
Mining Simulation Metrics
for Failure Triage in Regression Testing

Zissis Poulos1, Andreas Veneris1
1Dept. of ECE, University of Toronto, Toronto, Ontario M5S 3G4, Canada.

Abstract—Design debugging poses a major bottleneck in mod-
ern VLSI CAD flows, consuming up to 60% of the verification
cycle. The debug pain, however, worsens in regression verification
flows at the pre-silicon stage where myriads of failures can
be exposed. These failures need to be properly grouped and
distributed among engineers for further analysis before the next
regression run commences. This high-level and complex debug
problem is referred to as failure triage and largely remains
a manual task in the industry. In this paper, we propose an
automated failure triage flow that mines information from both
failing and passing tests during regression, and automatically
performs a coarse-grain partitioning of the failures. The proposed
framework combines formal tools and novel statistical metrics
to quantify the likelihood of specific design components being
the root-cause of the observed failures. These components are
then used to represent failures as high-dimensional objects, which
are grouped by applying data-mining clustering algorithms. Fi-
nally, the generated failure clusters are automatically prioritized
and passed to the best suited engineers for detailed analysis.
Experimental results show that the proposed approach groups
related failures together with 90% accuracy on the average, and
efficiently prioritizes the responsible design errors for 86% of
the exposed failures.

I. INTRODUCTION

Recent technical road-maps stress that regression testing
has become an essential and much needed component of
modern verification flows [1]. Large regression test suites
are often developed to ensure that coverage goals set by the
verification plan are met, especially in early design stages.
While functional verification generally remains a resource and
time-intensive process, the task of managing large regression
suites has introduced additional challenges that jeopardize
time-to-debug milestones.

One of the major problems associated with regression
testing at the pre-silicon stage is that of failure triage. Fail-
ure triage commences once a regression run finishes with a
plethora of failures exposed. Its goal is to sort these failures,
and then distribute them to engineers for root-cause analysis
and fixing. Particularly, failure triage is performed in two
stages. The first stage, called failure binning, identifies and
groups together failures that are related. That is, failures that
are likely to originate from the same design error. The second
stage, referred to as bin distribution, takes these failure groups
and determines which ones are of high priority for debug and
who is the best suited engineer to further analyze each group.

The complexity of triage is mainly due to the fact that
engineering intuition regarding the relationship of the exposed
failures is often limited. What further adds to is complexity is
a strict requirement that the triage process needs to be highly
accurate. If failures are not properly grouped and assigned to
the rightful owners, confusion may occur as failures constantly
circulate among developer teams, which often span different

time-zones. This may lead to scenarios where time-to-debug
becomes comparable to debug time itself.

To mitigate such delays in the debug flow, recent work has
placed its focus in data-mining methodologies that formulate
failure triage as a clustering problem [2,3]. The authors in [2]
use SAT-based debugging tools to extract information from
error traces [4]. Then, they employ a statistical model of
expected behavior for potential error locations. This allows
failures to be represented as high-dimensional objects in a
metric Euclidean space, where clustering can be performed.
In [3], a similar approach is followed, but the method operates
only in non-metric spaces. A limitation of these methods is
that they exclusively utilize failing tests, while no information
regarding the behavior of various design components is ex-
tracted from passing tests. Further, they make the assumption
that each exposed failure is the result of one or more errors in
a single design component. As a result, they fall short when
managing failures caused by the combined effect of multiple
errors occurring in more than one design components.

To address these issues, the work presented here proposes
an automated triage framework that leverages information and
extracts statistical metrics from failing and passing tests alike.
The information mined comes in the form of coverage, specif-
ically signal toggling activity, for various design components
during regression runs. These extracted metrics are combined
with the results of SAT-based debugging, in order to develop
various measures that quantify the likelihood of specific design
components being the source of one or more failures. The
proposed engine uses components that are potentially erro-
neous as features that allow failures to be represented by high-
dimensional objects in a metric space. Finally, by utilizing the
above representation it offers a straightforward methodology
to cluster these failures, prioritize them and distribute them to
engineers for detailed debugging.

