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Abstract

Fault equivalence is an essential concept in digital VLSI de-
sign with significance in many different areas such as diag-
nosis, diagnostic ATPG, testability analysis and synthesis. In
this paper, an efficient procedure to compute exact fault equiv-
alence classes of combinational circuits is described. The pro-
cedure consists of two steps. The first step performs structural
fault collapsing and uses fault simulation to return an approxi-
mation of the fault equivalent classes. The second step refines
these classes with ATPG. Experiments on ISCAS’85 and full-
scan ISCAS’89 circuits demonstrate its efficiency.
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1 Introduction

Computing the complete set of fault equivalence classes is a
classical problem in the field of digital VLSI circuit design [1]
[2]. Two stuck-at faults are functionally equivalent (or indis-
tinguishable) if no input test vector can distinguish between
them at the primary outputs of the circuit. Therefore, func-
tional fault equivalence is a relation that allows all stuck-at
faults in a circuit to be collapsed into sets of disjoint fault
equivalence classes. In this work, the term fault indicates a
stuck-at fault, unless otherwise stated.

There are many reasons why fault equivalence classes are
important knowledge to a VLSI designer. An important use
is in diagnostic test generation. Since all faults in the same
equivalence class can be detected by the same vector, a priori
knowledge of equivalence of two faults may save consider-
able computation in the relatively expensive step of diagnostic
test generation [3] [6]. Fault diagnosis also benefits from this
knowledge. The effectiveness of diagnosis depends on its res-
olution, that is, its ability to identify a small set of lines that
contain the fault(s) [19]. The shorter the fault list, the better
for the test engineer who will probe the circuit to search for
the source of failure. Fault equivalence may jeopardize reso-
lution and misguide this search. Hence, prior knowledge of
fault equivalence may help improve the diagnostic results by
either building accurate fault dictionaries [10] or by reducing
the candidates returned by effect-cause algorithms [19].

Another use of fault equivalence is in the field of testabil-
ity analysis. By definition, each vector that detects a fault in
some equivalence class is guaranteed to detect all faults in the
same class since the detectability of the faults (that is, the set
of test vectors that detect them) is the same. In turn, this in-
formation can be used by testability enhancement measures
such as observation point and control point calculations [1]
[2] [15] [17]. Finally, fault equivalence is important in logic
optimization. Some existing tools optimize a design through
an iterative sequence of appropriate logic rewiring transfor-
mations that delete/add some logic to reduce power, increase
performance etc [4] [5] [18]. These design rewiring methods
usually model logic transformations using stuck-at faults. It
has been shown [18], logic addition/deletion is possible if the
underlying faults that model these transformations are equiv-
alent. Therefore, knowledge of fault equivalence classes may
help develop efficient design rewiring algorithms.

Methods to compute fault equivalence are classified as
structural and functional methods [1] [2]. Structural methods
operate on the circuit graph to identify a subset of the com-
plete classes. These methods are fast but they have pessimistic
results since they operate in fan-out free circuit regions only.
Functional fault equivalence methods are more expensive but
they identify more classes [3] [11]. These methods use logic
implications to prove equivalence. Since they do not use all
implications, they may not return the complete set of classes.

In this work we describe an efficient functional equivalence
method that computes the complete set of equivalence classes.
The approach is easy to implement, general to apply to other
fault types since it models a stuck-at fault and operates as fol-
lows. Initially, structural fault collapsing reduces the size of
the fault list. Parallel Vector Simulation (PVS) follows for the
faults that remain. This procedure returns a set of classes that
contain faults that are equivalent only for the test vectors used
by PVS. Next, for each class returned by PVS, the algorithm
examines each fault pair for equivalence using a novel ATPG-
based formal fault equivalence process. This step is motivated
by previous efforts of the authors in design rewiring [18]. Ex-
periments presented here demonstrate the efficiency of the ap-
proach and suggest different computational trade-offs. They
also motivate for future work in the area.

Section 2 presents the two steps of the proposed functional



fault collapsing algorithm. Section 3 present experiments and
Section 4 concludes this work.

2 Equivalent Fault Identification

In our implementation, identifying equivalent faults is per-
formed in two steps. In the first step, an approximation of
fault equivalence classes is computed with the use of structural
fault collapsing and simulation. The classes are further refined
through a formal procedure that employs ATPG. In this Sec-
tion, we describe each step in detail.

