
Root-Cause Analysis for Memory-Locked Errors

John Adler 1, Djordje Maksimovic1, Andreas Veneris1,2
1Department of Electrical and Computer Engineering, University of Toronto

2Department of Computer Science, University of Toronto

{adler, djordje, veneris}@eecg.toronto.edu

Abstract—Half of the time in the design cycle today is spent
on verifying and debugging the correctness of a design. Although
some debugging tasks have been automated, determining the
root-cause of errors that have been locked in memory for a
number of clock cycles before they propagate to an observation
point remains a time consuming effort. This is because the error
traces exposing such behavior can be excessively long, a fact
that requires modeling the circuit for many time-frames. This
paper introduces a performance-driven debugging methodology
for pinpointing the root-cause of memory-locked errors. The
technique models only a sliding time window and a final time
window explicitly at any one time, while interstitial time-frames
are linked with a lightweight memory model. This technique
is later extended to a complete methodology that diagnoses
errors that may be missed. Experiments on industrial designs
with memory-locked errors demonstrate a 72% reduction in
peak memory usage with a comparable runtime to existing
methodologies.

I. INTRODUCTION

The increasing design costs of modern Very Large Scale In-
tegration (VLSI) systems drive the development of sophisticated
Computer-Aided Design (CAD) tools. Verifying functional correct-
ness, along with localizing and correcting error sources, consumes
up to 70% of the chip design cycle [1], [2]. Debugging, a sub task
of verification, comprises half of the total verification effort [3].
Disproportionate growth in the effort and cost of verification and
debugging, coined as the verification gap, is projected to rise even
further over the next few years [1].

SAT-based automated design debugging techniques [4], [5] have
proven to be effective at decreasing the manual workload of debug-
ging. However, ever-increasing design sizes coupled with long error
trace lengths still limit their use. This is because the performance of
these techniques deteriorates with increasing design size and length
of the error trace. The problem posed by design size has been largely
solved through the use of abstraction and refinement techniques [6].
On the other hand, recent research in Bounded Model Debugging
(BMD) [7] has been orthogonally focused on reducing the memory
usage as the length of the error trace increases. Nevertheless, these
techniques also face an explosion in memory usage as the trace
length size gets longer. This, combined with the use of abstraction
to partially alleviate this problem may result in a large number of
spurious solutions, increasing the debug iterations. This fact may
render them ineffective for traces in which the erroneous behavior
propagates beyond a few thousand clock cycles before being observed
at some failure point.

In essence, the primary cause of excessive memory usage for long
traces is the use of an iterative logic array (ILA) [5] to model the
debugging instance. Modeling the problem using an ILA involves
unrolling the sequential circuit, whereby the combinational part of
the circuit is replicated k times to model the k clock cycles (time-
frames for single-clock designs) of the given error trace. In an ILA
representation, the current state assignment of time-frame i + 1 is
connected to the next state assignment of time-frame i. This may
present a problem in an industrial setting where the increasing use
of large memory blocks [8] makes memory-locked errors a common
occurrence. In detail, memory-locked errors are initially excited and
propagate only to be written into a memory block. These erroneous
values may be held for many clock cycles in memory before they
exit and propagate to a point where the failure(s) is finally observed.
As a result, the design may operate correctly for many clock cycles

from the time the bug is excited and before it fails, generating an
excessively long error trace that presents a challenge for conventional
automated debugging techniques. This is because the clock cycles
where the error is memory-locked still need to be modeled within
the debugging instance.

To address the challenge of memory-locked errors, this paper
presents a novel debugging technique that makes use of BMD along
with a succinct memory model [9] to efficiently model long traces.
The proposed technique models only two time windows at any one
time: a sliding window and a final observation window. The error
trace is split into non-overlapping time windows and for each iteration
the sliding window is moved to model an earlier time window. The
observation window remains constant as the last time window. The
sliding window, observation window, and interstitial time windows
are connected with a “lightweight” memory model. The technique
originally proposed may miss errors that propagate across multiple
time windows before entering a memory block. In the latter part of
this paper, we extend it by adding an optimized nested iteration of
BMD. The additional extended time windows are not connected to the
observation window directly, but rather only to the sliding window.