Experiments on four industrial designs show that the pro-
posed work achieves 90% average accuracy for failure binning
and efficiently prioritizes the responsible design errors for 86%
of the exposed failures.

The remainder of this paper is organized as follows. Section
II discusses prior work in failure triage for design debugging.
Section III describes the proposed failure triage methodology.
Finally, Section IV discusses experiments and Section V
concludes the paper.

II. PRELIMINARIES AND PRIOR ART

Consider an erroneous design with a single or multiple
errors in the RTL that undergoes regression testing. We say
that a failure occurs, when a mismatch between the expected
“golden” value(s) (0,1 or X for unknown) and the observed
one(s) is identified at some observation point (primary output,

probed internal signal or the output of an assertion). Suppose
that regression testing exposes N design failures, denoted
F = {F1, F2, . . . , FN}.

The first triage stage, failure binning, aims to produce a
complete partition of the failure set F into K disjoint clusters.
Ideally, failures that are due to the same RTL error are placed
into the same cluster, and into distinct clusters otherwise. For
this partitioning to be accurate, there are two key components
that should be addressed. First, pairwise similarity between
the exposed failures needs to be quantified, and second, an
appropriate number of clusters, K, needs to be selected.

Finally, the goal of failure bin distribution is to allocate
each of the K clusters to engineers that are most familiar
with failures within that cluster. The key requirement for this
process is to develop a robust method to identify and prioritize
those design components that are possibly the root-cause of
all failures in a particular cluster. This way, the cluster can
be passed to the engineer responsible for those high-priority
design components.

A. Data Collection Methods
In failure triage, the quality of the required metrics that cor-

relate and prioritize failures heavily relies on the availability
and type of data that a triage tool collects from regression
runs. Especially concerning failure similarities, recent work
in [2] has shown that data collected from SAT-based debuggers
and logic simulators can generate proper failure similarities.
In what follows we discuss the basic information that can be
collected by these tools and that are also used in the triage
flow presented here.

1) SAT-based Debugging: SAT-based debugging forms a
powerful method for diagnosis, as it drastically reduces the
number of design components that ought to be analyzed to
track down the root-cause of a failure [4]–[7]. The input to
a SAT-based debugger is an error trace ETi (sequence of
stimuli of length |ETi| cycles) that exposes failure Fi during
regression testing. For each failure Fi, the automated debugger
outputs a set of design components (RTL blocks or signals),
denoted Si = {s1, s2, . . . , s|Si|}. Components s1, s2, . . . , s|Si|
and the set Si are commonly referred to as suspects and
suspect set, respectively. These suspects constitute all possible
design locations that can be responsible for the observed
failure, or in other words, that can be rectified to fix failure
Fi for the particular error trace ETi. Due to its exhaustive na-
ture, SAT-based debugging guarantees that the design location
responsible for some failure Fi is included in suspect set Si.
As such, Si can be viewed as a “signature” that characterizes
failure Fi.

Additionally, SAT-based debuggers can effectively address
scenarios where a failure is caused by the combined effect
of multiple errors in the RTL. A parameter, referred to as
error cardinality, and denoted by E, determines the number of
design components that can be simultaneously rectified to fix
the observed failure. In those cases, each suspect is considered
to be a tuple of E components, commonly referred to as block
suspects. Specifically, for failure Fi and error cardinality E,
the suspect set is denoted as S(E)

i and each suspect sj ∈ S
(E)
i

is returned as a tuple of block suspects sj = {b1, b2, . . . , bE}.
In this case we say that suspect blocks b1, b2, . . . , bE can be
simultaneously rectified to fix failure Fi. Note that, for E = 1,
each suspect si corresponds to a single suspect block.

