
An Extensible Perceptron Framework
for Revision RTL Debug Automation

John Adler1, Ryan Berryhill1, Andreas Veneris1,2

Abstract—Automated debugging techniques can significantly
reduce the manual effort required to localize RTL errors. These
techniques return to the user a set of RTL locations where a
change can correct erroneous behavior. However, each location
must be manually investigated. This problem is exacerbated by
the increasing amount of failures in the modern regression verifi-
cation cycle. Recent work in clustering-based revision debugging
mitigates this cost by ranking revisions based on their likelihood
of having introduced an error. This work presents a perceptron-
based approach to revision debugging that can be extended to
leverage the revision history of a design directly. Perceptrons are
trained using labeled revisions from the design history. They are
then used to predict the probability that a revision has introduced
an error. The proposed methodology performs competitively with
the state-of-the-art, but can be extended to handle more features.
This allows for an automated regression debug flow integrated
with Version Control and Issue Tracking Systems.

I. INTRODUCTION

The modern hardware design cycle is bottlenecked by functional
verification, which accounts for up to 70% of the total effort [1]. The
majority of this cost is spent on debugging: localizing and correcting
design errors [2]. In order to alleviate the engineering effort spent of
these tasks, automated techniques have been developed.

Verification can be performed either on-line or off-line. On-line
verification involves the engineer analyzing the design functionality
through means such as simulation and model checking. When a
failure is observed, an error-trace is returned that exposes the er-
roneous behavior. This is followed by fine-grain debugging, where
the engineer seeks to find the root cause of the error. Automated
debugging tools based on Boolean Satisfiability (SAT) solving [3] can
be used to accelerate the process. Using the error-trace(s), the tool
finds all locations in the design Register-Transfer Level (RTL) where
a change can be made to correct the behavior. For the convenience
of the engineer, these are typically mapped to lines in the hardware
description language (HDL) source code for the design.

Conversely, off-line (or regression) verification runs extensive test
suites that exercise a large portion of the design functionality. When
the process completes, engineers perform coarse-grain debugging
by analyzing and parsing the simulation logs and error messages.
Automation is critical to the process due to the large volume of
data. However, relatively little automation is available today, often
consisting of simple rule-based approaches that assign each failure
to an engineer who must perform fine-grain debugging.

To accelerate off-line verification, a recent development in revision
debugging [4] introduces a clustering-based algorithm that leverages
information from a Version Control System (VCS). Given a list of
revisions, the tool ranks each revision in the VCS according to its
expected likelihood of being responsible for the observed failure.

1University of Toronto, ECE Department, Toronto, ON M5S 3G4 ({adler,
ryan, veneris}@eecg.toronto.edu)

2University of Toronto, CS Department, Toronto, ON M5S 3G4

An extension to this work [5] makes use of the non-linear nature
of typical modern VCSs, such as Git [6]. By adding branching
information to the algorithm, branches are ranked in addition to
revisions. Both branch and revision rankings allow the engineer to
pinpoint the root cause of the failure with less effort, thus reducing
the cost associated with debugging the design.

These techniques, while providing valuable information, are in-
flexible, and do not make full use of modern development practices.
An Issue Tracking System (ITS) is often used in conjunction with
a VCS in order to enrich the information provided by the latter [7].
Most prominently, revisions and branches can be labeled, most often
with whether they correspond to a bugfix or a feature addition.
Additionally, [4], [5] provide no means of incorporating the wealth of
information available in a VCS, such as commit timestamps, commit
authors, commit logs, etc. Another issue with these techniques is
that as the number of revisions increases, performance decreases, as
revisions are ranked on a relative rather than absolute scale.

To address these shortcomings, this work presents an extensible
framework based on a perceptron [8], rather than the clustering-based
approach of [4], [5]. A perceptron is trained using historical data on
design errors and their eventual fixes, available from the VCS and ITS
for each design. The trained perceptron can then used to predict the
probability that future revisions have introduced a bug. Ranking of
revisions can be accomplished by sorting revisions on this probability.
This model has the capability of being extended to learn from the
rich additional data available in both the VCS and ITS, unlike the
fixed clustering-based approach.