An extensive set of experimental results on industrial designs with
very long error traces from both OpenCores [10] and industrial
partners showcases the benefits of this work. In detail, the proposed
debugging technique achieves an average of 72% reduction in peak
memory usage while it maintains a comparable runtime to the state-
of-the-art debugging solutions.

The remainder of this paper is organized as follows. Section II
provides the work background and prior art. Sections III and IV
introduce the proposed debugging technique for long traces and
its complete extension. Section V presents experimental results and
Section VI concludes this work.

II. PRELIMINARIES

A. SAT-based Design Debugging

When a design is verified it may expose a set of failures. To
identify and correct the causes of these failures debugging is em-
ployed. Recent SAT-based debugging techniques [5] automate bug
localization by finding potential error locations (suspects) i.e., RTL
components that may be erroneous. Each suspect can be excited
and propagate error effects to the observation point resulting in
the verification failure. To return suspects, SAT-based techniques
require an error trace and a user-defined cardinality of errors. These
parameters are then encoded into a SAT instance whose satisfying
assignments indicate a set of suspects for the given cardinality N .

Specifically, the construction of the SAT instance begins with en-
hancing the combinational part of the circuit (i.e., transition relation)
denoted as T by adding an error model to each circuit location. The
enhanced transition relation is denoted Ten. Each error model l allows
the associated location to be either left unchanged, or replaced by a
free variable by activating the associated suspect variable el. In that
sense, activating the suspect variable allows the circuit location to
model any function through the assignment of the free variable. To
model the circuit behavior for k + 1 clock cycles an ILA is created
by unrolling Ten, replicating it into k+1 time-frames. For each time-
frame i, the vector of inputs Xi and the vector of expected outputs Y i

are constrained. Finally, the initial state S0 and the cardinality Φ(N)
are constrained. The equation that follows shows the mathematical
representation of a debugging instance:

Debug
k
0 (N) = S

0 ∧ Φ(N) ∧

k∧

i=0

X
i ∧ Y

i ∧ T
i
en (1)

B. Bounded Model Debugging

We observe from Eq. 1 that the size of the debug instance is
proportional to the length of the debug window. Therefore, instead of
modeling the entire error trace at once, BMD’s window expansion [7]
uses a debug window of the final w time-frames prior to the
observation of a failure, known as a suffix window. The foundation
for this technique lies in the fact that Eq. 1 can be generalized to
model an arbitrary window of length w of the error trace starting at
time-frame p, shown in Eq. 2 below:

Debug
p+w−1
p (N) = S

p ∧ Φ(N) ∧

p+w−1∧

i=p

X
i ∧ Y

i ∧ T
i
en (2)

Only errors that are excited within the suffix window will be found.
To find all the suspects, the suffix is iteratively lengthened, as seen in
Fig. 1. After each iteration, if the solver finds suspects on the initial
states of the debugging instance, the suffix is lengthened and another
iteration is started. If not, the algorithm terminates and returns all
the suspects that were found. It has been shown that the benefit of
reduced average peak memory usage of BMD, when compared to
brute-force debugging with a complete error trace, can be offset by
the increased runtime of multiple debug iterations [7]. In fact, in the
worst case, the suffix window can expand to the complete trace where
BMD degenerates to brute-force debugging.

iteration 1

iteration 2

iteration i

0 k − i k − 2 k − 1 k

Fig. 1. BMD window expansion

C. Succinct Memory Model

While BMD’s window expansion can alleviate memory usage
for longer traces, designs containing memories need special con-
sideration. The naı̈ve approach to modeling memories by explicitly
modeling each memory bit may cause an explosion in peak memory
usage, discussed in [11]. The succinct memory model of [9] replaces
the memory blocks in a design with a set of constraints that
model forwarding lines. Intuitively, forwarding involves connecting
a memory write to a memory read with a wire, as seen in Fig. 2.
The wires and associated control logic are then modeled in the SAT
instance.

The first set of forwarding lines are based on the assumption that
the simulated value is correct, and forwards according to the error
trace. For example, raising se3 in Fig. 2 connects RD3 to WD1 and
RA3 to WA1, allowing the data written into memory at time-frame
1 to be read at time-frame 3.