X

ET1

Init. St.

cycle 1 cycle k cycle m− 2 cycle m− 1 cycle m

.b1

b2

b3

Observation Points

Primary Inputs

F1

X

s1 = {b2}

s2 = {b1, b3}

X

Fig. 1. Error trace and suspect components

Finally, modern SAT engines allow debuggers to return the
exact cycle where an error is excited at some block suspect
to cause a failure [8]. That is, for each suspect set Si and
error cardinality E, there is an associated excitation set Ti =
{t1, t2, . . . , t|Si|}, with tj = {tb1 , tb2 , . . . , tbE}, where tbk is
the excitation cycle for suspect block bk ∈ sj . As an additional
benefit, these tools return error propagation paths in the circuit
that show how an erroneous value propagates from a block
through consecutive cycles to reach the failing output [8].

Example 1: To demonstrate the above concepts consider an
error trace, as depicted in Figure 1. In that figure we show
the sequential behavior of the circuit for that trace using its
Iterative Logic Array (ILA) representation [4]. In more detail,
an error at design block b2 is excited in cycle m − 2 and
propagates to cause a failure (F1) at an observation point in
cycle m. The generated error trace ET1 of length |ET1| = m
is then passed to an automated debugger. The result is a
suspect set S1 = {s1, s2} of design components that can
explain the wrong output. Suspect s2 = {b1, b3} is a tuple
of two block suspects found when debugging is performed
with cardinality parameter E = 2, while suspect s1 = {b2}
involves a single block suspect (E=1). Block suspects b1, b2
and b3, excited in cycles k, m−2 and m−1 respectively, along
with their propagation paths are illustrated in Fig. 1. Note that
the erroneous component is included in the set S1 as suspect
s1 = {b2}. In this example, suspect s2 = {b1, b3} can explain
the failure through the propagation of errors from blocks b1
and b3, but does not include the actual error location.

2) Simulation Metrics: As it is shown in [3] and [2],
coverage metrics that are extracted by regression simulation
logs can be successfully employed to determine which suspect
components should be treated with higher priority. Broadly
speaking, knowing whether a suspect component was rigor-
ously exercised or not, provides a measure of how reliably
it can be actually considered erroneous or error-free. In this
work we focus on toggle coverage as a measure that provides
such information.

Definition 1: Given an error trace ETi, error cardinality E,
suspect set Si and a suspect sj = {b1, b2, . . . , bE}, with sj ∈
Si, we define the toggling frequency f i

j(bk) of suspect block
bk ∈ sj with respect to error trace ETi, to be the average
toggling across all the input(s) of bk as it is measured in error
trace ETi.

More precisely, the toggling frequency for each suspect can
be measured within error trace windows that span specific
simulation cycles of interest. In fact, the work in [2] has shown
that it is reasonable to measure toggling frequencies between
consecutive excitation cycles for each suspect block. In this
paper, we measure frequencies in the exact same manner.

III. PROPOSED TRIAGE FLOW

The factor that has the greatest impact on failure triage
quality is the accuracy of the failure binning step. To generate
an accurate clustering of the exposed failure set, there are three
major steps required. Namely, data collection, data weighting
and the generation of pairwise failure similarities. In what
follows, we provide the details of our methodology for each
of the aforementioned tasks.

A. Data Collection
Before failure binning commences, it is necessary to col-

lect all the relevant information for each failure exposed by
regression. To this end, we follow the standard approach
of performing SAT-based debugging for each failure Fi and
corresponding error trace ETi. In our methodology, SAT-
based debugging for each failure Fi is performed iteratively
with the error cardinality parameter E selected from the set
{1, . . . , Emax}, where Emax is determined by the engineer. At
the end of each iteration with cardinality E we collect suspect
set S(E)

i , and once all the iterations are completed we form a
set that includes all the returned suspects across all iterations.
This set is denoted as Si and includes suspect components that
range from single block suspects (E = 1) to tuples of Emax

block suspects.

