
Exemplar-based Failure Triage for Regression
Design Debugging

Zissis Poulos1, Andreas Veneris1
1Dept. of ECE, University of Toronto, Toronto, Canada.

Abstract—Modern regression verification often exposes myri-
ads of failures at the pre-silicon stage. Typically, these failures
need to be properly grouped into bins, which then have to be
distributed to engineers for detailed analysis. The above process is
coined as failure triage, and is nowadays increasing in complexity,
as the size of both design logic and verification environment
continues to grow. However, it remains a predominantly man-
ual process that can prolong the debug cycle and jeopardize
time-sensitive design milestones. In this paper, we propose an
exemplar-based data-mining formulation of Failure Triage that
efficiently automates both failure grouping and bin distribution.
The proposed framework maps failures as data points, applies an
affinity-propagation (AP) clustering algorithm, and operates in
both metric and non-metric spaces, offering complete flexibility
and significant user control over the process. Experimental results
show that the proposed approach groups related failures together
with 87% accuracy on the average, and improves bin distribution
accuracy by 21% over existing methods.

I. INTRODUCTION

Functional verification poses a major bottleneck in modern
design cycles [1]. It becomes even more complex when
performed in regression mode at early design stages, where
thousands of input vectors are applied to heavily exercise
both standard and corner-case functionality. The co-existence
of potentially multiple design errors at this stage results into
hundreds of error traces exposed. Design debugging, which
accounts for more than 60% of the verification effort [1], is
the task that locates design errors using information provided
by these traces. It does so by using formal tools, which take as
input a single error trace and automatically determine possible
error sources (suspects) in the RTL [2]–[5]. These are finally
examined by the engineer to track down the exact error, a
process known as detailed debug [6].

However, this classical debugging approach has two major
drawbacks. First, it targets each failure in isolation. As a
result, different engineers may spend unnecessary resources
performing detailed debug for failures that originate from the
same RTL error. Second, it does not identify failures that
should be high in priority for detailed debug. As such, it cannot
determine the most appropriate engineer to further analyze
each error trace. This uncertainty often creates confusion, with
error traces constantly circulating until they are placed to the
right queue for analysis.

To break this uncertainty there is a need for a preprocessing
step that properly categorizes failures and assigns them to the
best-suited engineer(s) for analysis. This preprocessing step is
referred to as failure triage, and it consists of two main tasks.
First, failure binning is performed. Its goal is to determine
correlations between the exposed failures and bin together
these failures that are likely to be caused by the same design
error. The second step, failure bin distribution, identifies these

failures that should be prioritized within each bin. Next, it
assigns each bin to the engineer(s) most familiar with these
high-priority failures.

Traditionally, the above steps are performed manually in the
industry by dedicating an engineer to constantly monitor error
logs and empirically decide how to pass failures to engineers.
In other cases, a script is used to parse these error logs and
allocates failures following a rule-based strategy. Such ad-hoc
manual approaches often fail to identify correlations between
traces, since they rely on primitive debug paradigms.

Out of necessity to automate failure binning and failure
bin distribution, recent works have formulated Failure Triage
as a clustering problem [7,8]. To perform failure binning
through clustering, the authors in [8] first map failures as
data points into a metric space (Euclidean), whereas in [7]
failures are implicitly mapped into a non-metric space. A
limitation of these frameworks is that clustering can only be
performed by algorithms that operate exclusively in metric
or non-metric spaces, respectively. Most importantly, though,
these formulations focus in failure binning and do not offer
efficient solutions for failure bin distribution.

To overcome these drawbacks, in this paper, triage is
viewed as an exemplar-based clustering problem. Through the
proposed formulation, not only failure binning is automated,
but failure bin distribution is also properly addressed. This
is because exemplar-based clustering not only partitions the
failure set accordingly, but also algorithmically identifies these
failures that are representative of other failures in each bin.
These failures-exemplars are then naturally considered as ones
of high-priority for detailed debug. Moreover, the algorithm
that is applied, Affinity Propagation (AP), operates in both
metric and non-metric spaces, and thus leverages the merits
of both representations, unlike prior art.