The second set of forwarding lines are based on the assumption
that the simulated value is incorrect, and forwards according to a set
of newly introduced buses that allow any time-frame to forward data
to a subsequent time-frame. For example, raising bre3,1 and bwe1,1
in Fig. 2 creates a forwarding path between time-frame 1 and time-
frame 3 through bus 1, allowing data to be forwarded according to
the satisfying assignments found by the solver. The number of such
bus lines B is specified by the user. Prior work [9] has shown that
for practical purposes a value of B ≤ 3 is sufficient.

Additionally to these forwarding constraints, constraints enforcing
memory semantics are added to the debug instance. Memory seman-
tics include behavior such as: a memory write must occur before a
memory read and only one time-frame can write to a single bus line at
a time. Since the original memory blocks are no longer needed with
the inclusion of the succinct memory model, they can be removed

from the circuit. This modified circuit is denoted T
′

en.

se3 se4
RD1

bre1,1

bwe1,1

bre2,1

bwe2,1

bre3,1 bre4,1

bwe3,1 bwe4,1

BD1

BA1

RA1 WA1

WD1

RA2

RD2

WA2

WD2

RA3

RD3

WA3

WD3

WA4

WD4

RA4

RD4

Fig. 2. Succinct memory model

III. WINDOW EXPANSION FOR MEMORY-LOCKED ERRORS

As discussed in Section II, the size of the debugging SAT instance
scales with the length of the debug window as the size of the ILA
depends on the number of time-frames to be modeled. Because of
this, when a trace exposes an error that remains locked in memory for
many clock cycles, traditional debugging techniques may experience
an explosion in memory usage. In this section, we present a novel
design debugging technique specifically targeting memory-locked
errors. The technique leverages BMD’s window expansion [7] with a
succinct memory model [9] to generate debugging instances that only
explicitly model two fixed-length time windows at any one time.

The succinct memory model utilizes two sets of forwarding lines:
simulated lines that forward values from the error trace and bus lines
that forward corrected values or addresses different from the error
trace. These lines will be used to connect time windows rather than
the traditional state transition lines that exist between time-frames in
the ILA. This will allow errors that propagate through memory rather
than the remainder of the circuit to be found. For the purpose of this
work, the cycle-accurate version of the succinct memory model is
used, in which circuit values are known at all times in the error
trace.

����

�� ��

�
�
�
�

k − 1 k

target read

bus forwarding

v w v

(b) iteration 1(a) iteration 0

k − 3 k − 2

simulation forwarding

k − 1 k

error

k − 5 k − 4 k − 3 k − 2

(c) iteration 2

k − 1 k

Fig. 3. Window expansion for memory-locked errors

For practical purposes, the proposed technique begins with a sanity
check pass that is used to decide if a non-memory-locked error is
the potential root cause of the observed failure. Such errors can be

ruled out using traditional debugging techniques [4], [5], [7] before
running window expansion for memory-locked errors. For a suffix
window of length v, called the observation window, a debugging pass
using existing techniques is performed, as shown in Fig. 3(a). The
results are then manually analyzed in an attempt to trace the erroneous
behavior back to an incorrect memory read, called the target read.
If a non-memory-locked error is determined to be at least partially
responsible for the erroneous behavior, it can be fixed and the sanity
check pass repeated until either the circuit behaves correctly or a
target read is found.

The presence of such a target read gives a high level of confidence
that a memory-locked error is indeed the root cause of the observed
failure, assuming the memory block itself is correct. The latter
is a realistic assumption since memories can generally be verified
independently [12], [13]. Additionally, if a target read is found, the
following two conditions hold: the read address of the target read is
correct, and the read data propagates correctly from the target read
to the primary output. This is proved in the next lemma.

Lemma 1 If a set of memory-locked errors is the root cause of the
observed failure, then the read address of the target read is correct
and the read data propagates correctly from the target read to the
primary output.

Proof: Let E be a solution to the suffix debugging instance
Debugp+w−1

p (N) in the form of a set of N active suspect variables.
If the read address for the observed data is incorrect, then a solution
E will be found with n (0 < n ≤ N) activated read address suspect
variables. Likewise, if the data does not propagate correctly from the
read data port to the observed output, a solution E will be found
with n (0 < n ≤ N) activated suspect variables for the fanout cone
of the read data port.