Si =

Emax⋃
E=1

S
(E)
i (1)

Further, for each suspect block we also maintain the list
of excitation cycles along with its error propagation paths, as
these have been defined in Section II.

Once all debug sessions are completed and all suspects
collected into set Si, then toggle frequencies for each of these
blocks are extracted from simulation logs. Unlike the work
in [2], which only collects this information from error traces,
we also measure the frequencies of these block suspects from
traces of passing tests in the regression suite. Specifically, if
at the end of the regression run there are Np traces denoted
P1, P2, . . . , PNp

that expose no failures, then those are also
parsed to collect frequencies for those blocks that are returned
as suspects by the debugging sessions performed earlier. For
these frequencies, we follow the definition and notation given
below:

Definition 2: For each suspect sj = {b1, b2, . . . , bE}, with
sj ∈ Si, we define the passing toggling frequency f̂ i

j(bk)
of suspect block bk ∈ sj , to be the average toggling across
all the input(s) of bk as it is measured in all passing traces
P1, P2, . . . , PNp

.

B. Data Weighting
As discussed in Section II, each suspect component provides

some guidance to the general error location related to each
failure. However, some of the suspect locations (i.e. reset
signals, primary inputs, dangling logic, bit-flips etc.) can
explain the failure but may be irrelevant to the erroneous
module or signal responsible for it. Thus, all collected suspect
components need to be appropriately weighted to quantify the
likelihood of being an actual design error.

Ideally, we need to identify and promote suspects that
exhibit behavior similar to that of typical design errors. Recent
work has experimentally shown that there are two properties

often observed in such suspect components. The first is tempo-
ral proximity to the observed failure [9]. That is, typical design
errors are expected to be excited only a few cycles before
the failure is observed, since they can quickly propagate to
observation points in most cases. Second, these locations are
expected to exhibit low toggling frequency measured between
consecutive excitation cycles [2]. The argument behind the
latter is that typical RTL errors are relatively “easy” to excite
in the majority of cases.

Temporal proximity of a suspect block bj to the failing
observation point can be expressed by the number of cycles
between the excitation cycle tbj and the cycle where failure
Fi is observed. We assume that each error trace ETi begins
at cycle 1, therefore the failure is observed at cycle |ETi|.
Hence, for suspect block bj , temporal proximity with respect
to Fi is quantified by computing |ETi| − tbj .

Regarding the toggling frequency of block bj with respect
to error trace ETi, this has to be compared against all other
frequencies of suspect blocks that are returned as suspects for
failure Fi. Thus, when we say that a suspect block bj has a low
toggling frequency, this is relative to the block of maximum
frequency that explains the same failure as bj .

Once toggling frequency and temporal proximity are cal-
culated for every block suspect bj ∈ si, where si ∈ Sk, a
weight, denoted as lki (bj), quantifies the likelihood of that
block suspect being the responsible error for failure Fk. The
weight lki (bj) is given as follows:

lki (bj) =
1

2

[(
1−
|ETi| − tbj
|ETi|

)
+
(
1− fk

i (bj)

max
sm∈Sk,bn∈sm

fk
m(bn)

)]
(2)

In Eq. 2, the first term promotes the likelihood (weight) of
suspect block bj with respect to failure Fk when its excitation
cycle is observed close to the cycle where the failure is
exposed, and penalizes it otherwise. On the other hand, the
second term penalizes high frequencies, thus reducing the
weight of suspects that are hard to excite. Note that in the
second term, the denominator max

sm∈Sk,bn∈sm
fk
m(bn) is used to

normalize over the maximum toggling frequency observed in
any other suspect block for failure Fk. The overall weight is
the average of both quantities.