Experiments on four industrial designs show that the pro-
posed work achieves 87% average accuracy for failure binning
and improves bin distribution accuracy by 21%, on the aver-
age, against existing methods.

The remainder of this paper is organized as follows. Section
II discusses prior work in failure triage for design debugging.
Section III describes the proposed formulation and presents
the exemplar-based clustering process. Finally, Section IV
discusses experiments and Section V concludes the paper.

II. PRELIMINARIES AND PRIOR ART

A. Failure Binning
Consider an erroneous design with a single or multiple

errors in the RTL that undergoes regression testing. We say
that a failure occurs, when a mismatch between the expected
“golden” value(s) (0,1 or X for unknown) and the observed

one(s) is identified at some observation point (primary output,
probed internal signal or the output of an assertion). Suppose
that at the end of regression testing, N design failures are
exposed, denoted F = {F1, F2, . . . , FN}.

The goal of failure binning is to produce a complete
partition of the failure set F into K disjoint clusters. Ideally,
failures that are caused by the same RTL error are placed
into the same cluster, and into distinct clusters otherwise.
For the process to be accurate, two key points have to be
properly addressed. First, pairwise failure similarity needs to
be quantified based on the above desired relationship, and
second, a “good” number of clusters, K, needs to be selected.

In prior work, there are two well-adopted approaches to
quantify pairwise failure similarity. Both approaches begin
with a similar debugging step. Precisely, in [7] and [8] a
baseline SAT-based debugging pass is first executed, and, for
each failure Fi, the automated debugger outputs a set of
design components (RTL blocks or signals), denoted Si =
{s1, s2, . . . , s|Si|}. Components s1, s2, . . . , s|Si| are referred
to as suspects, and include all possible design locations that
can be responsible for the observed failure. Due to its exhaus-
tive nature, SAT-based debugging guarantees that the design
location responsible for some failure Fi will be included in
suspect set Si. In this context, suspect set Si can be viewed
as a “signature” that characterizes failure Fi. Next, simulation
metrics are used to assign various levels of significance to
each suspect component with respect to the failure it may be
responsible for. The work in [7] does so via a suspect ranking
scheme, while the work in [8] adopts a data weighting scheme.

In [7], pairwise similarity between failures Fi and Fj ,
denoted s(i, j), is computed as a weighted version of the
Jaccard Index [9]. Particularly, s(i, j), is given as:

s(i, j) = −
(
1− |Si ∩ Sj |
|Si ∪ Sj |

)
× πij (1)

In Eq. 1, the factor
(
1 − |Si∩Sj |

|Si∪Sj |

)
quantifies mutuality

between the suspect sets of Fi and Fj , while πij is a
measure of discrepancy between the ranks of mutual suspects
in these sets [7]. The product is negated to abide to similarity
semantics. As it becomes apparent, the similarities generated
by Eq. 1 do not respect the triangle inequality, and thus this
method operates in a non-metric space.

On the other hand, the authors in [8] use a feature-
based representation for verification failures. Specifically, if
s1, s2, . . . , sM are all the distinct suspect components in⋃N

i=1 Si, then failure Fi is represented by a real-valued feature
vector ~Fi = [xi1, x

i
2, . . . , x

i
M], where each feature xij obtains

the weight (significance) of suspect sj with respect to failure
Fi, if it appears in Si, or takes the value 0 otherwise. Failures
are then mapped into a metric space, where similarity s(i, j)
is defined as the negated squared Euclidean distance between
~Fi and ~Fj :

s(i, j) = −|| ~Fi − ~Fj || (2)

Figure 1 illustrates a hypothetical example of three failures
F1, F2, F3. Suppose that the corresponding suspect sets S1,
S2 and S3 overlap as shown in Figure 2(a). Failures, such as
F1 and F2, that have suspect sets with proportionally large

S2 S1

S3

⋃N
i=1 Si

(a) Suspect set overlap

~F3

~F2

~F1

−s(2, 3)

−s(1, 3)

−s(1, 2)

F3

F2

F1

(b) Failures mapped into a metric space

Fig. 1. Failure representations

overlap are expected to be strongly related and vice versa.
Of course, in [7] suspect ranks adjust the contribution of this
overlap accordingly, based on Eq. 1. In [8] the contribution of
the overlap and the suspect weights is implicitly represented
into a metric space, as shown in Figure 2(b). Note that pairwise
similarities s(i, j) are non-positive real values. In both cases,
the larger s(i, j) is, the stronger the relation between Fi and
Fj is considered to be.