Perceptrons based on logistic regression are trained per design
using a mixture of historical design data and results from an auto-
mated debugging tool. Each training sample revision is tagged with
matching suspects, allowing the perceptron to learn a relationship
between revisions and suspects. Classification performance enhance-
ments, including using an SVM and a more involved matching
metric, are also presented. This work is applicable to both on-line
and off-line verification, as it can speed up error localization, but is
more conducive to the coarse-grain nature of off-line verification by
providing broad guidance on which revisions to prioritize.

Experimental results demonstrate that this methodology can per-
form competitively to the state-of-the-art clustering revision debug
methodology. On average, ranking is only 2.83 times worse than the
clustering-based approach, with a 75% decrease in average runtime.
However, the benefits of the perceptron-based approach can be seen
in cases where a wealth of training data is available, resulting in up
to 33% better ranking performance. In addition, the perceptron-based
approach can be improved with additional training samples and the
addition of new features to the model, vectors of improvement not
available to the clustering-based approach.

The remainder of this paper is organized as follows. Section II
presents relevant background information. Section III presents the
novel methodology of perceptron-based revision debug. Section IV
extends the framework to improve classification performance. Sec-
tion V summarizes experiments results. Finally, Section VI concludes
the work.



II. PRELIMINARIES

A. SAT-Based Debugging

SAT-based debugging is central to both the work presented here
and that of [4], [5]. Consider a circuit with multiple errors in the
RTL. When off-line verification detects a failure by means such as
an observation value mismatch or a firing assertion, an error trace is
returned that exposes the failure. Let F = {f1, ..., f|F |} represent the
failures returned by an off-line verification run. Note that different
failures may be caused by different errors in the RTL.

Given an error trace exposing a failure, SAT-based debugging
tools [3] identify candidate lines where a fix can be implemented to
correct the failure. For a failure fi, the tool returns a set of candidate
lines Si = {si1, ..., si|Si|} in the HDL representation of the circuit.
The set Si is also referred to as the suspect set, and accordingly
each element of Si is called a suspect. A suspect could be a module
definition, module instantiation, expression, etc., but ultimately each
is mapped to a range of lines in the design’s HDL. As SAT-based
debugging techniques are exhaustive, the suspect set contains every
such line, and therefore is guaranteed to include the actual error
source. In practice, it tends to contain many other lines where a
change can be made to merely mask the failure for the particular
error trace but cannot correct it for all other traces. As an engineer
must manually investigate the suspects in order to correct the failures,
it is desirable to provide an accurate means of filtering out suspects
that are false positives using a ranking system.

B. Version Control Systems and Issue Tacking Systems

Version control systems are part of the modern software config-
uration management workflow. Successive changes to design files,
known as revisions or commits, are tracked. This revision history
allows different versions of the code to be examined and compared.
Traditionally, each revision has associated with it a unique identifier,
a commit log (i.e., a user-specified description of the changes), and
a list of changes. Changes are usually represented using a line-based
diff.

Modern VCSs support a branching scheme, which allows multiple
developers to work on a design in tandem (fixing bugs, adding
features, etc). Following proper coding practices, each branch should
isolate development on a single feature or bugfix. Using this scheme,
revisions are pushed to a branch, rather than the mainline, i.e.,
the master branch. Once development on a branch is complete, it
is merged onto the mainline. Branches still under development, or
ones not yet merged onto the mainline are termed redundant while
revisions within those branches are termed redundant revisions.

Issue tracking systems are used to complement limitations of VCSs
by enriching the information available, through the use of issues. One
or more branches can be associated with each issue, with the finished
branch resolving the issue. Relevant to this work, issues—and, by
association, branches—can be tagged with various descriptors, with
“bugfix” or “feature” being the two most prominent. ITSs can also
allow for relationships between issues to be described: one branch
might fix a bug introduced in a previous branch, for example.

C. Clustering-Based Revision Debug

Previous work in revision debug [4], [5] introduces a clustering-
based methodology for ranking revisions and branches, allowing the
engineer to rank revisions more likely to have introduced an error.
This process is broadly separated into three steps: suspect clustering,
classification, and weighted ranking.

