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ABSTRACT
As timing requirements in today’s advanced VLSI designs
become more aggressive, the need for automated tools to
diagnose timing failures increases. This work presents two
such algorithms capable of diagnosing multiple delay faults.
One method uses multiple transition fault models and the
other reasons with ternary logic values, thus achieving model-
independent diagnosis. Experiments are conducted on IS-
CAS’85 combinational and full-scan version of ISCAS’89 se-
quential circuits corrupted with multiple transition faults.
The performance of both algorithms are evaluated and com-
pared. The results show good efficiency and diagnostic res-
olution.

1. INTRODUCTION
Advances in today’s VLSI technology poses stringent re-

quirements on the timing of modern designs. Due to their
complexity and aggressive clocking strategies, designs that
function properly at low clock frequencies may fail at the
rated speed [1, 4]. Accurate diagnosis of delay faults is an
important problem faced by the industry. Direct probing
mechanisms such as E-Beam probing are slow and expen-
sive. Automated diagnosis tools are needed to reduce the
search space for physical probing.

Much work has been done on delay fault testing. A com-
prehensive review can be found in [4]. Comparatively less
work has been done on delay fault diagnosis. Most of it deals
with single delay faults [7, 10]. Dastidar and Touba [3] de-
scribe a diagnostic algorithm based on critical path-tracing
under six value algrebra. Their work can handle multiple
delay faults by computing the union of suspect fault paths
of single ones.

In this work, we describe two algorithms for multiple de-
lay (transition) fault diagnosis under an incremental frame-
work. They are effect-cause simulation based approaches
that achieve good diagnostic resolution even in the absence
of device timing information. Furthermore, the diagnosis is
conducted purely upon logic simulation information.

The main contributions of this paper are:
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1. It devises a modeled incremental diagnosis algorithm
for multiple transition faults.

2. It develops theory to guarantee the capture of all tran-
sition faults while efficiently pruning the diagnostic
space.

3. It describes a complementary model-free diagnosis al-
gorithm.

4. It evaluates and compares the efficiency of the two
methods by experiments.

The experimental results on ISCAS’85 and full-scan ver-
sions of the ISCAS’89 benchmark circuits demonstrate the
effectiveness and resolution of the proposed algorithms.

The remaining of the paper is organized as follows. In
Section 2, we describe a diagnostic algorithm based on tran-
sition fault models. Section 3 briefly describes a model-free
algorithm based on ternary logic simulation. The experi-
mental results are presented in Section 4. Finally, Section 5
concludes this work.

2. DIAGNOSIS WITH TRANSITION FAULT
MODEL

The diagnosis methodology is formulated under an incre-
mental framework, which has been experimentally shown
to be well suited for identifying multiple faults/errors in
past work [5, 12]. During incremental diagnosis, the al-
gorithm iteratively identifies suspect faulty locations one at
a time. Upon the discovery of each location, it selects a
suitable fault/error model which brings the logic behavior
of the faulty circuit and its specification closer. Subsequent
diagnostic runs are conducted on the resulting circuit(s).
Figure 1 outlines its overall flow.

In this work, a transition fault model is used in the fault
injection step. The transition fault model utilized is a com-
mon delay fault model. Two transition faults are associated
with each gate: a slow-to-rise fault and a slow-to-fall fault.
It is assumed that in the fault-free circuit each gate has some
nominal delay. Under the transition fault model, the extra
delay caused by the fault is assumed to be large enough to
prevent the transition from reaching any primary output at
the time of observation. In other words, the delay fault can
be observed independently of whether the transition propa-
gates through a long or a short path to any primary output.
Therefore, this model is also called the gross delay fault
model [8]. It should be noted, the topic of path delay fault
diagnosis [6] is not treated here.

Other popular fault models include gate delay model and
path delay model. A gate delay fault model assumes that



the delay fault is lumped at one gate in the circuit. How-
ever, unlike the transition model, the gate delay fault model
does not assume that the increased delay will affect the per-
formance independent of the propagation path through the
fault site. It is assumed that long paths through the fault
site might cause performance degradation. Since timing in-
formation is not used in this work, performance degradation
cannot be measured.

Under the path delay fault model a combinational circuit
is considered faulty if the delay of any of its paths exceeds a
specific limit. A delay defect on a path can be observed by
propagating a transition through the path [9]. In the context
of binary logic simulation, multiple transition faults can be
used to model path delay faults. Because timing information
is not used during diagnosis, the only observable faulty effect
is the failure in achieving a transition. Logic behavior of
single or multiple path delay faults can be emulated by the
appropriate placement of these transition faults.