Once failure similarity is determined, failure binning is
performed through clustering algorithms. However, depending
on whether similarities are metric or non-metric only specific
classes of algorithms can be applied. The framework in [7]
is limited to connectivity-based greedy hierarchical clustering,
while in [8] hierarchical clustering is combined with k-means
to produce refined failure partitions. In both cases, the number
of clusters, K, is “guessed” empirically. In [7] it is based on
expected cluster size/density, while in [8] the authors use a
threshold applied on the clustering merge cost. These estimates
experimentally appear to be the bottleneck in failure binning
accuracy for both of the methodologies.

B. Failure Bin Distribution
Suppose that failure binning generates K failure clusters,

C1, C2, . . . , CK . The goal of failure bin distribution is to allo-
cate each of the K clusters to engineers that are most familiar
with failures within that cluster. In past work this allocation is
done as follows. For each cluster Ci, suspects across failures
in Ci that have a high average rank (or average weight) are
identified. Then, cluster Ci is passed to the engineer(s) that are
best-suited to analyze these important suspect locations in the
design. These suspects essentially correspond to a data point

that is exactly in the centroid (mean) of cluster Ci. However,
it is not necessary that a failure in cluster Ci always matches
with the cluster mean. In fact, this event is quite rare. Along
these lines, it is naturally more suitable to allocate the cluster
based on a data point associated with a failure that appears in
Ci, rather than a fictional data point in the cluster mean.

III. EXEMPLAR-BASED FAILURE TRIAGE

To overcome the problem of heuristically selecting the
number of clusters and to distribute failure bins based on
failures that belong to the partitioned set, we formulate triage
as an exemplar-based clustering problem. In what follows, we
provide the details of our methodology.

A. Data Preparation

Before triage commences, it is necessary to collect all the
relevant information for each failure generated by regression.
To this end, we follow the standard approach of performing
SAT-based debugging, and for each failure Fi we generate a
suspect set Si.

If N is the the number of observed failures, then
|
⋃N

i=1 Si| = M gives the number of distinct suspects across
all failures F1, F2, . . . , FN . Recall, that in a feature-based
representation, M corresponds to the number of dimensions of
the metric space where failures are mapped. Although, feature-
based representation has been shown to outperform other
existing methods, it does not perform well when M >> N .
This is due to the “curse of dimensionality” when the number
of dimensions is much larger than the size of the data set. As
such, to determine whether to use a metric space mapping we
first compute the ratio N/M and check if N/M > γ, where
γ ≤ 0.2. If N/M > γ, then similarities s(i, j) are computed
based on Eq. 2 in a metric space. Otherwise, similarities
are non-metric and are computed based on Eq. 1. However,
in both cases, if Si ∩ Sj = ∅, then s(i, j) is set to −∞,
since disjoint suspect sets indicate that failures should have
minimum similarity and never be placed into the same cluster.
Note that the value of threshold γ is determined empirically,
as it will be discussed in Section IV. In both cases, pairwise
failure similarities are given in the form of a N×N similarity
matrix S.

B. Problem Formulation

Once similarity matrix S is computed, failure binning takes
place. However, unlike prior work, in our methodology we do
not treat failure binning separate from bin distribution. Rather,
we provide solutions to both problems simultaneously, in a
unified sense, by formulating the whole process as exemplar-
based clustering.

Exemplar-based clustering not only partitions the data, but
also identifies for each cluster its most representative member,
also called exemplar. A cluster exemplar is the member of
the cluster that exhibits maximum overall similarity to other
members in the cluster. In the context of failure triage a cluster
exemplar can be viewed as a failure that is representative of
the erroneous behaviour associated with all other failures that
belong to the cluster. Intuitively, this failure-exemplar along
with its suspect locations can efficiently determine how to
distribute the failure bin.

