
Incremental Diagnosis and Correction of Multiple Faults and Errors

Andreas Veneris, J. Brandon Liu, Mandana Amiri
University of Toronto
Department of ECE

Toronto, ON M5S 3G4
{veneris, liuji, amiri}@eecg.utoronto.ca

Magdy S. Abadir
Motorola

7700 W. Parmer
Austin, TX 78729

m.abadir@motorola.com

Abstract

An incremental simulation-based approach to fault diag-
nosis and logic debugging is presented. During each itera-
tion of the algorithm, a single suspicious location is identi-
fied and fault modeled such that the functionality of the new
design becomes “closer” to its specification. The method
is based on a simple and, at a first glance, counter-intuitive
theoretical result along with a number of heuristics which
help avoid the exponential complexity inherent to the prob-
lems. Experiments on multiple design errors and multiple
stuck-at faults confirm its effectiveness and accuracy, which
scales well with increasing number of errors.

1. Introduction

With the transistor size continuing to shrink and the chip
density and complexity to rise, errors and faults are more
likely to occur during chip design and manufacturing. Al-
though testing prevents a malfunctioning product from be-
ing shipped, failure analysis [4] is an equally important pro-
cess as it helps tune the manufacture and/or design cycle
accordingly to improve the product yield. An integral part
of fault analysis is the identification of failing portions of
the chip, known as fault diagnosis. Since the quality of
fault analysis is tightly coupled with the resolution of fault
diagnosis, the research community has shown significant in-
terest in the development of efficient yet accurate fault di-
agnosis algorithms [4] [9] [12] [11].

Design Error Diagnosis and Correction (DEDC) is a
similar problem but it occurs at an earlier stage of the de-
sign cycle. Logic design errors are functional mismatches
between a design (implementation) and a specification [1].
Sources of these errors usually include the human factor,
specification changes and bugs in CAD tools [2]. Formally,
DEDC is defined as follows: given an erroneous design and
a specification we need to identify candidate erroneous lines
(diagnosis) and propose corrections to rectify the design [5]
[6] [7] [10]. These corrections are usually selected from a
design error model, such as the one by Abadir et al. [1].
That model contains ten different types of frequently occur-

ring errors [2] such as gate type replacement, missing in-
verter, missing input wire etc., all of which can be modeled
in terms of stuck-at faults [1].

It is notable that fault diagnosis and DEDC are two sim-
ilar and inherently difficult problems because the space of
suspects grows exponentially with the number of errors:
error space = # lines# errors [10]. Moreover, the
fault/correction space is even larger due to the vast number
of candidate faults and errors (fault/error modeling).

In this work, we propose a simulation-based incremen-
tal approach to multiple fault diagnosis and logic debugging
for combinational and full-scan sequential digital circuits.
Given an erroneous design, its specification and a set of in-
put test vectors V , the method works in an iterative man-
ner. It repeatedly identifies a single candidate error line and
fault/error models this line to bring the behavior of the faulty
device “closer” to the specification.

Here the notion of incremental design rectification is
used for both fault diagnosis and DEDC but in theory it op-
erates in the exact opposite directions. Rectification in the
context of DEDC requires a set of corrections from a design
error model, which make the erroneous netlist behave as the
golden model (specification). Opposite to this process is
fault diagnosis, where a set of lines and faults are identified
and modeled so that the behavior of the correct netlist finally
matches that of the faulty chip. For the sake of simplicity,
in this paper the term “rectification” will refer to the process
where the netlist available is modified to match the behav-
ior of the device which can only be simulated. Also, we will
not distinguish between faults and design errors or between
fault models and corrections unless stated otherwise.