The initial action of the first step is to perform structural
fault collapsing to quickly reduce the set of faults that need to
be considered. Currently, our implementation works along the
lines of the structural fault collapsing procedure described in
[1]. In the future, we intend to use more advanced structural
fault collapsing techniques such as the one described in [12].

The faults that remain at the end of fault collapsing are also
the ones that are examined for fault equivalence by Parallel
Vector Simulation (PVS). PVS is a simulation-based procedure
that classifies these faults into equivalence classes that respect
a given input test vector set T . In other words, PVS identi-
fies two faults fA and fB as equivalent if and only if fA and
fB give the exact same primary output responses for all test
vectors in T .

Pseudocode for PVS is given in Fig. 1. The input to PVS
is a circuit C, the collapsed set of faults F and a set of input
test vectors T . In experiments, T is a relatively small set of
100-1000 test vectors. This set of vectors consists of random
vectors and vectors for stuck-at faults from [7] since a fault
detection set is usually available at early stages of the design
cycle [14]. As we explain in the next few paragraphs, T is im-
portant for the quality of results returned by PVS. We discuss
such trade-offs and performance characteristics in Section 3.
The output of PVS is a set of fault classes F1 . . . Fn such that
two faults fa and fb are in the same class Fi if and only if they
have the exact same responses for all vectors in T .

The first step of PVS is to simulate (in parallel) all test vec-
tors in T and create an indexed bit-list on every line l in the
circuit as in [19] (Fig. 1, line (1)). The i-th entry of this bit-list
for l contains the logic value of l when the i-th input test vec-
tor is simulated. Since the test set contains only well defined
logic values (0 and 1), these bit-lists are conveniently stored
as arrays of single 32-bit unsigned long int values.

Next, for every stuck-at v fault f ∈ F on line l, value v is
injected on l and simulated at the fan-out cone of l. The new
primary output bit-lists are treated as integers added to pro-
duce the signature of fault f for test set T (lines 2-6). Once
the algorithm computes the signature of f , bit-list values are
restored at the fan-out cone of l in line 7. This process is re-
peated for every fault in F . Finally, faults that have the exact
same signatures are grouped together in line 8 and PVS termi-
nates.

PVS receives a set of faults F and computes fault equiv-
alence classes F1, F2, . . . Fn that respect only test vector set

Parallel_Vector_Simulation(C, F, T)

(1) Simulate test vectors in T and create
indexed bit-lists at every circuit line

(2) For every fault f s-a-v on line l do
(3) fault_signature=0
(4) set bit-list of l to value v
(5) simulate at fan-out cone of l
(6) update fault_signature
(7) restore bit-lists at fan-out cone of l
(8) Group faults with same signatures together

into classes F_1 ... F_n

Figure 1: Parallel vector Simulation (PVS)

T . By construction, these classes are an overestimation of the
final classes, i.e., there may exist faults in the same class Fi

that are not functional equivalent but it will never be the case
that two equivalent faults are placed in different classes. This
is because PVS bases its results on a small subset of the com-
plete input test vector space and two faults that are not equiv-
alent may have the exact same responses for the test vector set
T simply because this set does not contain any distinguishing
vectors for these faults. However, faults placed in different
classes Fi and Fj are guaranteed not to be equivalent since a
distinguished vector already exists in T .

PVS is a very fast procedure since it uses a single simulation
step at the fan out cone of the fault under consideration. Given
two faults fA and fB both in Fi, step two uses ATPG to prove
formally whether these faults are equivalent or not. The mo-
tivation behind this step originates from our previous work in
design rewiring for logic optimization [18] where logic trans-
formations are modeled in terms of stuck-at faults. We present
the underlying intuition and the proposed construction with an
example. We refer the reader to [18] for further details.

Example 1: Consider the circuit in Fig. 2(a), taken from [12],
and faults fA = I2 → G1 s-a-1 and fB = G2 → G4 s-a-1.
Suppose these two faults are placed in the same class Fi by
PVS, hence there is high confidence they are equivalent. To
formally prove their equivalence, the second step of the algo-
rithm places two multiplexers, shown as boxes in Fig. 2(b),
with a common select line S. The 0-input to the first multi-
plexer is line G2 and the 1-input of that multiplexer is a con-
stant value of 1 that represent the presense of a s-a-1 fault.
Similarly, the 0-input of the second multiplexer is a constant
1 while a branch from I2 feeds the other input. In both cases,
the output of each multiplexer connects to the original output
of the circuitry.