Note that, both of the above criteria apply only to in-
formation offered by error traces. In our methodology, we
wish to exploit information from passing traces as well.
Intuitively, we claim that if a block suspect has, on average,
a high toggle frequency across passing traces P1, P2, . . . , PNp

during regression, then its likelihood of being an actual design
error should be lower. This is because, although the block is
rigorously exercised by these passing traces, it did not lead
to a failure (since passing traces do not expose any). For
that purpose, we maintain an additional weight (likelihood)
denoted pki (bj), for each block suspect bj ∈ si, where si ∈ Sk.
The weight is given by:

pki (bj) =
1

Np

n=Np∑
n=1

f̂n
i (bj)

max
sm∈Sk,bw∈sm

f̂n
m(bw)

(3)

S2 S1

S3

⋃N
i=1 Si

Fig. 2. Suspect set overlap

~F3

~F2

~F1

√
−s(2, 3)

√
−s(1, 3)√

−s(1, 2)

F3

F2

F1

Fig. 3. Failure representations

Note that in Eq. 3, frequencies are again normalized over
the maximum toggling frequency.

When both likelihoods lki (bj) and pki (bj) are calculated for
block bj , then the overall likelihood for block bj , denoted
wk

i (bj) is given as the following product:

wk
i (bj) = lki (bj)× pki (bj) (4)

Eq. 4 is given rise by our requirement that suspect bj
satisfies the criteria with respect to error traces and passing
traces at the same time. Moreover, in our method we assume
that these two criteria are independent.

C. Pairwise Failure Similarities
As discussed in Section II, failure binning is defined as a

complete disjoint partition of failures F1, F2, . . . , FN , which
can be naturally formulated as a clustering problem, since
failures constitute unlabeled objects. In order to form clusters
of related objects, the similarity between each pair of failures
needs to be determined.

To this end, we construct a feature-based representation for
each failure. Then we map failures to data points into a high-
dimensional Euclidean space where pairwise failure similarity
can be naturally expressed by the negative squared Euclidean
distance between the corresponding data points [10].

When constructing a feature-based failure representation our
goal is to express each failure Fi in terms of its suspect
components and their weights.

Suppose {s1, s2, . . . , sM} is the set of all distinct suspect
components in

⋃N
k=1 Sk. Since a suspect component si may

involve more than one block suspects, its weight with respect
to failure Fk, denoted wk

i , is given by:

wk
i =

∏
bj∈si

wk
i (bj) (5)

To compute the above weight, again we follow the rule
of product, since suspect si has a high likelihood of corre-
sponding to actual multiple design errors if all of its block
suspects individually have a high likelihood of being actual
design errors.

Once these weights are computed, we associate each failure
Fk with a feature vector, denoted as ~Fk = [xk

1 , x
k
2 , . . . , x

k
M],

where:

xk
i =

{
wk

i , si ∈ Sk

0 , si /∈ Sk
(6)

is a variable obtaining the weight of suspect si with respect
to failure Fk or a value of 0 if si does not appear in the
suspect set of failure Fk. With this model, each feature encodes
the existence (or absence) of specific suspect components and
their corresponding significance, which is computed through
the weighting scheme.

By using the above representation, each failure Fi can be
mapped to an individual data point into an M -dimensional
Euclidean space. Then, the similarity between two failures
Fi and Fj , denoted s(i, j), can be expressed as the negative
squared error (Euclidean distance) between vectors ~Fi and ~Fj :

s(i, j) = −|| ~Fi − ~Fj ||2 (7)

Generally, we expect a small distance to indicate large
similarity and vice versa. Intuitively, failures that share many
suspects in common with similar weights are expected to
appear close to each other, thus having a large similarity. The
absence of shared suspects between two failures and/or large
variations in suspect weights indicate a smaller similarity and
these failures are mapped to data points that are relatively
distant.

Figure 2 illustrates a hypothetical example of failures F1,
F2, F3 with corresponding suspect sets S1, S2 and S3 that
overlap. Failures, such as F1 and F2, that have suspect sets
with proportionally large overlap (many shared suspects) are
expected to be strongly related and vice versa. In our work
the contribution of the overlap is refined based on suspect
weights and is implicitly represented into a metric space, as
shown in Figure 3. Note that pairwise similarities s(i, j) are
non-positive real values. In both cases, the larger s(i, j) is, the
stronger the relation between Fi and Fj is considered to be.

