CE

Name CE | Time | Time | Can T ‘ 5 ‘ 10 ‘ 15
(s) (s)

cpu_I 15 653 356 154 2 2 2 2

cpu_2 10 778 616 154 3 3 3 -

ddr2_1 3 625 86 226 || 68 - -

ddr2_2 9 383 1395 | 257 15172

hpdmc_T 15 112 148 97 I7TI6 1T 11
hpdmc_2 15 123 200 97 1613711
mips_T 4 278 93 163 36

13

mips_2 12 813 959 163 I3 113 -
mrisc_T 8 88 1126 92 11 5 - -
mrisc_2 7 190 1339 97 8 8 - -
pci_I 8 611 761 267 9 9 - -
pci_2 8 648 723 267 11 111 - -
spi_1 15 8 177 22 6 6 6 6
Spi_2 15 47 214 22 19 1 10 7 7
usbf_1 12 901 858 131 61 | 281 26 -
usbf_2 10 186 1152 | 131 22 0 0 -
whb_1 15 6 846 13 9 7 6 6
whb_2 15 8 344 41 101 2 2 2

between instances of the same design. Table Il shows the
results of these experiments.

The first five columns list the instance name, number of
counter-examples generated, run-time to extract MCISs from
the counter-examples, run-time of the formal tool to generate
that many counter-examples, and the total number of candidate
assumptions for that instance. The last four columns show how
many of the candidate assumptions remain after filtering using
the technique from Section I1V-C with 1, 5, 10, and 15 counter-
examples, respectively.

Overall the last four columns show that using more counter-
examples can effectively reduce the number of filtered as-
sumptions. On average, for instances that are able to generate
either 5, 10, or 15 counter-examples, the number of filtered
assumptions are reduced by 30.4%, 37.9% and 38.3%, respec-
tively, compared to a single counter-example. This confirms
that the additional counter-examples generated do generalize
the assertion failure, which shows that our definition of distinct
is indeed a valid one.

The ability of the proposed technique to filter candidate
assumptions works well in most of the instances (such as
ddr2_2 and usbf 1), but not all (such as cpu_1 and
m ps_2). This can be explained as follows. The former case
is the ideal behavior where the second counter-example does
indeed find a different way to excite the design and cause the
assertion to fail. While the latter case finds a counter-example
similar to the original one but shifted in time. One needs to
note that in this situation, it is often the case that there may
only be one way to cause the assertion fail.

When analyzing the run-time, there are two main contribu-
tors. The first is the extraction of MCISs, which depends on
the size of the design, number of input pins, and the length
of the counter-example. For many cases, such as nri sc_1
and wb_1, it is relatively fast. In the case of ddr2_1,
however, the excessive number of inputs (431) cause the
run-time of extracting the MCISs to be large. The other
contributor to overall run-time is multiple iterations of the loop
in Algorithm 1, which may require many calls to the formal
tool before a counter-example is found. However within the
1800 second timeout, 7 out of the 18 instances were able to
generate 15 counter-examples, and 16 out of the 18 were able
to generate at least 5. This shows that this technique is effective
in generating multiple counter-examples within a short amount
of time.

B. Assumption Debugging Methodology

This section presents experimental results for the overall
assumption debugging methodology from Section Ill. For
each instance, counter-examples are generated within a time
limit of 1800 seconds up to a maximum of 10, which was
chosen qualitatively to be a good balance between filtering
and run-time. Additionally, the full assumption model from
Section IV-D is used to generate and filter assumptions.
Note that this may result in a different number of candidate
assumptions compared to the previous subsection. Similarly,
a cone of influence [6] optimization is run on the failing
assertion for each instance. Table IV shows the quantitative
results of these experiments.

Table 1V is divided into two parallel sections. The columns
in each section list the instance name, number of counter-
examples generated, time to extract MCISs from the counter-
examples, time of the formal tool to generate that many
counter-examples, time to generate and filter candidate as-
sumptions, total number of candidate assumptions, and the
number of assumptions after filtering.