The reader can verify that when S = 0, we operate on a
circuit equivalent to the one in Fig. 2(a) under the presence of
fA and when S = 1 we operate on a circuit equivalent to the
one in Fig. 2(a) under the presense of fB . Therefore, if ATPG
for select line S s-a-0 (or, equivalently, s-a-1) returns that the
fault is redundant, the two circuits are functional equivalent
under the presense of each fault independently which, in turn,
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Figure 2: Circuit for Example 1

implies that (fA, fB) is an equivalent fault pair [18]. If the
fault on S is not redundant, then stuck at faults fA and fB

alter the functionality of the circuit in Fig. 2(a) differently and
they are not equivalent. In this particular example, the stuck-at
fault on S is redundant and (fA, fB) are indeed equivalent.

Example 2: Consider again circuit in Fig. 2(a) and faults on
lines f ′

A = I2 → G1 and f ′

B = G2 → G4 this time both
stuck in logic 0. To check whether these new faults are equiv-
alent, we need perform a similar multiplexer construction as in
Fig. 2(b) with the difference that a logic 0 is placed on the ap-
propriate multiplexer input to indicate a stuck-at-0 fault. This
construction is shown in Fig. 2(c) and ATPG on common select
line S s-a-0 returns test vector (I1, I2) = (0, 0). This proves
that the fault on S is not redundant and faults f ′

A and f ′

B are
not equivalent. This is true since the test vector returned is a
vector that detects fault f ′

B but does not even excite fault f ′

A.

Fig. 3 contains pseudocode for the second step. For each
class Fi (i = 1 . . . n), a representative f is randomly selected.
For each other member f ′

∈ Fi, we perform the construction
from Example 1 to check whether f and f ′ are equivalent or
not (lines 4-5). If they are not equivalent, f ′ (and all other such
non-equivalent faults from Fi) is placed in new class Fn+1

(lines 6-8) which will be examined later. Observe, that any

such fault is guaranteed not to be equivalent with any class
F1 . . . Fi−1Fi+1 . . . Fn by PVS. Additionally, faults placed in
Fn+1 may not be equivalent which implies that the algorithm
will decompose this class in new classes when it examines it.

Formal_Fault_Equivalence(C, F_1, ..., F_n)

( 1) flag=0
( 2) for i=1 to n do
( 3) randomly select f from F_i
( 4) for every f’ in Fi do
( 5) perform the MUX construction
( 6) if f’ not equivalent to f do
( 7) flag=1
( 8) place f’ in F_n+1
( 9) if flag=1
(10) flag=0
(11) n=n+1

Figure 3: Proving Fault Equivalence with ATPG

The set of classes returned upon termination of the algorithm
are also the exact fault equivalence classes for circuit C and
fault set F .

3 Experiments

We implemented the algorithm outlined in Section 2 in C and
ran it on an Ultra 5 SUN workstation with 128 Mb of memory.
We tested the approach on ISCAS’85 combinational and full-
scan ISCAS’89 sequential benchmark circuits optimized for
area using script.rugged in SIS [16]. The details of the
ATPG engine we employed can be found in [8].

In some experiments we use a complete test vector set for
stuck-at faults (ATOM vectors) derived by [7]. This set usually
contains less than 200 test vectors and it has a very high fault
coverage. We report the average number of the experiments in
the next few pages. All run-times are in seconds.

Table 1 contains information on the performance of the al-
gorithm and statistics on the different fault classes. The first
column of the table shows the circuit name and the second
column contains the total number of stuck-at faults for each
circuit. The total number of stuck-at faults is roughly twice
the number of lines, including branches, as we avoid injecting
faults at primary inputs and outputs. The third column of the
table shows the faults after structural fault collapsing. This is
also the number of faults input to the two-step algorithm pro-
posed in Section 2. To perform structural fault collapsing, we
use the simple method described in [1]. In the future, we in-
tend to use additional structural fault collapsing engines such
as the ones described in [3][12] to further reduce the number
of faults to be considered. This is expected to improve perfor-
mance of the formal fault equivalence proving algorithm.

Columns 4–7 of Table 1 contain information that pertain to
PVS. In more detail, they show the number of distinct fault
classes upon termination of PVS.