D. Failure Binning and Bin Distribution
Once the feature-based failure representation is constructed,

then clustering can be performed. The goal is to form clus-
ters such that failure similarities (negative squared Euclidean
distances) per cluster are maximized. A widely-adopted al-
gorithm for this task is k-means clustering [10]. One of the

bottlenecks in triage, however, is that the number of clusters,
K, is not known a priori, and is usually hard to predict.
In the worst case, we need to try partitions that range from
a single cluster including all failures to ones that involve
N clusters, one for each of the N exposed failures. The
former case can be interpreted as a scenario where all failures
are caused by a single suspect component, while the latter
one as a scenario were each single suspect causes a single
failure. Reality however, almost always falls between those
two extreme cases. A straightforward approach to output a
partitioning that involves a reasonable number of clusters is
to run k-means for every possible number of clusters with
various seeds selected at random each time, and output the
partition with the maximum silhouette average across all data-
points [10]. The silhouette measure indicates how dense the
identified clusters are. Therefore, by obtaining the partition
with maximum silhouette average we achieve well-separated
and dense clusters.

Finally, for the bin distribution step, the proposed method
decides how to pass clusters of failures to engineers based
on suspect components that appear among the failures of each
cluster. Particularly, for each cluster Ci from the set of clusters
C1, C2, . . . , CK that is generated, we compute the intersection⋂
Fj∈Ci

Sj. This set gives us all the mutual suspect components

between failures in cluster Ci. Then we pass cluster Ci to the
engineer who is most familiar with the suspect components of
highest weight in that intersection. Highest weight components
are selected because, based on the proposed weighting scheme,
these are locations of greater significance and should be the
ones targeted first by the engineer.

IV. EXPERIMENTAL RESULTS

This Section presents experimental results for the proposed
triage framework. All experiments are conducted on a single
core of an Intel Core i5 3.1 GHz workstation with 8GB
of RAM. Four OpenCores [11] designs are used for the
evaluation (vga, fpu, spi and mem_ctrl). The SAT-based
debugger used to extract suspect locations is implemented
based on [4]. A platform coded in Python is developed to
parse debugging and simulation data, calculate the appropriate
failure similarities and cluster the failure set via the k-means
algorithm. For each design, a set of different errors is injected
each time by modifying the RTL description. The injected
RTL errors resemble typical human-introduced errors (missing
pipeline stages, incorrect read/write from/to FIFO, bad stimu-
lus etc.) that lead to non-trivial triage scenarios [12]. In total,
twenty regression tests are run, generating various numbers of
failures each time, caused by a different set of errors.

For each design, a pre-generated set of test sequences is
used that is stored in vector files. Each regression run involves
hundreds to thousands of input vectors. For the purpose of
capturing failures we use end-to-end “golden model” check-
ers that compare the expected value for various operations,
exception checkers and various assertions.

Table I summarizes benchmark information and statistics
per regression run. From left to right, columns show the circuit
name and number of gates, an enumeration for regression
runs, the number of input vectors, the number of co-existing
RTL errors, the number of observed failures (N), and finally
the number of distinct suspect components (M) generated by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

20

40

60

80

100

testcase #

R
an

d
In

de
x

(%
)

prop. (E=1...Emax) prop. (E=1) [3] (E=1)

Fig. 4. Failure binning accuracy

SAT-based debugging per regression run. Note that for each
regression run the generated failure similarity matrix is of size
N ×M , as shown in the last column of Table I.

Failure binning is performed by multiple k-means exe-
cutions as described in Section III. Specifically, we run k-
means approximately 50 times per chosen number of clusters,
with different randomly selected seeds each time. We only
show results based on the partition that gives the maximum
silhouette average, which is also the output of the triage
engine.