This work differs from previous incremental rectification
approaches in the methodology used to identify the error lo-
cation(s) and correction(s) at every iteration. In more detail,
in subsection 3.2 we prove a theorem that stipulates a lower
bound on the number of failed vectors each “valid” correc-
tion must rectify. This result, along with a number of differ-
ent heuristics, allows efficient exclusion of corrections that
cannot lead to an optimal solution. In practice, it helps avoid
the exponential explosion of the problem. We also show that

during rectification, it may be necessary to consider correc-
tions that do not look optimal locally but have the potential
to lead ultimately to an optimal solution. In addition, unlike
previous approaches, the incremental framework presented
here can handle erroneous designs with any number of er-
rors.

To exhibit the effectiveness of the proposed approach, we
run experiments on designs corrupted with multiple stuck-
at faults or multiple design errors. In both cases, the results
exhibit excellent resolution as the method can fault model
designs within seconds of CPU time while it scales well
with increasing number of errors. In addition, it can re-
turn nearly all possible sets of multiple stuck-at faults that
explain the faulty behavior which, to the best of our knowl-
edge, makes this work the first exact multiple stuck-at fault
diagnosis algorithm. Finally, the algorithm is simple to code
and can tackle additional real-life industrial problems as it
can be easily extended to diagnose erroneous implementa-
tions at different levels of the design cycle (RTL, logic, or
physical), either by devising appropriate error/fault models
or through an efficient mapping algorithm [8].

In the section that follows we give relevant definitions.
Diagnosis, correction and the overall algorithm flow are de-
scribed in Section 3. Experiments on multiple design errors
and multiple stuck-at faults can be found in Section 4 and
Section 5 contains the conclusions.

2. Preliminaries

In this work, we investigate incorrect netlists with logic
NOT, BUFFER, AND, NAND, OR and NOR gates. Although
the algorithm can handle XOR and XNOR gates, we do not
consider them explicitly. Further, we assume that both
the specification and the design are completely simulat-
able. This assumption can be relaxed as discussed in [1].
Throughout our discussion, we say that a line l, fan-in to an
AND or NAND (OR or NOR) gate has controlling value for
input vector v if the value of l is 0 (1). If l drives a NOT or
a BUFFER it always has controlling value. Finally, a line
whose value changes during simulation under the presence
of some fault(s) is called a sensitized line and a path of sen-
sitized lines is called a sensitized path.

Prior to the execution of the algorithm, we simulate a
number of random input test vectors V and create two bit-
lists, V l

err and V l
corr, on every line l in the circuit. The i-th

entry of the V l
err

(V l
corr

) list contains the logic value of l
when we simulate the i-th input test vector from V with er-
roneous (correct) primary output responses. In other words,
| V |=| V l

corr
| + | V l

err
|. These bit-lists are used and

properly updated, as it will be explained, during diagnosis
and correction. Deterministic test generation for the errors
injected is not the subject of this work.

Given a faulty device, the set of corrections that rectify it
can be classified as either actual or equivalent. In our dis-
cussion, we will call any such correction a valid correction.
Finally, in diagnosis we use path–trace, a line marking pro-

cedure developed for fault diagnosis by Venkataraman et al.
[12], similar to critical path tracing. For an erroneous vector
v, path–trace starts from an erroneous primary output for v
and traces backwards toward the primary inputs of the cir-
cuit, while marking lines of interest. Details and examples
of this linear time algorithm can be found in [12]. Its im-
portance to fault diagnosis stems from the fact that it always
marks at least one line from every set of valid corrections
[10].

3. Incremental Rectification

The input to the method is an erroneous design, its speci-
fication and a set of input test vectors V . In our experiments,
we simulate vectors from [3] along with 6,000-10,000 ran-
dom vectors to compile V l

corr
and V l

err
on every line l of

the circuit. The output of the algorithm is a list of lines as-
sociated with valid corrections. Considering the existence
of equivalent corrections, it is evident that an accurate fault
diagnosis algorithm should not only return results that lo-
calize some faulty areas but also the maximum possible set
of (equivalent) fault locations that explain the fault effects.
This is not the case with DEDC where a single set of valid
corrections is sufficient to provide a solution. In subsec-
tion 3.3 we explain how to tailor the method to handle both
cases efficiently.