Suspect clustering is performed independently of the VCS, relying
only on results from an automated debugging tool [3]. The tool is run
on the failures from regression, returning a set of suspects for each

S1

S2

S3

S4

S5

A

A

BB

B

A

A

C

A

50 100

50

150

Fig. 1. Clustering-based revision debug: clustering step

failure. Affinity propagation clustering [9] is used on these suspects to
automatically identify groups of similar suspects, as seen in Figure 1.
To this end, the lines for each suspect Si are plotted onto a space,
with one file per axis. In this example, five suspects are plotted across
two source files. Exemplars (cluster centers) will be located near areas
of high overlap, labeled as C in the left cluster and B in the right
cluster. Intuitively, this step will automatically determine the number
of errors present in the design, which corresponds to the number of
clusters. Once the center of each cluster is determined, the Euclidean
distance Di

j between each suspect sij , 1 < j < |Si| in set Si, for all
suspect sets, and the center of its cluster is calculated. This distance
will be used in the final weighted ranking step.

Revision and branch classification is performed next. It will be
illustrated here for revision classification, but can be extended for
branch classification in a straightforward manner. A Support Vector
Machine (SVM) [10] is trained on commit messages from past
revisions in the VCS. Unique words in the commit message are
used as features. Once trained, the SVM can be used to predict the
probability that a revision Rk is a bugfix or not, Pk, based on its
commit message. The intuition behind this step is that revisions that
are bugfixes are less likely to introduce an error into the design.
Alternatively, this step can be replaced by extracting the bugfix status
of a revision or branch directly from the ITS, if available.

Once clustering and classification are finished, weighted ranking
can be used to rank revisions (and branches). The following formula
is used to calculate weights for each revision Rk:

wk = mini,j

(1
2

( Di
j

maxi,j(Di
j)

+ Pk)
))

∀i, j|sij ∈ Rk

(1)

Intuitively, a weight is assigned to each revision based on the
distances calculated in the clustering step, and the probability the
revision is a bugfix, determined in the classification step. The smaller
the weight assigned to a revision, the more likely it has introduced
an error when compared to other revisions.

Finally, the revisions are sorted by weights and separated by cluster.
The lists of revisions for each cluster are then merged, with equally-
positioned revisions being assigned an equal rank. This is exampled
as follow, where the revisions in cluster C1 and C2 and ranked in
the unified list C′:



C1 =


R1

R2

R4

. . .

 , C2 =


R1

R3

R4

. . .

 , C′ =


R1

R2, R3

R4

. . .

 (2)

The above methodology has a major shortcoming in that it does
not provide an absolute probability that a revision has inserted an
error. The weight of each revision is relative, and the final ranking
provides no means of determining the distance between the ranks.

D. Logistic Regression

Perceptrons based on logistic regression are equivalent to single-
layered artificial neural networks. For an input X , the output y
follows the general form:

y =
1

1 + e−f(X)
(3)

with f(X) being an analytic function in X . As the function is
continuously differentiable, it can be used for backpropagation (i.e.,
training). In addition to being simple to use, this classifier is chosen
as the output is continuous, allowing for a real-valued probability to
be predicted. While perceptrons based on logistic regression can be
used as multiclass classifiers, for the purposes of this work they are
used as simple binary linear classifiers.

III. PERCEPTRON-BASED REVISION DEBUG

This section presents a novel perceptron-based revision debug
framework using logistic regression [11]. A summary of the flow
is outlined below, followed by detailed explanation of each step.

A. Overall Flow

The overall flow of this methodology is shown in Fig. 2. This
methodology differs from the clustering-based methodology of [4]
in that, at its core, it uses a perceptron to rank revisions rather
than a clustering algorithm. Perceptrons have the advantage of being
extensible with additional features, and can be fine-tuned through
training and adjusting of hyperparameters. The methodology begins
as follows: revisions from the VCS are flattened from the typical
branching format to a one-dimensional list. This allows revisions to
be sent as inputs to the perceptron naturally. This data is merged with
suspects from an automated debugging tool.

Training is performed by manually labeling a collection of the
revisions as being the root cause of a failure (i.e., having inserted
an error into the design) or not. The list of labeled revisions is used
as input to the perceptron. Finally, prediction is performed, returning
the real-valued probability that a revision has inserted an error into
the design.

B. Revision History Formatting

The first step to training the perceptron involves generating a list
of flattened revisions. The branching nature of modern VCSs must
be represented in linear form, in a format suitable to be used as input
to a perceptron. Two methods of flattening the revision history graph
are presented here: a simple revision-to-revision method and a more
involved revision-to-head method. For the latter method, revisions
will retain a diff (i.e., list of changes) to a head, a failing revision.
This allows for a more direct matching to suspects, but can result
in more false positives, in contrast to the former method, as revision
functionality may be masked or deleted over the course of the design’s
history.

