Trace Compaction using SAT-based
Reachability Analysis

Sean Safarpour, Andreas Veneris, Hratch Mangassarian
Department of Electrical and Computer Engineering
University of Toronto, Toronto, Canada
{sean, veneris, hrat¢t@eecg.toronto.edu

Abstract— In today’s designs, when functional verification fails, initial size [3], [4], [5], [6]. One such technique uses famd image
engineers perform debugging using the provided error trace. computation using Binary Decision Diagrams (BDDs) to rexltite
Reducing the length of error traces can help the debugging &k traces [3]. In [4], techniques are presented to remove hi@safrom
by decreasing the number of variables and clock cycles that counter examples in order to simplify them, but their lesgtre
must be considered. We propose a novel trace length compaati not reduced. Another recent work uses several techniqussdban
approach based on SAT-based reachability analysis. We dde@ performing further simulations and Bounded Model ChecKBiIC)
procedures and algorithms using pre-image computation to - to achieve small traces [5]. The technique of [6] is the cdbse ours
ciently traverse the state space and reduce the trace lengthWe as they utilize a sequential Boolean Satisfiability (SATyspto find
further introduce a data structure used to store the visitedstates short-cuts in the original trace. More specifically, [6] lse¢o find
which is critical to the performance of the proposed approab. the shortest path from the initial state to some candidaezrirediate
Experiments demonstrate the effectiveness of the reachdity state similar to BMC but using a sequential SAT solver.
approach as approximately 75% of the traces are reduced by In this work, we propose a trace length compaction technique

one or two orders of magnitudes. where the shortest path from the initial state to a final S&asught.
This approach is based oeachability analysisvhere an all-solution
I. INTRODUCTION SAT solver is used as thgre-imagecomputation engine [7], [8], [9].

The benefits over the existing BDD [3] and BMC techniques & a
that the BDD memory explosion problem can be averted and that
compactions exceeding the finite bound of BMC approacheshmay
applied. Our technique appears to share many of the ademtdghe
sequential SAT approach proposed in [6]. The main diffeedachat
ours relies on reachability analysis and pre-image contipatavhile
ﬁnaklng use of a novel data structure to determine state icomést
relationships.

More specifically, the contributions of this paper are tHéofaing.

Functional verification of digital circuits is a major preoh for
the VLSI design community. It is reported that up 70% of thetco
and effort of VLSI design is due to verification and debuggjfp
Debugging, which consists of locating and fixing errors agin an
erroneous design, is responsible for approximately 50%ebterall
verification cost [1].

Given a sequential circuit and golden model that specifies t
correct behavior of the circuit, verification tools can detme
whether the circuit is consistent with the golden model. Man .) A
different verification approaches exist today such as sitior-based ¢ A trace compaction technique based purely on pre-image com-
methods, and bounded and unbounded formal techniques §&pif2 putation and reachability analysis using an all-solutiohT S

the recent advances in the field of formal verification, mo&SV solver. _ _)
companies still use simulation techniques as a centrafication « A set of containment rules that help draw relationships betw
strategy [1]. existing states and states found through pre-image cotiguta

Performing verification via simulation cannot prove thereot- which may result in shorter traces. e
ness of a design unless the complete behavior of the design i¢ A State selection procedure within the reachability analys
exercised [2]. Since proving the correctness may not be diorop engine and a set of he.urlstlcs. that improve the performance
for today’s large designs, performing a large number of ftiens of the overall approach in practice.
can achieve a high level of confidence in the design's cotemst ~ * A novel data structure for storing visited states that adider
A testbench can exercise the design with the help of random or quick identification of state containment relationships.
semi-random stimulus generators. The testbench can ateavdee This paper is organized as follows. In the next section, some
whether the design and the model are inconsistent in thejrorsse background information is provided on finite state machinge-
to the stimulus. In this case, arror trace or a counter-example image computation, and reachability analysis. Sectionpttisents
consisting of a sequence of actions or states from the lisizges to the proposed trace compaction approach and discussesnitislce
the error, is produced. procedures. Section 1V, introduces a novel data structuitecat