As stated in Lemma 1, the lack of a target read implies that the
read address port of the memory is being sent incorrect values, or
the fanout cone of the read data port is incorrectly modifying the
value received from memory. Suspects at these locations will allow
the user to manually find and fix the associated errors. Once fixed,
the sanity check pass is repeated until the design no longer exhibits
the erroneous behavior or a target read is identified.

If the sanity check pass finds a target read then the observation
window’s length v is resized so time-frame k − v + 1 corresponds
to the time-frame of the target read. Modeling earlier time-frames
is not necessary since a target read indicates that the incorrect data
did not pass through non-memory state elements before reaching the
data out port.

For subsequent iterations, a sliding window of length w is modeled
in addition to the observation window. The sliding window and
observation window are not connected via the state transition, as seen
in Fig. 3(b). Rather, the two windows are connected with the succinct
memory model, and the initial states to the observation window are
set from the error trace. As mentioned above, this connection will
allow errors that propagate through memory to be found, but more
importantly it will disallow errors that propagate into the observation
window from non-memory state elements. Since the sanity check
pass determined that incorrect data was being read directly from
the memory, the error must propagate into the observation window’s
target read from the memory block. After each iteration, the sliding
window is offset to an earlier time by w time-frames.

Once the sliding window and observation window are separated
by at least one time-frame as seen in Fig. 3(c), interstitial frames
are truncated leaving only the simulated forwarding lines from
the succinct memory model. These lines, whose fanins are now
disconnected, are set to their respective values from the cycle-accurate
error trace. Formally, this is expressed in Eq. 3 and 4 below. Eq. 3
is identical to the debug window instance formulation in Eq. 2, but
with the cardinality constraint and memory blocks removed:

D
p+w−1
p = S

p ∧

p+w−1∧

i=p

X
i ∧ Y

i ∧ T
′i
en (3)

Using the equation above, Eq. 4 is constructed, where Mb are the
bus forwarding lines, Ms are the simulated forwarding lines, and

Algorithm 1 Window Expansion for Memory-Locked Errors

1: sols← ∅
2: p← (k − v − w + 1)
3: while p ≥ 0 do
4: solsp ← SOLVEALL(MemLockDebugkp(N))
5: sols← sols ∪ solsp
6: if TERMINATE(p, solsp) then
7: return sols
8: end if
9: p← (p− w)

10: end while

M are the enforced memory semantics. These memory constraints
are added directly to the debugging instance as Conjunctive Normal
Form (CNF) clauses. It is not needed to model the bus forwarding
lines for interstitial frames since each truncated frame would have
been modeled explicitly at a previous iteration. Similarly to BMD’s
window expansion, if the solutions to the debugging instance do not
include the initial states, then the algorithm terminates. Otherwise
this process is repeated, in the worst case until the sliding window
reaches the beginning of the error trace. As such, Eq. 4 looks as
follows:

MemLockDebug
k
p(N) =D

p+w−1
p ∧D

k
k−v+1 ∧ Φ(N)

∧Mb ∧Ms ∧M
(4)

Algorithm 1 presents pseudo-code for an observation window
of length v and a sliding window of length w. Before running
this algorithm, a sanity check pass(es) using traditional debugging
techniques is used to ensure that a target read can be found. If not,
there is no need to run the algorithm. Next, the debug window is
iteratively lengthened (lines 3-10) and the resulting instance solved
(line 4). If no initial state suspects are found (line 6) [7], the algorithm
terminates, returning all solutions found so far.

Note that the proposed technique will miss suspects that are not
wholly contained within the sliding window since interstitial frames
do not model bus forwarding lines and their fanins. Experiments later
in this paper show that the number of suspects missed is usually small,
and is offset by the quick runtime and peak memory savings. An
extension is presented in the next section that will allow all suspects
to be found at the cost of increased runtime and memory usage. This
extension makes the proposed methodology complete.

IV. EXTENSION AND COMPLETENESS

This section extends the technique in Section III to find all
suspects including ones whose correction effects propagate across
time windows. Additional constraints for the succinct memory model
to disallow certain incorrect forwardings are also discussed. Finally,
its completeness is proved.