For the first method, revision-to-revision, the raw diff of each
revision is acquired. This diff is then parsed to extract the lines
that have been modified, which are tagged to the revision.

Fig. 2. Perceptron-based revision debug flow

The second method involves revision-to-head diff operations. By
modeling the revision history of the design as a graph, a Depth-First
Search (DFS) is performed starting at each head, going backwards
through the revision history. The policy of this DFS is to visit child
branches first, before returning to the parent branch. At each revision
visited, a diff between the revision and the head is generated, which
is then compared to the diff of the previous revision. The difference
between the two sets of lines changed corresponds to the set of lines
changed in the current state of the design by the visited revision.
This is in contrast to the revision-to-revision diffs, which show
how a particular revision affected the previous state of the design.
As before, revisions are tagged with the set of modified lines. For
lines that have been removed from the head, revisions are tagged with
half-lines e.g., if a line(s) between lines 4 and 5 of the head have
been deleted by the visited revision, it is tagged with a line 4.5. An
example input and output of this second method are shown in Fig. 3,
in which a revision history with one branch is flattened into a single
list of revisions.

Regardless of the process used to flatten the revision history, each
revision is additionally tagged with its unique ID, generated from
the VCS. A unique branch ID can be assigned to each branch, and
revisions are similarly tagged with this ID as well. Using information
from the ITS, each branch can be associated with being a bugfix or
not.

Once revisions have been flattened, the labeling process, which
will be used for training, can begin. A selection of failing revisions
throughout the design’s history are designated as heads. Practical
considerations on how heads can be selected are discussed in Sec-
tion III-D. Each head will serve as the root revision from which
previous revisions will be labeled. For each head, a small set of



Fig. 3. Flattening revision history

randomly selected revisions, biased towards more recent revisions,
are labeled as not being the root cause of the failures observed at the
head. Following that, revision(s) that are the root cause(s) are labeled
as such.

At this stage, each revision is tagged with its unique ID, the unique
ID of its branch, a list of modified lines, and whether it is from a
bugfix branch or not.

C. Perceptron Training

In order to train the perceptron, the data gathered from the VCS
and ITS must be combined with results from a SAT-based automated
debugging tool. For each head, selected previously, the debugging
tool is run using the set of failures present, F . For each failure fi in
F , a set of suspects Si is returned, with each suspect sij , 1 < j < |Si|
corresponding to a range of lines in source files. These suspects will
later be matched with revisions, but for now the formatting of input
data to the perceptron will be discussed.

In order for the gathered data to be passed to a perceptron, it must
be formatted as a set of training samples, each with a fixed number
of features. For each head, a random selection of revisions will be
used as a training sample, along with the revisions that are known
to have inserted an error. Each revision will take on the following
features: unique revision ID, unique branch ID, whether it is from
a bugfix branch or not, and finally a mapping between suspects and
the revision.

Revision and branch IDs are positive integers, and can be generated
during the graph traversal of the revision history. The branch bugfix
status is a Boolean value, generated by reading the bugfix status of
the revision’s branch from the ITS.

To format suspect information, they must be matched with lines for
each revision that will be used to train the perceptron. For each head,
each revision Rk is examined. For each revision, the set of changed
lines (either revision-to-revision or revision-to-head) is compared to
the set of suspects gathered for the failures seen at the head. For
each changed line l that matches a with suspect line, the matching

value V k
l incremented. This value represents how closely a changed

line matches with the suspects. Intuitively, if a revision makes a
change at a line that is a suspect, it is more likely to have introduced
an error. When using revision-to-head changes, suspects that match
lines surrounding half-lines increment the matching value of the half-
line. Intuitively, if a revision makes a change close to a line that is
a suspect, it may have introduced an error. The matching value is
incremented at a reduced rate however, as the suspect doesn’t match
the changed line exactly. More formally, this can be expressed as
follows:

V k
l =

∑
sij∈Si

M(l, sij) + fm ·
∑

sij∈Si

m(l, sij)

∀0 < i ≤ |F |
(4)

where M and m are boolean functions that check for exact matching
and half-line matching between changed line c and suspect sij , as
described above, respectively. The constant 0 < fm < 1 reduces the
impact of half-line matching, and can be tuned experimentally.