Our algorithm accepts a gate-level specification and the
logic behavior of a faulty chip, and produces a list of probing
sites for test engineers. An example is used to illustrate the
diagnosis approach and annotate the proper theory which
follows the four steps of the paradigm (loop) shown in Fig-
ure 1. Throughout this example, a line is identified by the
name of the gate that drives it. Further, we refer to a line
under consideration by diagnosis as a suspect line. Any set
of lines returned by diagnosis is called a candidate tuple.

Figure 2 (a) contains a circuit with a slow-to-fall (STF)
and a slow-to-rise (STR) fault located on lines G8 and G9

respectively. To detect a transition fault in a combinational
circuit it is necessary to apply two input vectors, V =<

V1, V2 >. The first vector, V1, initializes the circuit, while
the second vector, V2, activates the fault and propagates its
effect to some primary output. Fault diagnosis occurs after
the chip fails for some test vector stimuli. In the figure, each
line also carries one simulated fault-free/faulty vector pair
[1]. For instance, the values on line O1 in Figure 2 (a) mean
that in a fault-free simulation, a 0 to 1 transition should
occur. However, this transition did not occur in the faulty
chip.

In this example, it is seen that both primary outputs are
erroneous. Recall that in fault diagnosis, faulty values are
the “desired behavior” we try to capture by injecting fault
models at appropriate locations in our netlist. Note that
the internal values of the faulty chip are not visible to the
algorithm.

The algorithm starts with the good circuit simulation val-
ues (Figure 2 (b)). It performs path-trace [1] to quickly
grade the lines in the circuit. Path-trace works as follows.
It starts from an Erroneous Primary Output (EPO) and
pessimistically marks lines (non primary inputs) that may
belong to a sensitized path (i.e. a path of lines with differ-
ent logic values under the influence of some fault(s)). If the
output of a gate has been marked and the gate has one or
more fan-in(s) with controlling values, then the procedure
marks all controlling fan-ins; if the gate contains no fan-ins
with controlling values, then they all are marked; if a branch
is marked, then stem also gets marked. Note that multiple
marking is possible.

In Figure 2 (b), path-trace marks lines with ∗. It only
reasons with vector V 2 because this is the vector that ex-
cites the fault. Path-trace is conducted for multiple vectors.
A line is considered permanently marked if it is marked by
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Figure 1: Algorithm flow.

path-trace and a transition occurs. The lines that are per-
manently marked are compiled into a list. This list is sorted
by how many times the line is marked.

This list is further shortened by the following theorem:

Theorem: In a circuit corrupted with N faults, suppose
path-trace is conducted over V vector pairs that detect at
least one fault. Then there is one wire that is permanently

marked at least |V |
N

times.

Proof: It has been shown that each application of path-
trace marks at least one detected member from the actual
and each equivalent solution set [11]. In other words, at
least one of the N members from the actual fault tuple is
permanently marked each time. Because there are V vectors
and each vector has at least one EPO, one of the members
from the actual tuple has to be permanently marked at least
|V |
N

times by the Pigeon Hole Principle. �

In practice, many wires qualify as this theorem only stip-
ulates a requirement. So the candidate list in each iteration
is ranked by the number of times a wire is permanently
marked.

In Figure 2 (b), G9 is marked twice for the same vector.
Hence, it is chosen as a top candidate. The algorithm ex-
amines the transition in the fault-free simulation. Since a
rising transition is observed, it injects a slow-to-rise fault on
G9. For multiple failing vectors, the algorithm uses the the-
orem based on the number of rises and falls to decide which
transition fault to inject. Next, the fanout cone is simulated
as shown in Figure 2(c). Notice that the faulty effect prop-
agates to O2, which now has the same faulty value as in
(a).

This concludes one iteration of the incremental diagnosis
(Figure 1). Since not all outputs match, another iteration is
called. Path-trace is executed again (Figure 2 (c)), this time
using the injected fault informaiton as well. As a result, only
lines G8 and G16 get marked. G8 is chosen and a slow-to-
fall fault is injected at that location (Figure 2 (d)). Now
the primary output matches that of the faulty circuit. The
algorithm concludes and returns {G8, G9} as a candidate
tuple.