The verification engineer has the responsibility of detaimg why for the efficient performance of the proposed approach.i@ecty/
a design and a golden model have inconsistent behaviord basthe and VI demonstrate the experimental results and conclugi@aper,
error trace(s) Since a trace is often derived from random simulatiofespectively.
the sequence of events leading to the error can be unneibetwag. Il. PRELIMINARIES
In other words, a shorter error trace may be able to deschibe t In this section we provide some background on Finite State
same erroneous behavior in less clock cycles. With a shtdee, Machines, traces, image and pre-image computation, actiabaity
the debugging task of the verification engineer can be cermiidy analysis. We assume that the reader is familiar with SAT esolv
reduced as fewer signals and clock cycles must be considésed terminology [7] .
a result, reducing the length of traces can substantialiyease the . .

Previous work shows that for random and semi-random basedA sequential digital circuit can be modeled by a Finite State
simulations, error traces can often be reduced to a fracfaheir Machine (FSM) represented by a 6-tuplé := (Q, %, A, 4§, A, qo)

where(is the finite set of stateq; are A are the input and output Pre age! pre-image 3
alphabets respectively,: Q x ¥ — @ is the state transition function,
A @Q x ¥ — Ais the output function, angy is the initial state [2].
Figure 1 illustrates a simple FSM where the states are repted

by nodes and the transitions are represented by edges.

pre-image 2
pre-image 1

Fig. 3. lllustration of reachability analysis

reachability analysis can be used to check CTL propertiety e

Fig. 1. Finite State Machine with 7 states EFq;, wheregy, is a bad state ang is a legal or initial state [2].

A trace of lengthk for an FSM is an input sequence Intuitively, reachability analysis traverses the statecsp back-
< ai,a,...,ax > that leads the FSM through a sequence of stat¥4rds from statey, until a stateq is found or a fix-point, where
< G0.q1, - qu—1,qx >. Note that some states may be repeated P New states are found, is reached [2]. Pre-image compntétia

the state sequence. Figure 2 represents one possibledrabe £SM ~ central procedure of reachability analysis as it perfortres gingle
of Figure 1. backward steps. The manner in which the state space is sever

depends on which of the visited states is selected for eaeh pr
a a a image computation step. If the visited states are storedstack-like
1 2 3 =N a : g ¢ !
@ @ @ @ @ @ data structure, a depth-first traversal is performed, wéitgieue-like
data structure results in a breadth-first traversal. Figuikustrates
Fig. 2. A sample trace for the above FSM a breadth-first reachability analysis process that evéptdimmds
the initial stateqo. In this figure, the black nodes represent states

while each cone represents a set of states found by one pgeim

B. Image and Pre-image Computation computation step.

Given a sequential circuit with current state variablésand
next state variablest’’, a set of current states and a set of I1l. PROPOSEDTRACE COMPACTION APPROACH

, !
next states are labeled b@(V) and Q(V”) respectively. The |, yhis section we present our proposed trace length coriapact

transition relation from a set of stateg(V’) to Q(V’), denoted ; ; ;
.)) pproach. First we introduce the central concept followsdi¢tails

by T(Q(V),Q(V")), is true for each pair of(V) and Q(V") if ; o

S5(QV)) = Q(V") for a set of input assignments [2]. Given theof the state selection procedure and the all-solution SAVeso

above, the image and pre-image of a circuit can be definedlewfo A, Reachability Based Trace Compaction

IMAGE: Q(V') = 3V(T(Q(V),Q(V") AQ(V)) A trace can be represented by a directed gi@ph (N, E) where
PREIMAGE: Q(V) = IV (T(Q(V),Q(V")) AQ(V")) the nodesN represent states and the edgésepresent transitions
between states. An edge from staje¢o ¢; denotes thag; belongs to
_ h . o . .~ 'the pre-image of;; andg; belongs to the image af;. Our objective
reached fromg; under all possible input combinations in a smglqs to reduce the length of the path from the initial stat¢o the final