A. Nested Window Expansion

The basic technique presented earlier is subject to similar short-
comings as previous windowing techniques: suspects will only be
found if they are contained within the modeled time windows. Unlike
BMD’s window expansion however, window expansion for memory-
locked errors only models two fixed-length time windows explicitly.
Allowing for more time windows to be modeled while preserving
most of the peak memory usage savings is the motivation behind the
proposed extension.

The key addition of this technique is the use of a nested set
of window expansions. At each iteration of the basic technique,
an additional run of BMD’s window expansion is performed. The
resulting modeled extended windows allow suspects located outside
of the original [p, k] time window to be found by the solver. Fig. 4
demonstrates the new technique in action, starting from iteration 2
of the basic technique using an observation window of length v = 2
and a sliding window of length w = 1.

Without the addition of any other clauses, the first nested iteration
would immediately degenerate into BMD’s window expansion and

k − 3

(a) iteration 2, nested iteration 0

k − 2 k − 1 k

(b) iteration 2, nested iteration 1

(c) iteration 2, nested iteration 2

k − 4 k − 3 k − 2 k − 1 k

k − 5 k − 4 k − 3 k − 2 k − 1 k

Fig. 4. Extended window expansion for memory-locked errors

run to completion, finding all suspects corresponding to memory-
locked errors. Intuitively, this is because the extended windows could
write a fix into memory that would be read at the target read,
bypassing the sliding window entirely. The degenerated pass would
then have a similar memory usage profile as window expansion,
negating the effort done until now to avoid this. To prevent this,
for a set of extended windows starting at time-frame q, additional
clauses are added to the overall debug instance of the form:

BlockWrite
p−1
q =

B∧

b=1

p−1∧

i=q

k∧

j=k−v+1

[brej,b → bwei,b] (5)

These clauses disallow a time-frame in an extended window from
writing to the same bus that is read from the observation window’s
target read. This can be thought of as the extended windows sharing
bus forwarding lines with the sliding window, but not the observation
window. Formally, the resulting debug instance is as follows:

ExtDebug
k
q (p,N) =D

p+w−1
q ∧D

k
k−v+1 ∧ Φ(N)

∧Mb ∧Ms ∧M

∧BlockWrite
p−1
q

(6)

Algorithm 2 shows the necessary changes to the basic technique
in order to find all suspects. The key addition is an inner loop at lines
6-13 that will perform a nested set of window expansions.

B. Memory Model Considerations

The succinct memory model originally presented in [9] does
not model memory behavior exactly. Specifically, the behavior that
subsequent writes will overwrite previous writes to the same address
is not modeled for the bus forwarding lines. The motivation behind its
exclusion is that the additional clauses needed to correctly model it
would increase the memory footprint of the model, while the number
of additional spurious suspects is relatively small. This trade-off is
acceptable for the basic technique presented in Section III, but a
complete technique requires the memory model to be enhanced with
the following clauses:

k∧

i=q

B∧

b=1

[brei,b → IWEi,b]

k−1∧

i=q

B∧

b=1

[IWEi,b → IWEi+1,b]

k∧

i=q

B∧

b=1

[IREi,b ∧ IWEi,b ∧ wei →WAi 6= BAb]

The first two sets of clauses define an intermediate write enable
IWEi,b for time-frame i writing to bus b. Intuitively, time-frames
where IWEi,b = 1 correspond to time-frames before the bus read
occurs. IREi,b is defined in [9] in a similar fashion, but for time-
frames after the bus write occurs. The last set of clauses disallows
time-frames in between a bus write and read from writing to the same
memory address, BAb.

Algorithm 2 Extended Window Expansion for Memory-
Locked Errors

1: sols← ∅
2: p← (k − v − w + 1)
3: while p ≥ 0 do
4: solsp ← ∅
5: q ← p
6: while q ≥ 0 do
7: solsq ← SOLVEALL(ExtDebugkq (p,N))
8: solsp ← solsp ∪ solsq
9: if TERMINATE(q, solsq) then

10: break
11: end if
12: q ← (q − w)
13: end while
14: sols← sols ∪ solsp
15: if q = p then
16: return sols
17: end if
18: p← (p− w)
19: end while

C. Method Completeness

The methodology presented in this section is complete in the
sense that it will return all solutions corresponding to memory-locked
errors. This is the topic of the theorem that follows.