The algorithm works in an iterative manner. It bases its
operational flow on a decision tree. Every iteration of this
process is represented by a different level in the tree where
different options (decisions) are available. At each iteration,
it identifies a set of lines (diagnosis) and devises a set of
corrections for these lines according to certain parameters
described in the next two subsections. In most of the cases,
each correction helps reduce the number of erroneous pri-
mary outputs for all vectors in V . It should be noted that
the algorithm does not discard intermediate corrections that
may not look attractive. As reported in [7],the number of
erroneous responses does not necessarily increase with the
number of injected errors. We develop heuristics, presented
in subsection 3.2, that prevent the algorithm from deleting
such valid corrections.

It is evident that the global flow of the incremental pro-
cess is crucial for its success. Considering the vast amount
of corrections that can potentially model the error effects at
each iteration, run-time and resolution are greatly affected
by early decisions. If a greedy Depth-First-Search (DFS)
approach is used, a wrong decision at the top level of the tree
may lead to the exploration of a portion of the search space
with no solution. On the other hand, a naive Breadth-First-
Search (BFS) approach may result in excessive computa-
tion. Consequently we use a global flow approach which
is a trade-off between DFS and BFS, described in subsec-
tion 3.3. In the next two subsections, we present the diag-
nosis and correction procedures.

3.1. Diagnosis
The objective of diagnosis is to quickly reduce the er-

ror space and eliminate lines that have no potential to lead
towards an optimal solution. This process is done in two
steps. During the first step, path-trace is executed to mark
suspect lines in the circuit. It has been shown [10], that
path-trace always marks at least one location from every set
of locations where valid corrections exist. Therefore, we al-
low lines that have a high path-trace count to qualify for the
second diagnosis step. During our experiments, we select
the top 15-20% of these lines.

In the second step, for each line l, we invert the logic val-
ues in its V l

err bit-list and propagate this difference through-
out the fan-out cone of l. Recall that V l

err
contains the logic

values of line l for the subset of vectors that activate the er-
rors. Inversion and propagation of all of its values emulate
the maximum effect any modification to this line can have
on the circuit. Once done, we count the number of er-
roneous primary outputs that are rectified and sort all
lines according to these counts (heuristic 1). In a sense,
the suspect lines are ranked by how much correcting poten-
tial they have. During correction, we visit these candidate
lines in decreasing order of the counts. Our experiments
indicate that lines with high counts often lead to valid cor-
rections.
3.2. Correction

A correction attaches a fault/error model to a candidate
line. In the stuck-at fault diagnosis, either a stuck-at-0 or
a stuck-at-1 fault model is used. In DEDC, many of the
ten error models devised by Abadir et al. [1] are attempted.
Although diagnosis reduces the error space rapidly, the abil-
ity to select valid corrections at each iteration can influence
the overall performance dramatically as incorrect decisions
may cause the underlying decision tree to explode exponen-
tially. Further, the selection of such valid corrections is not
an easy task in DEDC considering the vast amount of cor-
rections that can partially model the fault(s) effects.

In this section we present a number of techniques that
guide the correction procedure and avoid exponential ex-
plosion. The following theorem gives a necessary condition
which all valid corrections must satisfy. We use this theo-
rem to screen corrections that cannot lead to an optimal so-
lution. It is surprising, as indicated in our experiments, that
this simple theorem provides a reliable guide to the correc-
tion procedure.

Theorem 1: Let l1, l2, . . . , lN be the set of lines where a
set of valid corrections can be applied and rectify a design.
Let V be a set of input test vectors with failing primary
output responses. Define Vi to be the maximum subset of
vectors from V that produce an erroneous logic value on li
(i.e., excite the error) and propagate this difference to some
primary output(s). The minimum size of Vi that has the
maximum cardinality among all sets V1 . . . VN is no less
than |V |

N
.