From columns 7 and 14, the absolute number of filtered
assumptions returned to the user is relatively small with an
average of 28. It is important that this number is not too large,
or else the list of assumptions may become overwhelming for
a user to analyze. Although most of the instances fall close to
this average, there is one outlier ddr 2_2 with 333 returned
assumptions. This is due to the large number of input pins
which generates a significant number of candidate assumptions
(4094). However as described in Section V-C, the different
categories of properties allow one to narrow down the analysis.
In this case, only analyzing the unit Booleans assumptions
proved most useful.

When analyzing run-time of generating and filtering can-
didates in columns 5 and 12, in most instances the time is
relatively small and both tasks can be completed within 60
seconds. However, ddr _1 and ddr_2 are again outliers,
where the former hit a time limit of 1800 seconds. Here, the
excessive number of input pins cause an exponential number
of generated assumptions in the more complex properties.
In these cases, it may be more prudent to only generate
simpler properties or limit the number of pins used to generate
assumptions. Both these solutions are easily implementable
within the proposed flow.

C. Qualitative Analysis of Generated Assumptions

The following is a detailed discussion on the qualitative
aspects of how the proposed flow can be used to aid debugging
of missing assumptions. In the proposed flow, the engineer
will analyze the assumptions and decide which assumption
is appropriate. We selected two instances from Table IV to
illustrate the benefits.

a) mips_1: The assertion for this instance checks to see
that a finite state machine transition occurs with the correct
conditions:

P: (CurrState == “IDLE) && (irqg && “iack)

|=> (CurrState == “1RQ)

The approach generated 22 assumptions, a sample of which is
listed here:

Al: 'pause

A2: pause

A3: $onehot(zz_ins_i[31:0])

A4: $onehotO(zz_ins_i[31:0])

In this case, both pause and its negation are suggested by the
technique. This is because holding pause either high or low for

TABLE IV
ASSUMPTION DEBUGGING METHODOLOGY EXPERIMENTS

Instance # MCIS | Form Gen Tot Filt Instance # MCIS | Form Gen Tot Filt
Name CE | Time | Time | Time | Can Can Name CE | Time Time | Time Can Can
(s) () () (s)) ()
cpu_T 10 255 100 5 31 3 mrisc_4 9 116 898 5 39 14
cpu_2 10 778 616 7 28 5 pci_1 8 611 761 7 25 10
ddr2_1 3 625 86 TO 857 21 pci_2 8 648 723 7 22 11
ddr2_2 9 383 | 1395 | 1504 | 4094 | 333 pci_3 8 564 518 8 25 10
hpdmc_1T 10 70 60] 90 33 pci_4 2 466 60 27 261 82
hpdmc_2 10 77 65 8 65 18 spi_1 10 4 18 1 20 9
hpdmc_3 10 6 77 1 8 3 Spi_2 10 28 60 15 74 29
mips_T 4 278 93 9 59 22 usbf_1 10 737 334 14 148 58
mips_2 10 455 276 8 39 10 usbf_2 10 186 | 1152 132 | 1135 LY
mips_3 5 134 458 7 39 6 usbf_3 10 18 244 2 16 7
mips_4 10 589 631 10 59 7 wb_1 10 3 123 1 16 5
mrisc_1 8 88 1126 5 39 10 wb_2 10 4 111 1 81 2
mrisc_2 7 190 1339 6 34 9 wb_3 10 5 79 1 19 2
mrisc_3 5 79 169 4 20 9 wb_4 10 4 98 1 81 2

the entire trace will prevent the assertion from failing. This is
a common occurrence in many of the generated assumptions,
however, usually only one of the two stuck-at assumptions will
be relevant.

By tracing the relationship between pause and the state
machine, it is clear that when pause is asserted, the state
transition will be stopped. In this case, Al is precisely the
needed constraint. Interestingly, the specification does not
explicitly mention that the state transition will be stopped by
the pause signal, a common omission that causes counter-
examples due to missing assumptions.

Finally, the last two assumptions are on the primary input
bus corresponding to the CPU’s instruction. They are obvi-
ously not very meaningful and correspond to a vacuous fix
(i.e., a case where the antecedent is always false).

b) usbf_1: The assertion for this instance checks the
property where a buffer overflow occurs when a packet has
been received that does not fit into the buffer. The packet will
be discarded and a NACK will be sent to the host.