Theorem 1 Assume all memory blocks in the design are error-free.
Let solsml be the set of suspects found by the extended window
expansion for memory-locked errors and let solsbmd be the set of
suspects found by BMD’s window expansion whose correction effects
do not propagate into the state transition of time-frame k−v+1 (the
initial state transition of the observation window). Then solsml =
solsbmd.

Proof: As BMD’s window expansion is complete [7] and the
newly-enhanced memory model correctly models memory semantics,
using both techniques together will also result in a complete set of
suspects. Any suspect in solsbmd that is contained within [k−v+1, k]
will also be in solsml since that window would be modeled explicitly
by both techniques. Any suspect in solsbmd that is contained within
[0, k− v] and whose correction effects do not propagate through the
non-memory state transition of k − v + 1 will be in solsml. This
is because the extended technique models as many time-frames as
needed to find all suspects within [0, k − v]. Finally, suspects that
cross the state transition k − v + 1 would indicate the absence of a
target read and can be excluded, as such an error could be corrected
as shown in Lemma 1.

D. Practical Considerations

While the extended algorithm presented in this section will find all
suspects, it has the possibility of degenerating into BMD’s window
expansion in the worst case. This can happen if an error propagates
through non-memory state elements for many clock cycles before
being written into memory. Statistically, most errors do not exhibit
this behavior [7], a result also confirmed by the results presented
in the next section. However, for the rare case that such an error is
present, the proposed extension would lengthen the expanded window
until it is found, causing an explosion in memory usage.

A practical workaround to this problem is limiting the maximum
number of expansions performed by the nested window expansion.
This constraint will still allow most suspects to be found, while
preventing a runaway corner case that, even if it does not cause a
mem-out it could negatively impact runtime.

V. EXPERIMENTS

This section presents experimental results for the proposed window
expansion for memory-locked errors along with the extended version.
A workstation with an Intel Core i5 3.4 GHz quad-core processor
and 8 GB of RAM, with a timeout of 7200 seconds is used as
the benchmark for all experiments. BMD’s window expansion [7] is
compared against both Algorithm 1 (window expansion for memory-
locked errors) and Algorithm 2 (extended window expansion) with
the memory model enhancements discussed in Section IV. BMD [7]
is chosen as the baseline since the two newly-proposed algorithms
utilize it as a base and it is a technique that shares the same goal of
reducing peak memory usage of long traces. Minisat [14] is used as
the underlying solver for all SAT instances.

Industrial Verilog designs from OpenCores [10] and two com-
mercial designs (fifo, scam_core) from our industrial partners
are used to profile peak memory usage and runtime of the two
algorithms. Failing instances of each design are created by modifying
a line in the RTL to specifically create a erroneous behavior that will
remain locked in memory for many clock cycles. The failing design
is then simulated with the provided testbench and the resulting error
trace is recorded.

Before running any of the window expansion techniques, cone of
influence reduction [15] is used to prune the parts of the design that
do not directly contribute to the erroneous behavior. This, combined
with the insertion of a different error, may result in different instances
of the same circuit having different sizes. All three window expansion
techniques are then run on each design with an error cardinality
N = 1 and window length v = w = 50. This length is chosen
such that window expansion will run for at least two iterations even
on the biggest designs. The two newly-proposed window expansion
techniques are configured to use up to B = 3 bus forwarding lines,
which for cycle-accurate error traces has been shown to be more than
adequate for finding all suspects [9]. Lastly, the extended window
expansion is limited to a maximum of five expansions.

Experimental results are found in Table I. Each row in the table
gives results for a different failing instance. Since each design
has been made to fail in more than one way, instance names are
differentiated by using the original name of the design with an index
appended, each corresponding to a different introduced error.

The first three columns in Table I give the instance name, the gate
count for the instance in thousands of gates, and the total number of
clock cycles in the error trace exposing the failure. The next three
columns give results for BMD’s window expansion: peak memory
usage in megabytes, runtime in seconds, and the total number of
clock cycles analyzed. The following two sets of four columns give
corresponding results for the basic and extended window expansion
for memory-locked errors, in addition to the total number of suspects
found. A TO (MO) is used to denote that a time-out (mem-out)
occurred for that particular run. Partial results for these situations are
given in the table.