Now that the relationships between suspects and revisions has been
gathered, they can be formatted to be passed to the perceptron. A
feature is used for each unique pair of {design file, line} that has a
matching count greater than 0 across all training samples.

More formally, the input vector Xk for revision Rk can be
described as the following sparse vector:

Xk =
[
revision id,

branch id,

is bugfix,

{l : V k
l }∀l|k, V k

l > 0.0
] (5)

where revision id and branch id are positive integers correspond-
ing to the unique revision and branch IDs respectively. is bugfix
is a boolean, corresponding to whether the revision is part of a
bugfix branch or not. Finally, each non-zero matching value V k

l for a
changed line l in revision Rk, i.e., each line in a revision that matches
with at least one suspect, is added to the vector.

The output y of the perceptron is a real value in the range [0.0, 1.0],
corresponding to the probability that a revision has inserted an error
into the design. The perceptron is trained by labeling samples that
are the root cause of a failure with y = 1.0, while samples that are
not a root cause are labeled with y = 0.0.

D. Practical Considerations
This methodology has a key benefit over the previous clustering-

based methodology from a practical standpoint: its performance
will improve over time. As more training data becomes available,
the perceptron’s performance is expected to improve. For ongoing
designs with a modern workflow consisting of a VCS and ITS, this
methodology can be easily integrated. As bugfixes are committed, the
source of each bug is known, making it relatively easy to pinpoint
the revision that introduced the error. This allows trivial selection of
heads on which to train: each time the design experiences a failure
which is subsequently fixed, this information can be directly used to
train a perceptron.

IV. PERFORMANCE EXTENSIONS

This section presents extensions to the basic logistic regression
perceptron introduced in Section III, with the goal of improving
classification performance. First, a Support Vector Machine (SVM) is
used instead of logistic regression, allowing for non-linear classifica-
tion through the use of a kernel method. A more advanced method to
measure the proximity of suspects to revision changes is also shown.



A. Support Vector Machine Perceptron

Using an SVM [10] rather than logistic regression allows for non-
linear classification. Intuitively, this means that a perceptron based
on SVM can be trained to classify features that are non-linearly
separable. This is accomplished through the kernel method [12], in
which the features are raised to a higher dimensionality, which can
then be linearly separated. The RBF kernel [13], a non-linear kernel,
is used for this.

While an SVM requires additional tuning of hyperparameters
compared to logistic regression, it can be trained using exactly the
same data set, allowing for a seamless transition between the use of
the two methods.

B. Weighted Distance

Section III-C introduced a basic method of matching suspects with
revisions, in which counters are incremented on exact matches. How-
ever, there are many cases where suspects cannot reliably matched
exactly to changed lines—for example, if a revision deleted a line, it
will not be available at the head. This method uses a decaying weight
factor to match close-by suspects to revisions.

For each changed line l in a revision Rk, its matching value V k
l

is calculated as follows, with constant fe:

V k
l =

∑
sij∈Si

e−fe·Dist(l,sij)

∀0 < i ≤ |F |
(6)

where distance Dist is calculated as the difference between the line
numbers of the changed line l and a suspect sij . If the two lines are
in different files, the distance is considered infinite. The matching
value V k

l is the sum of the distances for all suspects found at the
head, passed through a decaying exponential function. This allows
for suspects that are close to the changes made by a revision, but not
exactly matching, to be accounted for.

V. EXPERIMENTAL RESULTS

This section presents experimental results for the novel perceptron-
based revision debug framework. The clustering-based revision debug
methodology of [4] is compared against variations of the proposed
framework. Experiments are conducted on a workstation with an Intel
Core i5-3570K CPU clocked at 3.40 GHz, with 16 GB of RAM. A
total of nine designs are used, from OpenCores [14] and in-house
development. Revision histories and issues are gathered from design
repositories, which are readily available with the design files. A SAT-
based automated debugging tool based on [3] is used to find suspects
for the failures at each head. The above data is parsed using a Python
platform, which formats it for input to both the clustering-based and
perceptron-based systems.

To generate testcases, errors are injected into the latest golden
version of the design based on a previously fixed error in the design’s
history. The pre-existing testbenches are used to observe failures for
each testcase, whose erroneous response is recorded for use with the
SAT-based automated debugging tool.