To find solutions under this formulation we apply an al-
gorithm known as Affinity Propagation (AP) [10], which is
derived as an instance of max-product loopy belief propa-
gation [9]. The AP algorithm avoids an explicit search for
exactly K clusters and allows for a trade-off between the
number of clusters and the within-cluster similarity that is
obtained. As such, our technique does not require the number
of clusters to be specified or “guessed” a priori. However,
the algorithm allows the engineer to specify failures that are
believed to be of high-importance. To this end, a quantity
called preference, denoted pi is associated with each failure
Fi and quantifies our expectation that some failures are more
suitable to be exemplars than others. The higher the preference
pi, the more likely failure Fi is to be an exemplar, and vice
versa. Preferences are provided as an input to the algorithm
in the form of a N -dimensional vector p, and they corre-
spond to values assigned to the s(i, i) similarities, such that
[s(1, 1), s(2, 2), . . . , s(N,N)] = p.

The objective function of exemplar-based clustering, and
thus of the AP algorithm, is to maximize the sum of all
similarities between data points in the cluster to their exemplar,
while also maximizing the total preferences. Suppose the
algorithm takes S and p as input. Then, a set of N2 binary
random variables hij ∈ {0, 1} is defined, such that hij = 1 if
and only if failure Fi has chosen Fj as its exemplar. Note that
hjj = 1 indicates that Fj is, in fact, an exemplar. Finally, recall
that s(j, j) = pj ,∀j ∈ {1 . . . N}. The objective function is
formulated as a constrained optimization problem, as follows:

max
{hij}

i=N∑
i=1

j=N∑
j=1

s(i, j)hij (3a)

subject to∑
j

hij = 1 ∀i (3b)

hjj = max
i
hij ∀j (3c)

Eq. 3a ensures that each point chooses exactly one other
point as its exemplar. Eq. 3c guarantees that an exemplar is
never assigned to another exemplar. The goal of the AP algo-
rithm is to find settings of {hij} that maximize the quantity
in Eq. 3a. The algorithm finds solutions based on an iterative
message-passing procedure [10] and, upon convergence, it
outputs a set of exemplar failures denoted as Fex:

Fex = {Fj ∈ F : hjj = 1} (4)

Each exemplar defines exactly one cluster of failures, and
is itself a member of the cluster. Thus, the number of clusters,
K, is equal to the number of exemplars in Fex:

K = |Fex| (5)

On the other hand, for each non-exemplar failure Fi there
exists an exemplar failure Fj which is the most similar to Fi

across all other exemplars in Fex. The set of non-exemplars
that are most similar to exemplar Fj , denoted F j

nex is:

F j
nex = {Fi ∈ F : i = arg max

Fj∈Fex

s(i, j)} (6)

cluster Ck

cluster mean

(a) Traditional cluster formation

cluster Ck

exemplar

non-exemplar

(b) Exemplar-based formation

Fig. 2. Failure cluster formation in traditional vs. proposed triage

Each non-exemplar failure is then assigned to the same
cluster Ck as its most similar exemplar failure Fj . If exemplar
Fj ∈ Ck, then:

Ck = {Fj} ∪ F j
nex (7)

Finally, for the bin distribution step, cluster Ck is assigned
to the engineer that is responsible for the suspect locations of
failure Fj , where Fj is the exemplar for cluster Ck. This set
of design locations is given as:

{si : si ∈ Sj ∧ Fj ∈ Ck ∧ Fj ∈ Fex} (8)

Based on the above, the benefits of this formulation are
several. First, the process does not make any assumptions
about similarities, apart from the fact that they are non-positive
real values. They can be either metric or non-metric with no
consequences to the formulation. Therefore the process can
seamlessly replace existing binning algorithms irrespective of
how similarities are generated, and it can leverage the merits of
both representations. Further, the number of clusters, K, rises
algorithmically from the message-passing procedure, and does
not need to be “guessed” beforehand. Finally, as illustrated
in Figure 2, bin distribution is now guided by suspects that
correspond to failures included in the data set (exemplars),
rather than by suspects that correspond to a data point at the
cluster mean. This allows engineers to analyze each exemplar
failure (error trace) and its corresponding suspect set as a
whole, instead of examining suspect locations in isolation,
even if these locations are significant for a particular cluster.