The proof of the theorem, which is an application of the
pigeon hole principle, is omitted due to lack of space.

The correction algorithm proceeds as follows. Given an
error location l that qualified, the algorithm exhaustively
compiles a list of corrections from the design error or fault
model as in [6] [10]. From these corrections, we keep the
ones that satisfy both of the following screening tests after
they are applied to the gate driving l:

Screening test on V l
err

vectors: Any qualifying correc-

tion must complement at least |Vl

err
|

N
bits in V l

err
(heuris-

tic 2). This screening test is a direct application of Theo-
rem 1 on the erroneous bit-list of l. This test can be per-
formed efficiently with a single simulation step on the gate
driving l and the fan-ins to that gate. The newly obtained
logic values are then compared to V l

err. Our experiments in-
dicate that this inexpensive simulation step disqualifies the
majority of inappropriate corrections and helps reduce the
size of the correction space significantly.

Since the number of errors N is unknown, in implemen-
tation we follow an aggressive approach in applying this
screening test as we necessitate that a correction comple-
ments a high number of bit entries. We empirically set this
limit to the initial value of 70% and reduce it progressively
when the algorithm returns with no corrections. There are
two reasons that justify such an approach. First, certain
classes of faults and errors, such as gate related errors, are
easier to excite than others such as wire related errors [1]
[5] [10]. For instance, the design error “extra inverter at
the output of a gate G” is excited for every input test vector
(100%) even if this difference is not observed at a primary
output. Similarly, a stuck-at-1 fault at an output of an AND
gate is easier to excite as this gate is expected to have most
of the times the logic value 0. Second, Theorem 1 provides
a conservative lower bound on the size of Vi with the max-
imum cardinality. It does not account for vectors that si-
multaneously excite many errors and, consequently, can be
attributed simultaneously to different Vi sets. For example,
in a design with two missing inverters, the error sites are
excited for every input vector with failing responses.

Screening Test on V l
corr

: Any qualifying correction may
sensitize only a small number of new paths to previously
correct primary outputs (heuristic 3). We elaborate on
the rationale of this heuristic with an example.

G

2

01

1

1

l1
0

err
1l
corr

l
err

Figure 1. Example of Screening on V l
corr

Example 1: Fig. 1 depicts the situation where the effects of
two design errors on lines l1 and l2 sensitize two paths that

merge in gate G with logic values 0 and 1 respectively. Also
assume that this vector v produces correct primary output
responses. It can be seen that in the correct implementation,
l1 produces a logic 1 in the first input of G and l2 produces
a logic 0 in the second input of that gate. Therefore, when
a valid correction is applied to l1, under the presence of the
second error, the logic value at the fan-out of G switches to
1. If a primary output is sensitized to the fan-out of G, v
becomes erroneous. It remains erroneous until a valid cor-
rection is applied to l2 and the fan-out of G switches back
to its correct logic value.

The above example suggests that sometimes we should
qualify corrections that sensitize a new number of erroneous
primary outputs. In our experiments, we require a correc-
tion to create no more than 3-8% new erroneous vectors
on the average. Empirically, this number has been shown
to be sufficiently large to allow valid corrections to qualify
with the only exception of multiple faults introduced into a
NAND-based XOR structure [6]. In this case, as our experi-
ments show, we need to allow for a larger number (15-20%)
of new erroneous vectors to be created ensure success. We
perform the screening test on V l

corr
efficiently through sim-

ulation on the Vcorr bit-lists on the lines in the fan-out cone
of l.

3.3 Algorithm Flow

As explained in the beginning of the previous Section,
the algorithm bases its flow on a decision tree. At every
level of this tree, it computes a set of corrections. It then
ranks these corrections according to criteria described be-
low, and selects a number of corrections to apply in sub-
sequent execution. As indicated earlier, the general flow
of this process has a significant impact on the final perfor-
mance and resolution. To avoid the pitfalls of stand-alone
BFS and DFS the flow of the algorithm works in a way
which can be best described as a BFS/DFS trade-off.