To evaluate failure binning accuracy, we use the Rand
Index (R.I.) measure [10]. This metric compares the esti-
mated clustering against a reference failure binning, with the
latter corresponding to an ideal partition where all failures are
grouped with 100% accuracy; that is, all failures belonging
to the same cluster are caused by the same design error, and
all failures in separate clusters are caused by different errors.
The metric ranges from 0 to 1 and represents the fraction of
correct clustering decisions. Accuracy is hence measured as
100× R.I.%.

Figure 4 demonstrates a comparison in terms of binning
accuracy between the proposed framework when run with all
possible error cardinalities selected from 1 . . . Emax [prop.
(E=1 . . . Emax)], when run with cardinality always con-

TABLE I
BENCHMARKS AND REGRESSION STATISTICS

Ckt. Test # # |F| |
⋃N

i=1 Si| # matrix entries
(# gates) No. vectors errors (N) (M) (N ×M)

1 25206 4 45 55 2475
2 25206 7 62 92 5704

vga 3 25206 8 97 104 10088
(72292) 4 31870 10 106 140 14840

5 31870 13 121 191 23111
6 17365 3 19 39 741
7 17365 7 30 177 5310

fpu 8 20094 7 55 103 5665
(83303) 9 41759 9 83 101 8383

10 41759 11 125 139 17375
11 4573 3 13 50 650
12 4573 5 28 56 1568

spi 13 4573 6 51 104 5304
(1724) 14 5019 8 39 226 8814

15 5019 9 72 144 10368
16 10834 3 17 35 595
17 10834 5 32 82 2624

mem ctrl 18 10834 7 31 62 1922
(46767) 19 13370 8 66 129 8514

20 13370 11 95 169 16055

strained to E = 1 [prop. (E=1)], and the method described
in [2] [[3] (E=1)]. Recall that the method in [2] is by
construction limited to error cardinality E = 1. The proposed
triage engine outperforms the framework in [2] in 11/20
regression runs, when executed with all cardinalities. Precisely,
across all regression runs, the proposed engine achieves 90%
clustering accuracy on average, compared to 85% by [2],
respectively.

It is worth noting that, when the proposed flow is run
with cardinality constrained to E = 1, then average accuracy
drops to 87%. Under this constraint, the collected suspects
are the same as in [2]. However, the fact that we leverage
information from passing tests allows us to construct a more
refined weighting scheme, something that maintains the aver-
age accuracy above the one in [2], even by a small margin.
Clearly, when error cardinalities vary, then not only we are
able to collect more suspect components, but also deal more
effectively with scenarios where failures are caused by the
combined effect of multiple errors. This advantage is captured
by a further increase to accuracy as shown in Figure 4.

As far as the bin distribution step is concerned, its accuracy
is evaluated based on the following method. First we identify
whether the design error responsible for failures in a particular
cluster is included in the intersection of suspects sets as
described in Section III. If the design error location is indeed
in the suspect list, we obtain its weight, which is already
computed during the data weighting process. Finally, we
determine if the error location has a high weight compared
to other suspect locations in the intersection. This is done
by sorting suspects in order of decreasing weight. Ideally,
the error location resides among the top 10-20% of suspect
locations in the ordered list. In that case the bin is expected to
be accurately passed to the right engineer and the responsible
design error is effectively prioritized.

Table II summarizes experimental results regarding the
bin distribution step. Column 1 indicates the regression run
number. Columns 2 to 4 respectively indicate the index of
the responsible design error in the sorted list of suspects that
is returned to the engineer by bin distribution in [2], the
proposed flow when run with cardinality E = 1, and when run
with all cardinalities selected from 1 . . . Emax. The indices are
normalized over the size of the suspect set intersection each
time. Thus, when the index is small, the suspect component
that includes the design error appears in the first positions
of the list, and vice versa. Each row in the table provides the
average design error index per regression run. The last column
shows the improvement achieved by the proposed method
compared to the bin distribution approach in [2]. From Table II
we observe that, on average, the proposed approach prioritizes
the responsible design error more effectively compared to [2]
in 16/20 regression scenarios. In total, the average improve-
ment achieved compared to [2] is approximately 33% across
all regression runs. Overall, out of the total 1,187 exposed
failures across all regression runs, the responsible design errors
for 1,020 of those (86%) effectively appear as the top 20%
suspects in the suspect set returned to the engineer(s).