C. Triage with Prior Belief

Another important benefit of the proposed methodology is
that it offers significant flexibility to the engineer considering
various triage scenarios. In the majority of cases, before triage
commences it is rather difficult to have an estimate on the
number of design errors (number of clusters) responsible for
failure set F. However, there are cases where engineers based
on their intuition can target specific failures around which they
wish F to be partitioned. That is, failures that are believed
should serve as exemplars of erroneous behavior. Along these
lines, the proposed method allows triage to be executed with
prior belief, both in a uniform and non-uniform setting, as
discussed below.

1) Uniform Setting: In the uniform setting no assumptions
are made regarding to what extent a failure should serve as an
exemplar. This translates into a triage scenario where even
intuitive knowledge around the importance of each failure
is missing. In the proposed formulation, this is encoded by

Regression

F = {F1, . . . , FN}

SAT-based debug

{S1, . . . , SN}
{s1, . . . , sM}

N
M
> γ ?

YES NO

matrix S preferences p

Affinity Propagation

.C1

clust.
Ci

clust.
CK

clust.

to detailed debugging

exemp. F1
exemp. Fi exemp. FK

compute
metric s(i, j)

compute
non-metric s(i, j)

Fig. 3. Proposed triage flow

simply setting all preferences pi ∈ p into some constant non-
positive real number. In practice, the AP algorithm performs as
expected and quickly achieves convergence when preferences
are fixed to the median of all similarities:

pk =
1

N2

i=N∑
i=1

j=N∑
j=1

s(i, j), k ∈ {1 . . . N} (9)

2) Non-uniform Setting: In the non-uniform setting the
engineer selects specific failures to promote as exemplars a
priori. If failure Fk is targeted then pk is set to 0. Otherwise
preference pk is set to the median of similarities as in Eq. 9.
Promoting specific failures as exemplars by setting higher
preferences affects the number of clusters to be formed, but
this number also emerges from the message-passing process.
Therefore, it is not necessary that the number of clusters
formed at the end will match then number of promoted
failures, if this number does not reflect a reasonable partition
based on the constrained optimization problem that is solved.
Still, if the “guess” is close to reality then the AP algorithm
can be effectively guided. Finally, note that this feature is not
offered by any of the existing methodologies. These methods
do allow a selection for K before the process begins, but that
does not imply that F is eventually partitioned around the
targeted failures.

D. Overall Flow

A flow diagram of failure triage, as it is formulated in this
work, is illustrated in Figure 3. It should be emphasized that
the SAT-based debugging step that provides the “signature”
suspect sets is performed in the flow whether failure triage
takes place or not. Triage begins immediately after this step
and preprocesses the data before detailed debug commences,
where these suspect sets need to be further examined. As such,
this debug step is not added by our methodology but is an
inherent part of the overall debug flow in regression mode.

IV. EXPERIMENTAL RESULTS

This Section presents experimental results for the proposed
triage framework. All experiments are conducted on a single
core of an Intel Core i5 3.1 GHz workstation with 8GB
of RAM. Four OpenCores [11] designs are used for the
evaluation (vga, fpu, spi and mem_ctrl). The SAT-based
debugger used to extract suspect locations is implemented
based on [3]. A platform coded in Python is developed to
parse debugging and simulation data, calculate the appropriate
failure similarities and cluster the failure set through the AP
algorithm. For each design, a set of different errors is injected
each time by modifying the RTL description. The types of the
injected RTL errors resemble typical human-introduced errors
(missing pipeline stages, incorrect read pointers, bad stimulus
etc.) that lead to non-trivial triage scenarios. In total, twenty
regression test are run, generating various numbers of failures
each time, caused by a different set of errors.

For each design, a pre-generated set of test sequences is
used that is stored in vector files. Each regression run involves
hundreds to thousands of input vectors. For the purpose of cap-
turing failures we use end-to-end “golden model” checkers that
compare the expected value for various operations, exception
checkers and various assertions throughout the designs.