������������

���
�

�������
�

���
�

		

���
�

�
�

������
������
������
������
���

������
������
������
������
���

���

���

������
������
������
������
������
���

������
������
������
������
������
���

������
������
������
������
������
���

������
������
������
������
������
���

���

���

���
�

1

3 42

3 4 4

4

level 2

level 4

ievel 1

level 3

round 3

round 4

Figure 2. Decision Tree and Flow: A BFS/DFS
trade-off

We explain the overall flow with the use of the decision
tree shown in Fig. 2. Every node in this tree indicates a set of
potential corrections—a correction is one error/fault model

applied to a single candidate line—returned by a single iter-
ation of the algorithm; an edge represents the application of
a single (highly-ranked) correction to enter the next execu-
tion level; the level of a node indicates the number of cor-
rections performed on the implementation so far. In other
words, a path in the tree from the root to a leaf represents a
set of corrections that can potentially rectify the implemen-
tation. The cardinality of the set equals to the length of the
path. Instead of visiting nodes in the tree in a strictly BFS
or DFS manner, the algorithm visits them in rounds. During
each round, a single (highly-ranked) correction is selected
from every node currently present. The correction is ap-
plied to obtain a new node in the next level of the tree. The
number of nodes in the tree at most doubles with each round
as the tree grows both in depth and breadth. For example,
the numbers on the nodes in Fig. 2 indicate the round num-
ber in which the node is visited. The experiments show that
this method of traversal overcomes the pitfalls of BFS and
DFS.

In the remainder of this section we elaborate on the pa-
rameters involved with the execution of the algorithm and
the three heuristics presented in subsections 3.1 and 3.2.
On each candidate line under consideration, let h1 indicate
the percentage of erroneous primary outputs rectified dur-
ing heuristic 1; h2 indicate the percentage of bit-entries that
need to be complemented in heuristic 2; and h3 the per-
centage of correct primary outputs required to stay correct
by heuristic 3. Runs of the algorithm initiate with values
h1/h2/h3 = 1/1/1 (single error case) and they are reduced
progressively if it returns with no corrections. As the al-
gorithm moves to diagnose designs with high cardinality of
errors, h1 reduces first before h2 and h3 do since these two
parameters are error independent. For example, a typical
run of the algorithm when the single and double error case
has failed to return results is h1/h2/h3 = 0.3/0.7/0.95,
and followed by h1/h2/h3 = 0.3/0.5/0.85 if it fails to re-
turn a correction. We also set 0.1/0.3/0.5 as a lower limit
for these parameters where the correction is declared as a
leaf with failure and it is no longer attempted.

The corrections returned at level i are ranked according
to the formula:

(1 − Vratio)h3 + Vratioh1

and they are visited in the decreasing order of ranks dur-
ing execution. In this formula, Vratio indicates the percent-
age of vectors with erroneous output responses in V prior to
the correction. The experiments show that this formula pro-
vides excellent guidance to the incremental algorithm. In
all of the cases valid corrections rank in the top 5% in their
respectively node and a solution is found before much of the
decision tree is explored.

4. Experiments
We implemented the algorithm of Section 3 in C lan-

guage and ran it on a SUN Ultra 5 workstation with 128 MB

Table 1: Results on Stuck-At Faults (time in sec.)