Perceptrons, coded in Python, are trained using the above data.
From the data, heads are selected based on previous bugfixes (i.e.,
branches that fix a bug can be used as heads). For each head, the
automated debugging tool is ran, then a random selection of between
5 and 10 previous revisions are selected as samples. This selection
is biased towards more recent revisions. Once all samples have been
selected, additional sample selection passes are ran, with the goal of
selecting additional revisions that cover a variety of changed lines.
This is needed in case the test revisions contain matching lines that

TABLE I
TESTCASE STATISTICS

Design Logic Num. Num. Num. Num.
Elem. Heads Feat. Feat. Rev.

(exact) (weighted)
6507 CPU 9416 42 131 240 259
ethernet 76408 87 574 992 368
HA1588 9152 26 78 236 70
I2C Core 3640 30 394 673 76
pkt. fwd. 40197 91 50 88 177
SD card 38211 54 262 541 137
SDRAM ctrl 18374 13 974 2109 72
tate pairing 106786 9 83 227 33
VGA 109797 15 115 303 64

are not present in any of the initially selected revisions. 2-fold cross-
validation is used to evaluate the performance of the perceptrons.

Table I summarizes design information. The first two columns
show the design name and the total number of logic elements in
the synthesized design. Next, the number of selected heads, followed
by the number of features for each input sample is shown. Feature
count is presented for both the exact matching metric using and
weighted distance metric, using revision-to-head diffs. Finally, the
total number of revisions in the VCS is shown.

Table II compares the ranking results of the clustering-based
approach of [4] and three variations of the perceptron-based approach.
The first column shows the design name. The next two columns show
the ranking of the revision that is used as the injected error base (the
target revision), and runtime in seconds of [4]. The next three sets of
three columns show the revision’s ranking, probability of root cause,
and runtime in seconds for three variations of the novel framework.
First, logistic regression using revision-to-revision diffs, followed
by logistic regression using revision-to-head diffs. Finally, an SVM
is used, with revision-to-head diffs, and the weighted distance
metric shown in Section IV-B.

The benefits of this approach are exemplified across the various
testcases. While the average ranking of the target revisions increases
by an average of 2.83 times, the average runtime decreases by 75%
when comparing the SVM perceptron to clustering. In the case of
6507 CPU, the ranking improves significantly, due to the target
revision being misclassified as a bugfix in the clustering approach.
This increases its assigned weight, resulting in an increased rank.
In the case of ethernet, the relatively large number of training
samples available allows the SVM perceptron to be trained to a
point that it could surpass the clustering-based approach. It can be
generally seen across the table that the SVM perceptron performs
better than the logistic regression perceptron, which is to be expected
as it has superior classification performance for non-linearly separable
features. However, in the case of SDRAM ctrl, the SVM performs
poorly when compared to the logistic regression. This is because of
the weighted distance metric, which causes an increase in the number
of input features. In this case, the increase in input features was not
offset by a sufficient number of training samples, so the classification
performance is lower.

Figure 4 shows learning curves for ethernet, using the SVM
perceptron. The training and cross-validation scores for a varying
number of training samples is plotted. It can be seen that the
cross-validation score increases as the number of training samples
increases, with a minor penalty to the training performance. Of
interest, it can also be seen that the cross-validation score does not
converge close to the training score within the maximum number
of training samples used. This suggests that the perceptron can be
improved if additional training samples are provided. In an industrial
setting, this can be achieved easily by integrating this framework with



TABLE II
REVISION RANKING PERFORMANCE

Design Clustering [4] Logistic Logistic SVM
r2r r2h r2h,weighted

rank time (s) rank y time (s) rank y time (s) rank y time (s)
6507 CPU 41 2.408 14 0.59 0.530 9 0.64 0.562 5 0.79 0.598
ethernet 6 4.726 26 0.63 0.803 12 0.78 0.817 4 0.87 1.109
HA1588 1 1.091 10 0.74 0.615 11 0.72 0.631 7 0.88 0.822
I2C Core 1 2.165 19 0.63 0.718 16 0.67 0.740 3 0.83 0.972
pkt. fwd. 8 1.153 23 0.68 0.449 18 0.65 0.465 13 0.74 0.503
SD card 4 3.217 11 0.82 0.691 15 0.80 0.705 9 0.72 0.806
SDRAM ctrl 2 25.309 16 0.85 1.207 10 0.89 1.214 25 0.51 1.528
tate pairing 4 0.592 12 0.51 0.617 8 0.55 0.664 8 0.60 0.682
VGA 12 1.384 23 0.49 0.612 19 0.53 0.605 16 0.66 0.699

0 200 400 600 800 1000

Training samples

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
c
o
re

Training score

Cross-validation score

Fig. 4. Learning curves for ethernet, using SVM perceptron

a workflow making use of a VCS and ITS, as each new bugfix branch
can be used as an additional head to train the perceptron.