Finally, concerning time consumption, this is vastly domi-
nated by SAT-based debugging, which, in formal debug flows,
is performed whether triage takes place or not. This step con-
sumes from approximately 800 to 7000 seconds per regression

TABLE II
BIN DISTRIBUTION PERFORMANCE

Test avg. normalized error index improvement
No [3] (E=1) prop. (E=1) prop. (E = 1 . . . Emax) (%)

1 0.13 0.14 0.09 31
2 0.27 0.25 0.11 59
3 0.18 0.19 0.19 -5
4 0.35 0.28 0.23 34
5 0.18 0.15 0.14 22
6 0.35 0.36 0.14 60
7 0.17 0.20 0.12 29
8 0.11 0.12 0.19 -27
9 0.26 0.29 0.20 23
10 0.48 0.41 0.33 31
11 0.27 0.29 0.26 4
12 0.23 0.26 0.10 56
13 0.15 0.21 0.16 -7
14 0.26 0.19 0.13 50
15 0.19 0.16 0.16 16
16 0.30 0.33 0.25 17
17 0.09 0.17 0.14 -55
18 0.14 0.11 0.08 43
19 0.44 0.14 0.14 68
20 0.46 0.22 0.17 63

AVG 0.251 0.224 0.167 33

test-case. The overhead added due to failure binning and bin
distribution is negligible as it is in the range of approximately
50 to 90 seconds per regression run.

V. CONCLUSION

To summarize, this work introduces a novel automated
framework for the problem of failure triage in regression
testing. It proposes the use of information from passing tests to
enhance knowledge regarding suspect components generated
by SAT-based debugging, and introduces novel metrics that
take into account suspects of higher cardinality. Experimental
results demonstrate the high accuracy of the proposed triage
engine, confirming its practicality and efficiency.

REFERENCES

[1] H.Foster, “From volume to velocity: The transforming landscape in
function verification.” in Design Verification Conf., 2011.

[2] Z. Poulos and A. Veneris, “Clustering-based failure triage for rtl regres-
sion debugging,” in Int’l Test Conference, 2014.

[3] Z. Poulos, Y. Yang, and A. Veneris, “Simulation and satisifiability guided
counter-example triage for rtl design debugging,” in Int’l Symposium on
Quality Electronic Design, 2014, pp. 394–399.

[4] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Transactions on CAD,
vol. 24, no. 10, pp. 1606–1621, 2005.

[5] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, “A formal
approach for debugging arithmetic circuits,” in IEEE Transactions on
CAD, vol. 28, no. 5, May 2009, pp. 742–754.

[6] S. Mirzaeian, F. Zheng, and K. Cheng, “Rtl error diagnosis using a
word-level sat-solver,” in International Test Conference, 2008, pp. 1–8.

[7] K. hui Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic
error diagnosis and correction for rtl designs,” in Proc. International
High Level Design Validation and Test Workshop (HLDVT) 2007, pp.
65–72.

[8] B. Keng and A. Veneris, “Path directed abstraction and refinement in
sat-based design debugging,” in Design Automation Conf., 2012.

[9] S. Safarpour, A. Veneris, and F. Najm, “Managing verification error
traces with bounded model debugging,” in ASP Design Automation
Conf., 2010.

[10] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2007.

[11] OpenCores.org, “http://www.opencores.org,” 2007.
[12] S.Safarpour, B.Keng, Y.S.Yang, and E.Qin, “Failure triage: The ne-

glected debugging problem,” in Design and Verification Conference,
2012.