ckt ckt 1 fault 2 faults 3 faults 4 faults
name lines # sites time # tuples # sites time # tuples # sites time # tuples # sites time
C499 1265 1.1 0.70 2.8 3.4 0.72 7.3 5.8 0.91 3.3 5.9 29.6
C880 910 2.7 0.18 6.9 4.9 0.21 1 6.1 0.59 9.4 7.3 4.16
C1355 1211 3.7 0.17 2.3 3.0 0.81 4.5 5.5 10.89 9.3 7.3 44.9
C1908 928 1.0 0.98 2.3 3.2 2.76 12.1 6.5 0.85 7.3 6.8 16.7
C2670 1459 2.2 0.69 6.2 5.6 0.44 4.5 5.0 2.33 31.3 9.8 13.8
C3540 2281 1.2 1.96 4.9 4.5 0.67 7.2 6.1 29.72 14.3 8.3 67.6
C5315 3698 1.7 1.57 2.9 3.3 3.06 6.4 5.1 15.93 4.1 6.1 276
C6288 6264 1.1 3.43 2.2 2.8 2.94 5.9 4.7 14.58 1.5 4.5 61.3
C7552 5251 2.7 1.61 5.2 3.9 8.16 13.4 6.2 6.32 9.3 8.3 175
S838 731 2.2 0.16 4.0 3.3 0.35 7.2 5.0 1.80 214.7 15.3 1.01
S953 1082 1.9 0.26 2.6 3.4 0.55 2.3 2.3 13.81 96.1 17.2 49.38
S1196 1246 2.4 0.36 2.7 3.0 0.86 6.8 6.5 3.47 5.5 7.2 16.89
S1494 1421 2.9 0.21 7.0 5.3 0.25 18.9 9.0 1.31 5.3 6.3 17.17
S9234 4640 4.1 0.73 31.3 8.4 0.36 116 12.5 2.89 17.3 10.2 33.87
Average 2.2 4.1 6.2 8.6

of memory for ISCAS’85 and full-scan versions of the IS-
CAS’89 benchmark circuits corrupted by multiple stuck-at
faults and multiple design errors. The locations of the faults
and errors were selected at random. The type of stuck-at
faults was also selected at random while the types of de-
sign errors [1] were selected according to the distribution
presented in [2]. In the following paragraphs we present
and discuss the results. All run–times are in seconds and do
not include the initial random simulation step for V which
is performed only once. However they include the time for
updating the bit-lists at subsequent steps.

4.1. Results on Stuck-at Faults

In order to simulate a realistic diagnosis environment, in
the case of multiple stuck-at faults we first optimize the IS-
CAS’85 and ISCAS’89 circuits for area. Then we inject 1,
2, 3 or 4 faults and run the algorithm exhaustively (i.e. the
search tree is fully traversed) as we are interested in all pos-
sible sets of faulty locations (tuples) and associated stuck-at
faults that explain the faulty behavior of the device. In other
words, we require the algorithm to have an exact perfor-
mance and return the maximum set of minimal-size equiva-
lent stuck-at fault sites that justify the faulty behavior. This
information is the most useful to a test engineer. We ran
10 experiments for each fault case where every experiment
has a different set of randomly injected faults. The average
performance of the algorithm can be found in Table 1.

The first two columns of Table 1 contain the circuit name
and circuit lines, respectively. The next columns contain
the information pertaining to each different fault case: the
number of tuples (pairs, triples, quadruples) returned that
fully account for the faulty behavior (i.e., equivalent fault
classes [12]), the number of distinct lines in all these tuples
the test engineer needs to probe, and the average run-time
required to discover one tuple. Obviously, the number of
tuples and distinct locations coincide for single faults. In all
cases, unless fault masking occurred as described next, the
algorithm always returned a tuple with the actual set of fault
locations.

As a final note, fault masking, that is, the situation where
some stuck-at fault(s) is not observable due to the presence
of others, did not occur for the ISCAS’85 combinational cir-
cuits. This was not the case with the ISCAS’89 sequential
circuits where fault masking occurred in more than 30% of
the cases when 4 faults were injected, on the average. In
these cases, the algorithm returned with triples or pairs that
fully explain the fault behavior.