Table 1: Results and Statistics

ckt # of faults # of fault classes after PVS # fault # final % of PVS ATPG Total
name initial after ATOM ATOM and 500 1000 pairs fault error time time time

faults collaps. vectors 500 random random random checked classes (sec) (sec) (sec)
c432 810 431 383 429 425 430 1 431 0.2 2.4 0.01 2.4
c499 2434 1314 901 1076 1027 1092 231 1154 5.4 21.5 12.8 34.4
c880 1778 948 863 895 859 874 154 909 3.8 4.6 3.2 7.8
c1355 2412 1302 1046 1088 1010 1079 233 1142 5.5 17.6 16.6 34.2
c1908 1802 975 714 748 684 767 561 859 10.7 10.6 37.1 47.7
c2670 3264 1753 1193 1232 1212 1237 24812 1521 18.7 10.1 956.8 967.0
c3540 4520 2398 1425 1566 1559 1598 17828 1861 14.1 175.0 400.7 575.7
c5315 7148 3849 3019 3454 3430 3465 742 3615 4.1 45.6 58.1 103.7
c6288 14314 7489 6403 6603 6599 6603 913 6981 5.4 58.7 51.0 109.8
c7552 10308 5541 4292 4386 4285 4378 44055 4988 12.2 71.8 6796.9 6868.7
s820 1484 783 565 673 640 682 783 767 11.1 1.8 6.3 8.1
s1196 2428 1269 853 1008 976 1044 6180 1232 15.2 4.5 84.7 89.3
s1238 2282 1210 756 947 914 972 10362 1185 17.9 6.3 225.2 231.5
s1494 2792 1464 1141 1319 1291 1353 489 1459 7.2 4.6 5.3 9.9
s5378 6258 3452 2338 2625 2289 2655 21592 3186 16.6 25.3 391.3 416.7
s35932 49160 27746 24223 24429 24428 24429 2742 24813 1.5 1564.7 389.8 1954.5

We compute this quantity for four different cases with respect
to the test vector set used by PVS: (i) ATOM vectors, (ii)
ATOM vectors and 500 random vectors, (iii) 500 random vec-
tors, and (iv) 1000 random vectors. Intuitively, the more vec-
tors we simulate the more accurate results we expect in terms
of number of classes, as discussed earlier in the paper.

A close examination of these numbers indicates that a rela-
tively small set of random vectors (case (iv)) gives sufficient
resolution. We observe, in most cases, random simulation
alone outperforms case (ii) and there is little to gain by us-
ing a pre-computed set of test vectors. Therefore, we use the
classes from case (iv) as input to the second step. This result
is also confirmed if we examine the exact set of fault classes
computed by ATPG, as discussed in the paragraphs that follow.

Columns 8 and 9 show the number of fault pairs checked by
ATPG and the final number of fault classes after formal fault
equivalence, respectively. The relative error between PVS
(Step 1), a simulation-based process, and ATPG (Step 2), a
formal proving engine, is found in column 10. It is seen that
in many cases the relative error is rather small (less than 10%)
and it is expected to improve if more advanced structural fault
collapsing methods are employed. To appreciate this result,
one need consider the CPU time dedicated to each task alone
(Steps 1 and 2), shown in columns 11 and 12. As expected,
ATPG time dominates that of PVS which suggests that one
may afford a small relative error in computing fault classes as
a trade-off for run-time efficiency. The last column of Table 1
contains the total time for both steps.

The time for ATPG in Step 2 can be large because the algo-
rithm checks exhaustively every pair of faults in each class. It
follows that the less faults per class for a circuit after PVS,
the less time ATPG is expected to consume. This circuit-
dependent property is depicted for four benchmarks in Fig. 4.
In that figure, there are two graphs for each circuit.

The graph on the left depicts the percentage of fault pairs ver-
sus the time allocated by ATPG to formally check their equiv-
alence (Step 2). In this graph, fault pairs are classified in
five categories (A . . . E) according to the time ATPG needs
to prove their equivalence via the multiplexer construction.
The graph on the right contains statistics on the number of
groups returned at the end of the method versus the size of
these groups (not including groups of size 1). We observe that
for most circuits fault equivalence favors small groups of size
two. We also observe that in most cases, ATPG is very ef-
ficient in proving fault equivalence as the majority of faults
need times that are less than 0.05 seconds (categories A, B and
C).

4 Conclusions

Fault equivalence is an important problem in digital VLSI
circuits. In this paper, we presented a formal fault equiva-
lence method which uses simulation-based and ATPG-based
techniques to return the exact and complete fault equivalence
classes. Experiments demonstrate its robustness and effective-
ness. In the future, we intend to refine this method with more
advanced structural equivalent fault collapsing methods and
improve performance. We also plan to apply ideas presented
here to diagnostic ATPG.
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Figure 4: Distribution of Fault Classes and ATPG Time