Table I summarizes benchmark information and statistics
per regression run. From left to right, columns show the circuit
name and number of gates, an enumeration for regression runs,

TABLE I
BENCHMARKS AND REGRESSION STATISTICS

Ckt. Test # # |F| |
⋃N

i=1 Si|
(# gates) No. vectors errors (N) (M)

1 25206 4 45 36
2 25206 7 62 40

vga 3 25206 8 97 61
(72292) 4 31870 10 106 129

5 31870 13 121 155
6 17365 3 19 28
7 17365 7 30 152

fpu 8 20094 7 55 74
(83303) 9 41759 9 83 60

10 41759 11 125 111
11 4573 3 13 38
12 4573 5 28 46

spi 13 4573 6 51 82
(1724) 14 5019 8 39 196

15 5019 9 72 113
16 10834 3 17 24
17 10834 5 32 45

mem ctrl 18 10834 7 31 29
(46767) 19 13370 8 66 94

20 13370 11 95 137

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

testcase #

R
an

d
In

de
x

(%
)

proposed non−metric metric

Fig. 4. Engine accuracy vs. existing methods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−3

−2

−1

0

1

2

3

testcase #

K
 −

 #
 tr

ue
 c

lu
st

er
s

Fig. 5. Cluster prediction error

the number of input vectors, the number of simultaneous RTL
errors, the number of observed failures (N), and finally the
number of distinct suspect components (M) generated by SAT-
based debugging per regression run. For all regression runs we
fix threshold γ to 0.2. This value offers a stable behavior in
the triage flow; we generally desire metric representations, and
only disallow them in corner-cases when high-dimensionality
becomes an impediment in performance. Finally, for evalua-
tion purposes triage is run under the uniform setting described
in Section III.C. That is, we assume that there are no targeted
failures. This allows us to conduct a fair comparison against
existing methods.

To evaluate failure binning accuracy, we use the Rand
Index (R.I.) measure [9]. This metric compares the es-
timated clustering against a reference failure binning, with the
latter corresponding to an ideal partition where all failures are
grouped with 100% accuracy. The metric ranges from 0 to
1 and represents the fraction of correct clustering decisions.
Accuracy is hence measured as 100× R.I.%.

Figure 4 shows a comparison between the proposed frame-
work and the methods described in [7] (non-metric)
and [8] (metric), in terms of failure binning accuracy. The
proposed triage engine outperforms the framework in [7] in
14/20 regression runs, while it achieves better accuracy in
7/20 cases compared to the engine in [8]. Precisely, across all
regression runs, the proposed engine achieves 87% clustering
accuracy on average, compared to 77% and 88% accuracy
of the non-metric and metric methods, respectively. Note that
when N/M < γ, such as in test-cases 7 and 14, the proposed
method generates non-metric similarities. This has a positive

impact on accuracy by avoiding effects of high-dimensionality.
The metric approach in these cases exhibits lower accuracy as
it also shown by Figure 4. Finally, it is worth mentioning
that under the non-uniform setting the proposed method can
achieve up to 96% average accuracy when targeted failures
are carefully chosen.

To illustrate how accurate the number of generated clusters,
K, is in our framework, Figure 5 shows how far this prediction
is from the number of design errors responsible for the
observed failures. We refer to the latter as “true clusters”. The
prediction error is then given as (K − # true clusters) for
all test-cases. In ideal cases, K is equal to the number of
design errors and the prediction error is 0. Figure 5 shows
that in 12/20 regression runs the AP algorithm achieves a
perfect prediction, which greatly boosts binning accuracy.
Interestingly, in the rest of cases, the number of formed
clusters is usually smaller (by 1 to 3 clusters). Only in test-
cases 9 and 19 the number of clusters is larger than necessary.

As results indicate, the failure binning step in the proposed
triage flow demonstrates high accuracy, comparable to the
currently most efficient methodology in [8]. However, the
major strength of the proposed flow is its effective exemplar-
based bin distribution step. Since bin distribution in this work
is performed via exemplar failures, while existing techniques
use high-weight suspect locations to guide the process, we
need to use a common reference for comparison purposes. To
this end, we identify whether the design error responsible for
failures in a particular cluster is included in the suspect set of
the exemplar failure. If the design error location is indeed in
the suspect list, we obtain its rank or weight (significance),
which is already computed to generate similarities in the
binning step. Finally, we determine if the error location has a
high rank or weight compared to other suspect locations for
the same exemplar failure. We do this by sorting suspects in
order of decreasing weight. Ideally, the error location resides
among the top 10-20% of suspect locations in the ordered list.
In that case the exemplar failure and its suspect locations are
effectively prioritized.