This example, though illustrative of the conceptual ap-
proach, represents a simplified scenario. In a realistic diag-
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Figure 2: Diagnosis of two transition faults.

nosis environment, structural circuit complexity often makes
the accurate ranking of suspect lines difficult. Consequently,
the truly faulty lines do not often rank at the top of the list.
To improve the search process, the algorithm maintains a
search-tree data structure, similar to that in [5, 12], to pre-
serve intermediate information while pruning the diagnosis
space.
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Figure 3: Example of model-free diagnosis.

3. MODEL-FREE ALGORITHM
The model-free algorithm also follows the incremental di-

agnosis framework from Figure 1. It differs from the mod-
eled approach in that it discovers faults without relying on
any specific fault models. Instead, it reasons with ternary
logic and the effect of inverting local logic values upon the
primary outputs. The model-free approach has the follow-
ing advantages: 1) the accuracy of the diagnosis algorithm
does not depend on the validity of the fault model; 2) it can
capture any unmodeled effects that defects have on the logic
behavior; 3) it reduces the fault modeling space; 4) it can be
easily applied to diagnosis of any type of fault. To achieve
these advantages, this approach moderately sacrifices on di-
agnostic resolution.

The model-free algorithm proceeds in two independent
phases [5] as illustrated in Firgure 3. The first phase per-
forms incremental diagnosis by simulating logic unknown
values on single lines to capture all possible fault effects [2].
This phase generates a somewhat pessimistic list of candi-
date tuples that may explain the erroneous circuit behavior.
The second phase takes this list and conducts simulations of
all combinations of logic values for the faulty scenarios for
each tuple. Their ability to change primary output values is

used as a criterion to reduce the length of the candidate list
which is returned by diagnosis.

4. EXPERIMENTS
We run experiments on ISCAS’85 and on full-scan ver-

sions of ISCAS’89 circuits. For every circuit, we perform
three sets of twenty experiments. Two, three and four tran-
sition faults are randomly injected in each set of experi-
ments. In all cases, 500 random vector pairs are generated
and all those that detect faults are used in diagnosis. Both
modeled and model-free algorithms are applied to the same
sets of circuits. Experiments are reported on a Sun Ultra 10
machine with 256 MB of memory.

Results for circuits with two, three, and four faults are
summarized the three major sections of Table 1. The first
column contains the name of the benchmark circuits. For
each section of Table 1, the first three columns contain the
diagnosis result from the modeled algorithm and the follow-
ing three columns contain the results from the model-free
algorithm. Each set of results has the average number of
transition fault sites returned by the algorithm, the time
spent (in CPU seconds) and the hit ratio in identifying the
actual fault. The transition fault sites are the distinct nodes
that can be used by a test engineer or by an algorithm to
construct suspect faulty paths. The hit ratio refers to the
percentage of actual faults discovered if all sites are exam-
ined.

In general, the number of probe sites is small for the mod-
eled approach. The probe sites are compiled by the union
of original and equivalent fault tuples discovered. However,
there are much fewer equivalent tuples (c.f. Table 1 in [12])
because the fault equivalence rules for transition fauls are
more restrictive than those for stuck-at faults as testing a
transition fault requires more than one vector [4, 13]. In
detail, for the single transition fault case, only two rules can
be applied for equivalence: (i) if a gate has a single input,
then the input transition faults are equivalent to the out-
put transition faults, and (ii) if a gate has only one fanout,
then the output transition faults are equivalent to the in-
put transition faults on the fanout gate. The presence of
multiple faults relaxes the equivalence rule, which leads to a
relatively large number of equivalent fault tuples (e.g. S1196
and S1494 in Table 1).



Two Transition Faults Three Transition Faults Four Transition Faults

Ckt Modeled Model-free Modeled Model-free Modeled Model-free

Name sites time h.r. sites time h.r. sites time h.r. sites time h.r. sites time h.r. sites time h.r.