clock cycle. Similarly, the pre-image @f comprises of all the states ; : : o .
that can lead t@; under all possible input combinations in one clocl{‘éi}}er%‘al?gsapplymg pre-image computation and reachability anslys
%C;ﬁél?n;[ggelzi{'w of F}{gure 1, the image of staieis {¢>, g } while Our proposed approach performs reachability analysis bthel
Although the qi?r;gfge. and pre-image of circuits are traditigna states belonging to the original trace. The manner in whielles
. ; ; are selected for reachability analysis is described ini&@®dtl-C.
computed using E’.DDS [2], some techniques based on allienlut All the states (or state cubes) found by the pre-image coatiout
Boolean Satisfiability (SAT) solvers can also be used [8], [£0], steps of the reachability engine are added to the gfapBraphG
[11]. All-solution SAT solvers can compute the pre-image §eV) is updated with edges denoting that each newly found statésa

by constraining the circuit CNF t&)(V’) and iteratively finding § r .
all the solutions that satisfy the CNF in terms of the curredt ©'Mage of some statg, selected for pre-image computation.

state variablesV/ [10]. Recent work on SAT-based Unbounded
Model Checking (UMC) and pre-image computation technicusse
demonstrated considerable advancements [8], [9], [1Q]. [1

In this work, we are mainly concerned with SAT-based pregena
computation. Since this technique finds states one at a tiragjse
the termpre-imageloosely to also refer to singlestateg;that belongs
to the pre-image of;. Furthermore, we use the term state to refer to Fig. 4. Updating the graph G with new nodes and edges
a state cubgwhich is a state encoding that may contaimassigned
or don’t carevariables. As such, a state may be a superset (cover) ofW
other states. For instance, the state c{ibe v2,v3} =1X1 covers
the statev1, v2, v3}=101 and{v1, v2, v3}=111. For brevity, in the
remaining of this paper we drop the variable names {iev2, v2)
when describing state values.

Intuitively, the image of a state; is all the states that can be

hen states found by pre-image computation already exist in
the graphG, extra edges may be drawn i@ to illustrate new
legal transitions. These transitions may provide a shqusgh (or
short-cut) from the initial state to the final state thus g the
overall trace length. For example consider the situatioscidleed
- . in Figure 4 where the original trace is shown as the sequence
C. Reachability Analysis < qo,q1,4q2,43,q4 > and the dashed nodes are states found through
Reachability analysis is the process of determining whethe reachability analysis. Since, is found as a pre-image af;, and
stateqy is reachable from another stage. In the realm of UMC, ¢ is the pre-image ofj; in the original trace, a new edge shown

G=10

as dashed line can be drawn directly from the original (nashed) Visited —

g2 t0 g4 and the dasheg. can be removed. The overall result is a . counter — 0

shorter pa_th fromyo to g4 which skips nOdel_fi-)) : for all (states ¢; between go to gx (inclusive))
As motivated by the above example, finding state equivakence do

in the graphG can lead to more “short-cuts” which can reduce Visited.add(g;)

oW e

IS

the overall trace size. Along with the state equivalencetieh 6: G = add-to_graph(g;)
discussed, there are other state containment relaticgghgt can 7. end for
lead to further short-cuts in the graph. The following ruliesermine 8: length = BFS(G, gi., qo) o
how the graph(is updated after each pre-images computation step. o while (counter < maz && Wisited.empty())
Consider statey; found as a pre-image of statg.:, and the 1? %,;;f}f;ffffﬁf fggd)
sequence< ¢;—1,q;,qj+1 > €Xisting in the graplG. 12: Prelmages = pre-image(g;)
o Rule 1.If ¢; = ¢;: Stateg; is not added td7, but an edge is 13: for all (states ¢; € Prelmages) do
drawn fromg; to gi+1. 14: apply_rules1.2_3(G, g;, g;)
o Rule 2.If ¢; D g;: Stateg; is added toG, an edge is drawn 15: end for

16: Visited = Visited|J PreImages

from ¢; to ¢;+1, and another edge is drawn frogm to ¢;+1.
4 dit1 g ofm dit1 17: counter = counter + 1

e Rule 3.If ¢; C g;: Stateg; is added toG, an edge is drawn 18 length = BFS(G, ai, q0)
from ¢; to it another edge is drawn from—: to ¢;, and 19: Print(Trace is of size length)
another edge is drawn from to g;j+1. 20: end while