The average numbers shown in the last row of Table 1
exhibit the excellent resolution and justify the effectiveness
of the proposed incremental diagnosis and fault modeling
approach. In the future, we plan to apply this approach to
other types of physical faults. The advantage of the algo-
rithm lies in the fact that it can be adapted to other faults by
adopting a suitable fault model in the correction stage.
4.2. Results on Design Errors

Table 2 shows the performance of the algorithm for 3 and
4 design errors. To simulate a realistic diagnostic environ-
ment, we use the original versions of all benchmark circuits
that include redundancies (that is, circuit c1908 has 1908
lines, circuit c5315 has 5315 lines etc). These versions are
also the hardest to diagnose and correct. In addition, all er-
rors considered are observable. We ran 10 experiments for
each error case per circuit where each time the types and
locations were selected at random.

The first column of Table 2 contains the circuit name.
Columns 2 and 6 of Table 2 contain the average run–time
for diagnosis in a single execution of the algorithm when
3 and 4 errors are present, respectively. As explained in
subsection 3.1, the purpose of diagnosis is to quickly elim-
inate the candidates that cannot serve as potential error lo-
cations for a valid correction. The CPU times reported in
these columns show that heuristic 1 successfully eliminates
70-90% of these lines in roughly a second. The experimen-
tal results on correction, discussed next, indicate that error
modeling and ranking according to heuristics 1, 2 and 3 also
favors valid corrections.

The average time spent to return and rank the various
corrections at a single execution of the algorithm is listed

Table 2: Results on Design Errors

ckt 3 error time (sec.) 4 error time (sec.)
name diag. corr. nodes total diag. corr. nodes total
C499 0.43 0.44 13.5 11.70 0.43 0.50 25.1 23.35
C880 0.14 0.53 34.9 23.45 0.15 0.57 120.8 87.18
C1355 0.28 0.72 41.0 41.08 0.31 0.86 193.3 226.11
C1908 0.32 1.31 20.6 33.60 0.35 1.38 50.6 88.16
C2670 0.87 0.57 16.2 23.33 0.91 0.62 44.3 67.66
C3540 0.59 2.03 11.8 30.95 0.63 2.26 28.4 82.21
C5315 0.96 3.44 29.9 131.53 1.11 3.80 65.2 320.30
C6288 0.72 3.53 14.5 61.68 0.82 4.21 23.0 115.72
C7552 1.02 8.13 12.2 111.65 1.13 9.16 20.6 212.12
S838 0.11 0.68 7.9 6.27 0.12 0.79 14.0 12.82
S953 0.15 0.55 6.3 4.42 0.17 0.56 11.9 8.81
S1196 0.13 1.14 5.7 7.24 0.16 1.20 10.5 14.32
S1494 0.38 0.49 3.1 2.71 0.41 0.51 8.3 7.65
S9234 1.38 10.03 31.4 358.34 1.52 10.81 55.7 686.93

in columns 3 and 7. The next columns (columns 4 and 8)
contain the average total number of algorithm executions
for each error case, that is, the average number of nodes in
the final tree of Fig. 2. Consider this tree, the leftmost path
in any subtree consists of corrections ranked the highest in
their respective node. So the first possible solution triple is
found in a tree with 3 nodes (i.e. completed half the way
through the 3rd round) and the second possible one in a tree
with 6 nodes (i.e. completed half the way through the 4th
round). In most cases, the algorithm completes in under 6
rounds with a maximum of 32 nodes. In other words, the
first valid correction tuple is often found after exploring the
first several leftmost paths of the decision tree. So a simple
DFS approach will suffice for most of the cases. However,
circuits c1355 and c880 often require 9 rounds, which al-
lows a maximum of 256 nodes to be explored. Due to the
large number of equivalent corrections, the first set of cor-
rection does not always contain the introduced errors.