P: buffer_overflow ##0 send_token[->1]
|-> (token_pid_sel == NACK)

The approach generated 58 assumptions, several of which are
listed here:

Al: Iwb_stb_i

A2: lwb_cyc i

A3: wb_addr_i[17] & wb_cyc_i & wb_stb i

A4: $stable(Dataln_pad_i[7:0])

The first two assumptions that pull down wb_stb_i and
wb_cyc i are vacuous fixes. But the assumptions with
both of these signals high (A3) are more interesting. In this
assumption, the 17*" bit inwb_addr _i controls the source of
the data to be sent. This assumption tells the user that during
the assertion, the data should be selected from the register file
instead of memory, avoiding the cause for the failure.

The next assumption $st abl e(Dat al n_pad_i [7: 0])
provides a useful hint. This signal controls which data will
be selected from the endpoint. It tells the user that during
the assertion, the same endpoint should be selected, providing
another way to avoid the failure.

V1. CONCLUSION

In this work, a novel debug automation methodology for
missing input assumptions is presented. It begins by generating
multiple formal counter-examples for the failure along with
a function that encodes the input combinations that caused
the assertion to fail. This function is later used to generate
a list of fixed cycle assumptions that prevent the failures

seen in the counter-examples, which can then be used as
hints for the actual missing assumption. An extensive set
of experimental results on OpenCores designs and assertions
show the efficacy and usability of the approach in an industrial
formal verification environment.

REFERENCES

[1] H. Foster, “Applied assertion-based verification: An industry perspec-
tive,” Foundations and Trends in Electronic Design Automation, vol. 3,
no. 1, pp. 1-95, 2009.

[2] S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[3] A.Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, 2005.

[4] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp. 11381149, 2008.

[5] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design.
Academic Publishers, 2003.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking.

1999

[71 A. Matsuda. (2011, May.) Overcoming the chal-
lenges of formal verification and debug [On-
line]. Awailable: http://www.eetimes.com/design/eda- de5|gn/4216119/
Overcoming-the-challen%ges- of-formal- verification-and-debug

[8] B. Keng, S. Safarpour, and A. Veneris, “Automated debugging of
SystemVerilog assertions,” in Design, Automation and Test in Europe,
2011, pp. 323-328.

[9] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu,
assumptions for compositional verification,”
for the Construction and Analysis of Systems.

Kluwer

MIT Press,

“Learning
in Tools and Algorithms
Springer-Verlag, 2003,

pp. 331-346.

[10] S. Joshi, S. K. Lahiri, and A. Lal, “Underspecified harnesses and
interleaved bugs,” in Principles of Programming Languages, 2012, pp.
19-30.

[11] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for syn-
thesis,” in Int’l Conf. on Formal Methods and Models for Codesign,
2011.

[12] B. Keng and A. Veneris, “Automated debugging of missing input
constraints in a formal verification environment,” in Formal Methods
in CAD, 2012.

[13] OpenCores.org, 2007. [Online]. Available: http://www.opencores.org

[14] M. H. Liffiton and K. A. Sakallah, “On Finding All Minimally Un-
satisfiable Subformulas,” in Int’l Conf. on Theory and Applications of
Satisfiability Testing, 2005, pp. 173-186.

[15] J. Marques-Silva and J. Planes, “Algorithms for maximum satisfiability
using unsatisfiable cores,” in Design, Automation and Test in Europe,
2008, pp. 408-413.

[16] M. H. Liffiton and K. A. Sakallah, “Generalizing Core-Guided Max-
SAT,” in Int’l Conf. on Theory and Applications of Satisfiability Testing,
2009, pp. 481-494.

[17] A. Nadel, “Generating Diverse Solutions in SAT,” in Int’l Conf. on
Theory and Applications of Satlsﬂablllty Testing, 2011 pp. 287-301.

[18] Cadence Design Systems, “Incisive Formal Verifier,” 2012. [Online].
Available: http://www.cadence.com/products/Id/formal_verifier/pages/
default.aspx

[19] N. Eén and N. Sorensson, “An extensible SAT-solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502-518.