C432 4.0 3.7 100 11.0 2.5 90 4.0 9.4 100 7.2 4.8 80 5.4 28.8 100 12.5 11.2 69

C499 4.7 58.5 100 16.5 18.2 85 4.0 52.5 100 12.4 41.5 100 4.8 91.4 100 12.3 126.4 92

C880 2.8 6.1 100 11.8 4.3 100 4.0 19.7 100 13.0 9.3 100 4.8 29.4 95 14.0 22.3 94

C1355 3.8 18.3 100 16.8 12.5 100 4.0 52.6 100 13.6 41.9 87 4.4 214.2 100 24.3 70.2 94

C1908 9.5 78.9 100 11.3 12.7 100 4.5 35.2 100 11.7 33.3 78 4.4 214.2 100 24.3 70.2 94

C2670 3.6 10.6 100 10.0 9.2 100 4.2 34.1 100 14.8 63.8 94 5.5 55.0 100 15.0 36.1 88

C3540 3.3 57.6 100 7.0 8.3 100 3.3 144.7 100 7.3 189.2 94 5.0 36.9 100 18.7 95.9 83

C5315 2.8 50.8 100 14.2 71.6 100 3.5 143.2 100 10.2 221.9 94 6.0 40.4 75 9.5 343.6 75

C6288 2.4 180.1 100 7.0 170.9 20 3.0 716.8 100 5.2 432.6 60 5.0 340.3 100 17.0 519.7 92

C7552 5.2 180.6 100 12.0 61.2 100 3.3 322.2 100 12.5 324.7 83 4.0 112.1 100 13.5 477.5 38

S1196 12.2 20.9 100 11.2 20.6 100 3.8 11.8 100 11.3 25.4 100 4.2 249.6 100 11.8 610.3 56

S1494 10.5 9.9 100 15.3 16.9 100 5.8 22.5 94 11.3 22.4 83 5.0 30.2 88 10.5 16.2 63

S9234 9.8 158.7 100 12.3 21.1 100 4.0 49.8 67 10.0 100.3 83 6.0 212.3 88 17.0 31.1 75

Table 1: Results for two, three, and four transition faults.

Fault equivalence of the transition fault model does not
impact the model-free diagnosis algorithm. Instead, equiv-
alence is governed by that of logic unknowns irrespective of
the type of fault it is diagnosing. Due to the pessimistic
nature of logic unknown values, the model-free algorithm
produces a larger list of transition fault sites. Its diagnostic
resolution is further impacted by ignoring the information
carried by two-vector stimulus (ie. whether a transition has
occurred in the simulation of fault-free circuit). This in-
formation is intrinsic to the fault model used in modeled
diagnosis. The model-free algorithm performs poorly on
benchmark C6288, which is a multiplier with many mul-
tiple fanout gates. The high fanout count results in logic
unknown values being propagated to many gates in circuit.
Subsequent injection of an unknown logic value on many
wires can recover all EPOs and thus qualify as candidate
tuples.

It comes as no surprise that the modeled approach demon-
strates a better performance. With an exact fault model,
diagnosis is simplified in the sense that the fault model acts
as an assumption, which narrows the possible set of logic
behavior lines may have under the influence of a fault. For
example, if a line is injected with a slow-to-rise fault, it
assumes the value of logic 0 whenever a 0 to 1 transition
is encountered. Therefore, given a suspect line in transi-
tion fault diagnosis, the cardinality of the fault model space
equals to 3 (i.e. slow-to-rise, slow-to-fall, and fault-free).

Notice for some circuits in modeled diagnosis and many in
model-free diagnosis, the hit ratio for original faults is not
100% percent. If the entire diagnostic space is traversed,
diagnosis algorithms can guarantee the detection of actual
and all equivalent fault tuples [5].During these experiments,
only an arbitrarily chosen portion of the diagnosis space
is searched. All experiments return some solution tuples;
however in some cases, they consist of equivalent candidate
wire members. The simple ranking formula used produced
hundred percent hit ratio in the majority of circuits. Inves-
tigation is under way to improve the ranking of the suspect
wires during diagnosis.

Results from both modeled and model-free algorithms demon-
strate good diagnostic resolution. The compact list of tran-
sition fault sites can be used to construct suspect delay fault
path(s). Once identified, a behavioral simulation with tim-
ing information may be applied to further refine the list.

5. CONCLUSION
In this paper, two fault diagnosis algorithms for multiple

delay faults are developed. One algorithm uses a transition
fault model to capture the faulty effect(s); the other reasons
with ternary logic values and is independent of any fault
models. Both algorithms are developed under an incremen-
tal framework that has been shown to be efficient in diagnos-
ing multiple faults. Moreover, neither algorithms require the
knowledge of timing information. Their performance is eval-
uated and compared with ISCAS’85 and fullscan ISCAS’89
circuits. Both demonstrate good efficiency and resolution
with the modeled approach exhibiting better resolution. Fu-
ture work intends to improve the algorithm efficiency and
apply it directly to multiple path-delay faults.
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