The number of corrections returned during a single exe-
cution varies from 1 (the original) to a few thousand. Con-
sidering the huge amount of potential corrections at each
step, these numbers indicate that heuristics 2 and 3 provide
accurate error modeling resolution. They also favor the cor-
rection ranking of subsection 3.3 as it gives good guidance
to the incremental algorithm flow. The total run–time to re-
turn a valid set of corrections is the product of columns 4
and 8 with the average single execution time of the algo-
rithm and it can be found in the next columns. These num-
bers demonstrate the robustness of this approach, which can
rectify benchmarks such as the 16-bit multiplier C6288, a
traditionally hard to diagnose and correct circuit in the pres-
ence of many errors, in a few minutes of CPU time.

All in all, the results presented here support the effective-
ness of an incremental approach and they confirm the poten-
tial of the underlying theory. Although experiments are per-
formed on combinational and full-scan sequential circuits,
the algorithm can be adapted to the diagnosis and correc-

tion of sequential circuits through time-frame expansion. It
is also observed, as Theorem 1 suggests, that the method is
heavily biased towards errors with high excitation measures.
In other words, the method is more likely to perform well
in the situations where the design is corrupted with errors
that are easy to excite (even if they are not observable to the
primary outputs) and their Vi sets (Theorem 1) overlap. It is
among our future plans to further experiment and measure
the parameters involved with these heuristics so that we can
improve on the overall performance.

5. Conclusions
We presented a simulation-based method for diagnos-

ing and fault modeling of physical faults and errors. The
method rectifies the design through a sequence of interleav-
ing diagnosis and correction steps that bring it “closer” to
its specification. Experiments on multiple stuck-at faults
and design errors are used to demonstrate its effectiveness.
In the future we plan to investigate the application of this
methodology to diagnosis of other physical faults and ex-
periment with partial-scan devices.

References

[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic veri-
fication via test generation. IEEE Trans. CAD, 7:138–148,
January 1988.

[2] D. V. Campenhout, J. P. Hayes, and T. Mudge. Collection
and analysis of microprocessor design errors. IEEE Design
and Test of Computers, pages 51–60, Oct.-Dec. 2000.

[3] I. Hamzaoglu and J. H. Patel. New techniques for determin-
istic test pattern generation. Proc. IEEE VTS, pages 138–
148, 1998.

[4] S. Y. Huang. Towards the logic defect diagnosis for partial-
scan designs. Proc. IEEE ASP-DAC, pages 313–318, 2001.

[5] S. Y. Huang and K. T. Cheng. Errortracer: Design error
diagnosis based on fault simulation techniques. IEEE Trans.
CAD, 18(9):1341–1352, September 1999.

[6] D. Nayak and D. M. H. Walker. Simulation-based error diag-
nosis and correction in combinational digital circuits. Proc.
IEEE VTS, pages 70–78, 1999.

[7] I. Pomeranz and S. M. Reddy. On correction of multiple de-
sign errors. IEEE Trans. CAD, 14:255–264, February 1995.

[8] S. Ravi, I. Ghosh, V. Boppana, and N. K. Jha. A technique
for identifying rtl and gate-level correspondences. Interna-
tional Conf. on Computer Design, pages 591–594, Septem-
ber 2000.

[9] H. Takahashi, K. O. Boateng, and Y. Takamatsu. A new
method for diagnosing multiple stuck-at faults using mul-
tiple and single fault simulations. Proc. IEEE VTS, pages
64–69, 1999.

[10] A. Veneris and I. N. Hajj. Design error diagnosis and
correction via test vector simulation. IEEE Trans. CAD,
18(12):1803–1816, December 1999.

[11] S. Venkataraman and S. B. Drummonds. Poirot: Applica-
tions of a logic fault diagnosis tool. IEEE Design and Test
of Computers, pages 19–30, Jan.-Feb. 2001.

[12] S. Venkataraman and W. K. Fuchs. A deductive technique
for diagnosis of bridging faults. Proc. IEEE ICCAD, pages
562–567, 1997.