The most apparent benefit of the proposed algorithms is the
significantly reduced peak memory usage for all instances. A direct
consequence of this is a reduced number of instances hitting a MO
condition when compared to previous work. Algorithm 1 is able
to complete analysis on 78% more instances while Algorithm 2
completes 67% more. This corresponds to 9 completed instances for

window expansion, 16 completed instances for Algorithm 1 and 15
completed instances for Algorithm 2. For instances that completed,
Algorithm 1 shows an 83% decrease in average peak memory usage
and a 73% decrease in average runtime versus window expansion.
On the other hand, Algorithm 2 shows a 72% decrease in average
peak memory usage and comparable runtime.

Fig. 5 shows the peak memory usage for the instances
ethernet1, fifo2 and vga1 for window expansion, the basic
technique, and the extended technique in order. It can be seen
that Algorithm 1 shows a consistently greatly reduced memory
footprint. Algorithm 2 on the other hand shows varying reduced
memory usage when compared to window expansion. The increased
memory usage when compared to the basic algorithm is caused by
the additional clauses need to constrain the expanded windows and
memory semantics, along with the potential for modeling more time-
frames explicitly. The variation in memory savings is due to how
many times the nested window expansions need to expand in order
to find all suspects.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ethernet1 mrisc2 vga1

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

bmd
we

ewe

Fig. 5. Memory usage of window expansion and novel techniques

The runtime results for Algorithm 1 show improvements across
the board, which is to be expected as the number of iterations
would be identical to window expansion (assuming no MO), but the
generated debugging instance is of greatly reduced size. This effect
is demonstrated in Fig. 6, which compares BMD to Algorithm 1’s
memory usage versus the number of clock cycles analyzed for vga1.
It can be seen that while window expansion’s memory usage grows
quickly with the number of time-frames modeled, window expansion
for memory-locked errors’ memory usage features very slow growth.
This is because the latter technique only explicitly models two
fixed-length time windows. Interstitial frames are modeled with
comparatively very few clauses: the simulated buses and linear-
scaling constraints enforcing memory semantics.

When runtime results for Algorithm 2 are compared with those
of previous work [7], it is shown that it will perform better or
will compare fairly well. This is due to the fact that statistically
most errors do not propagate through non-memory state elements
for many clock cycles. In the case of mips2 however, both window
expansion and Algorithm 2 terminate but the latter shows an increase
in runtime. This is caused by the nested window expansions having
performed several expansions at each iteration. It is also depicted in
Fig. 7 which shows the count of the number of expansions performed.
It can be seen that while the distribution is left-skewed, a trend
that confirms the statistical observation discussed earlier, there are
enough instances of higher number of expansions being performed
to negatively impact the total runtime. Admittedly, the benefit of the
proposed techniques lies in the greatly reduced peak memory usage
allowing the analysis of instances that would not have been possible
with previous techniques. As such, runtime is a secondary priority.

The number of suspects each of the proposed algorithms finds
can be seen in columns 10 and 14 in Table I. It can be noted that
Algorithm 1 usually finds a number of suspects comparable to the

TABLE I
WINDOW EXPANSION FOR MEMORY-LOCKED ERRORS RESULTS

Instance Info Window Expansion [7] Basic Extended

instance # gates # clk mem time # debug mem time # debug # sols mem time # debug # sols
name (k) cycles (MB) (sec) cycles (MB) (sec) cycles (MB) (sec) cycles