Table II summarizes experimental results regarding the
bin distribution step. Column 1 indicates the regression run
number. Columns 2 to 4 show what position the responsible
design error takes in the sorted list of suspects that is returned
to the engineer by bin distribution in [7], [8], and the proposed
flow, respectively. The positions are normalized over the size
of the suspect list each time. Thus, when the position is low,
then the suspect component that includes the design error
appears in the first positions of the list, and vice versa. Each
row in the table provides the average design error position
per regression run. The last column shows the improvement
that is achieved by the proposed method compared to the bin
distribution approach in [8]. From Table II we observe that,
on average, the proposed bin distribution approach pushes the
responsible design error higher in the list compared to existing
methods in 12/20 regression scenarios. In total, the average
improvement that is achieved compared to the best of the
two existing methods (metric) is approximately 21% across
all regression runs.

As far as time consumption is concerned, this is vastly
dominated by the SAT-based debugging step which is per-

TABLE II
BIN DISTRIBUTION PERFORMANCE

Test avg. normalized error position improvement
No non-metric metric proposed (%)

1 0.22 0.13 0.10 23
2 0.26 0.27 0.16 41
3 0.19 0.18 0.20 -11
4 0.31 0.34 0.27 20
5 0.40 0.18 0.20 -11
6 0.34 0.35 0.16 54
7 0.24 0.17 0.10 41
8 0.18 0.12 0.19 -58
9 0.27 0.26 0.23 12
10 0.51 0.48 0.32 33
11 0.30 0.27 0.29 -7
12 0.18 0.23 0.08 65
13 0.17 0.15 0.15 0
14 0.33 0.24 0.16 33
15 0.21 0.19 0.26 63
16 0.46 0.32 0.33 -3
17 0.10 0.09 0.09 0
18 0.26 0.14 0.11 21
19 0.56 0.41 0.19 54
20 0.51 0.46 0.33 28

AVG 0.300 0.249 0.196 21

formed whether triage takes place or not. This step consumes
from approximately 400 to 7000 seconds per regression test-
case. The added overhead due to failure binning and bin
distribution is negligible and is in the range of 20 to 50 seconds
approximately per regression run.

V. CONCLUSION

To summarize, this work introduces a novel exemplar-based
clustering formulation for the growing problem of failure
triage in regression design debugging flows. It proposes the use
of Affinity Propagation to simultaneously provide solutions to
failure binning and bin distribution as a unified constrained
optimization problem. Experimental results demonstrate the
applicability and efficiency of the proposed triage engine, and
indicate that it outperforms existing methods for the important
step of bin distribution.

REFERENCES

[1] H.Foster, “From volume to velocity: The transforming landscape in
function verification.” in Design Verification Conf., 2011.

[2] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita, “A formal
approach for debugging arithmetic circuits,” in IEEE Transactions on
CAD, vol. 28, no. 5, May 2009, pp. 742–754.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Transactions on CAD,
vol. 24, no. 10, pp. 1606–1621, 2005.

[4] S. Mirzaeian, F. Zheng, and K. Cheng, “Rtl error diagnosis using a
word-level sat-solver,” in International Test Conference, 2008, pp. 1–8.

[5] K. hui Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic
error diagnosis and correction for rtl designs,” in Proc. International
High Level Design Validation and Test Workshop (HLDVT) 2007, pp.
65–72.

[6] S.Safarpour, B.Keng, Y.S.Yang, and E.Qin, “Failure triage: The ne-
glected debugging problem,” in Design and Verification Conference,
2012.

[7] Z. Poulos, Y. Yang, and A. Veneris, “Simulation and satisifiability guided
counter-example triage for rtl design debugging,” in Int’l Symposium on
Quality Electronic Design, 2014, pp. 394–399.

[8] Z. Poulos and A. Veneris, “Clustering-based failure triage for rtl regres-
sion debugging,” in Int’l Test Conference, 2014.

[9] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2007.

[10] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, pp. 972–976, 2007.

[11] OpenCores.org, “http://www.opencores.org,” 2007.