Figure 5 shows the rank of the target revision for the ethernet
testcase for varying matching constant fe, using the SVM percep-
tron with revision-to-head diffs and the weighted distance metric,
against the clustering-based approach’s ranking. In order to limit the
number of features, and overcome the “Curse of Dimensionality” [15]
from negatively affecting the perceptron, matching values below 0.1
are discarded. Intuitively, this means that if a suspect is farther than
a certain threshold from a changed line in a revision, it is ignored.
Ranks closer to 1 are preferred, as the target revision should be
prioritized for manual analysis during coarse-grain debugging. It can
be seen that for very small and large values of fe, the ranking of
the target revision increases. For the former case, this is because the
number of features increases to the point that it is much greater than
the number of training samples. In the latter, the weighted distance
metric degenerates to the exact matching metric, which does not
provide as much information for the perceptron to learn from.

VI. CONCLUSION

This paper introduces a novel revision debug framework based
on logistic regression and SVM perceptrons. This methodology
automatically determines the probability that a given revision has
introduced an error into the design. It has the advantage over previous
clustering-based work in that it is flexible and can be extended
with additional features. Extensive experimental results show that it
remains competitive with the previously mentioned approach, but has
room to improve through additional training. In an industrial context,
this framework can be integrated in the workflow to automatically
generate new training samples at minimal cost.

0.0 0.5 1.0 1.5 2.0

Matching constant

0

20

40

60

80

100

R
a
n
k

clustering

SVM

Fig. 5. Target revision ranking with varying fe for ethernet

REFERENCES

[1] H. Foster, “From volume to velocity: The transforming landscape in
function verification,” in Design Verification Conference, 2011.

[2] ——, “Assertion-based verification: Industry myths to realities (invited
tutorial),” in Intl Conference on Computer-Aided Verification (CAV),
2008, pp. 5–10.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using boolean satisfiability,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst, vol. 24, no. 10, pp. 1606–1621, Oct.
2005.

[4] D. Maksimovic, A. Veneris, and Z. Poulos, “Clustering-based revision
debug in regression verification,” in Computer Design (ICCD), 2015
33rd IEEE International Conference on, Oct 2015.

[5] J. Adler, R. Berryhill, and A. Veneris, “Revision debug with non-linear
version history in regression verification,” in 1st IEEE International
Verification and Security Workshop, July 2016.

[6] Linus Torvalds, “git, Release 2.8.1.” [Online]. Available: https:
//github.com/git/git

[7] Joel Spolsky, “Painless Bug Tracking.” [Online]. Available: http:
//www.joelonsoftware.com/articles/fog0000000029.html

[8] E. Alpaydin, Multilayer Perceptrons. MIT Press, 2014, pp. 640–.
[9] B. J. Frey and D. Dueck, “Clustering by passing messages between

data points,” Science, vol. 315, no. 5814, pp. 972–976, 2007. [Online].
Available: http://science.sciencemag.org/content/315/5814/972

[10] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–
27:27, May 2011. [Online]. Available: http://doi.acm.org.myaccess.
library.utoronto.ca/10.1145/1961189.1961199

[11] D. Freedman, Statistical Models: Theory and Practice. Cambridge
University Press, 2009.

[12] J.-P. Vert, K. Tsuda, and B. Schölkopf, A primer on kernel methods.
Cambridge, MA: MIT Press, 2004.

[13] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The connection between
regularization operators and support vector kernels,” Neural networks,
vol. 11, no. 4, pp. 637–649, 1998.

[14] OpenCores.org, “http://www.opencores.org,” 2007.
[15] C. Bishop, Pattern Recognition and Machine Learning, ser. Information

Science and Statistics. Springer, 2006.