ac97 ctrl1 22.9 51000 5602 2497 1500 509 533 1500 43 695 851 1500 42
ac97 ctrl2 22.9 37000 6830 2841 1750 551 670 1750 55 741 937 1750 59
ethernet1 70.1 3920 7448 1057 950 1258 497 950 79 2467 1009 950 103
ethernet2 63.3 830 5931 1268 700 1026 459 700 40 2196 1396 700 87
fifo1 79.9 95000 MO 3451 800 2418 6394 10850 156 5390 7068 10850 218
fifo2 78.6 34000 MO 3705 800 1961 2172 4600 128 3607 4573 4600 155
fpu1 73.2 10000 MO 1278 750 1840 2459 3750 169 4607 5193 3750 221
fpu2 71.9 10000 MO 1493 850 1972 3094 5000 147 5599 5816 5000 240
mips1 49.7 26000 MO 5125 1000 1709 1755 1900 115 3276 TO 950 76
mips2 50.2 10500 7819 4691 700 1435 857 700 101 2864 6840 700 103
mrisc1 15.8 1540 1562 926 1200 419 361 1200 48 563 907 1200 50
mrisc2 15.7 1540 2097 873 1350 443 393 1350 56 598 1262 1350 68
scam core1 499.7 2060 MO 593 300 3817 6071 2750 140 5930 7106 2750 167
scam core2 499.3 4180 MO 672 350 3650 4846 1900 178 5004 6416 1900 193
vga1 42.0 5530 4025 1973 950 1095 568 950 89 1350 742 950 95
vga2 30.8 7390 3619 1708 1100 876 497 1100 99 997 616 1100 108

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

k

bmd
we

Fig. 6. Memory usage vs. clock cycles analyzed for vga1

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6

E
x
p
a
n
s
io

n
s

Count

Fig. 7. Frequency of number of expansions performed for mips2

extended algorithm with an average of 23% missed suspects for
instances that completed. In cases such as ethernet1 and fpu2,
the extended algorithm needs many nested expansions in order to find
all suspects. This directly translates to both a higher peak memory
usage, increased runtime and comparatively more suspects found.

It should be noted that Algorithm 1 finds additional spurious
suspects owing to an imperfectly constrained memory model, as
discussed in Section IV, and observed in the case of ac97_ctrl1
in Table I. However, these turn out to be less than 4% of the total
suspects found on average, confirming the statistical observations

of [9]. The memory savings gained from allowing certain incorrect
forwardings are in large part due to the reduced number of clauses
needed to model memory behavior for interstitial truncated frames.

VI. CONCLUSION

In this paper, a novel technique for finding memory-locked errors
is proposed. The technique models two time windows connected with
a lightweight memory model. With each iteration the earlier window
is offset, allowing memory-locked errors to be found across the
error trace. The extended technique adds nested window expansion
iterations to find errors that cross time windows. Experimental results
on industrial designs with very long error traces show a large decrease
in peak memory usage when compared against previous state-of-the-
art work.

REFERENCES

[1] H. Foster, “From volume to velocity: The transforming landscape in
function verification,” in Design Verification Conference, 2011.

[2] M. Prasad, A. Biere, and A. Gupta, A Survey of Recent Advances in
SAT-based Formal Verification, 2005, vol. 7, no. 2.

[3] K. Karnane and G. Corey, “Automating root-cause analysis to reduce
time to find bugs by up to 50%,” Cadence, 2015.

[4] S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[5] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[6] E. Clarke, A. Gupta, and O. Strichman, “Sat-based counterexample-
guided abstraction refinement,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 23, no. 7, pp. 1113–
1123, July 2004.

[7] B. Keng, S. Safarpour, and A. Veneris, “Bounded Model Debugging,”
IEEE Trans. on CAD, vol. 29, pp. 1790–1803, November 2010.

[8] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[9] B. Keng, H. Mangassarian, and A. Veneris, “A succinct memory model
for automated design debugging,” in IEEE/ACM Int’l Conf. on CAD,
Nov 2008, pp. 137–142.

[10] OpenCores.org, “http://www.opencores.org,” 2007.
[11] M. Ganai, A. Gupta, and P. Ashar, “Verification of embedded memory

systems using efficient memory modeling,” in Design Automation Conf.,
March 2005, pp. 1096–1101 Vol. 2.

[12] M. Pandey, R. Raimi, R. Bryant, and M. Abadir, “Formal verification
of content addressable memories using symbolic trajectory evaluation,”
in Design Automation Conf., June 1997, pp. 167–172.

[13] A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck,
“Verifying correctness of transactional memories,” in Int’l Conf. on
Formal Methods in CAD, Nov 2007, pp. 37–44.

[14] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502–518.

[15] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The
MIT Press, January 2000.