21: return length

The correctness of rule 1 is evident as the images of equivale)) . o
states are also equivalent. Rule 2 can be explained by eixuatit Fig. 6. Trace compaction procedure using reachability yeel
state cubey;, into two components; = {¢;} U{¢ —q; }. From here When a fixed-point is reached, or when all legal states aitedi§9].
we use the fact that any image g@fis also an image of;. Similarly, [N contrast, this work encourages finding previous statestates
rule 3 can be explained by expandinginto two componentg,; — that cover or are covered by others. These containmentareships
{a} U{g — @) allow us to draw additional edges between nodes and inagaise
likelihood of reducing the trace. It should be noted thatcptgions
are taken to avoid repeatedly visiting the same set of states
A second technique used to increase the likelihood of apglyi
the containment rules is to populate the graph with moresttitan
those provided in the original trace. Since the originatdranly
has as many states as its trace length, there may not be enough
unique states to create many short-cuts. We propose poyuldie
graph initially by computing a single pre-image for the stain the
)] original trace. This approach allows us to quickly add staibes
Fig. 5. lllustrating rules 2 and 3 to the graph which leads to more applications of the contairtm
The following example helps clarify rules 2 and 3. Considefules. The practical advantage of this technique is higitéig in the
state ¢; found as a pre-image of staig.:, and the sequence experiments of Section V.
< g¢j-1,95,95+1 >, where statey; =1X1 and the statg; = 101. .
By rule 2, an edge is first drawn from to ;11 to indicate tha; C. State Selection Procedure
is a pre-image of statg;1. Since 1X1> 101 andg;+1 is an image During reachability analysis, which state is selected ferimage
of ¢ =1X1= {101} (J{111}, theng;y1 must also be an image of computation determines the manner in which the state space i
g; = 101. This scenario is illustrated in Figure 5 (a) with the newraversed. For instance, if the most recently visited (6justate
edges drawn as dashed lines. Similarly, by rule 3 an edgesis fiis always selected, then the state space is traversed inth-filsp
drawn to indicate that; is a pre-image of statg; ;. Since state manner. Here, we develop state selection criteria that dueigee the
¢: =101 is a subset of statgg =1X1= {101} |J{111}, then the reachability engine towards finding short-cuts from theiahistate
statesg;—1 andg;+1 must be a pre-image and an imagegpfalso, to the final state. It should be noted that these criteriadhaugistics
respectively. The three edges added in this scenario awendss which may not always be advantageous.
dashed lines in Figure 5 (b). The first criteria is to select a candidate state from the fseisied
Our overall trace compaction technique using reachaliliiglysis states with the smallestamming distanceéo the initial statego. The
is shown in Figure 6. Lines 1-7 set up the problem, build theamming distance between two states is the number of stagdhes
initial graph G and determine the initial trace length. The remainingiith different values (0 or 1). For states with don't careg, (¥very
lines perform reachability analysis by selecting a state goe- X matches both the 0 and 1 value. For instance, if stdfek00,
image computation (line 10), computing the pre-imagese(li’?), 1011, 110X, XX03 are visited andgy = 0000, then state XX01
and applying the state containment rules (line 14). Thehagility is selected since it has a hamming distance of 1 with respeg.t
analysis is terminated after all states have been seleotgnid-image The intuition behind the above criteria is that states witknaaller
computation or after a maximumaz, number of steps have beenhamming distance tgy require less state variables to change to reach

performed determined by the counter. qo as a pre-image. Therefore, the likelihood of findipsgat the next
. step may be higher.
B. Creating More Short-cuts A second factor that influences the state selection proeeitur

the path length from a candidate state to the last sjatdf this
As discussed in the previous section, the containment rales length is greater than 50% of the current shortest path fono g
critical for creating short-cuts in the grap&f. To increase the then the state is not considered for selection. This caitenicourages
likelihood of applying these rules, the reachability emgia slightly finding many pre-images near the end of the trace (closex)tand
modified from its typical UMC application. Traditionally idMC, less closer to the initial state. Together, both criteriacréase the
reachability engines focus on finding only new states andcldl probability of creating large short-cuts between statdba@two ends
previously visited states [8]. This allows them to quickbentify of the original trace.

D. All-Solution SAT Solver

The reachability engine is highly dependent on the perforcea
of the pre-image computation engine, which is based on an all
solution SAT solver. This SAT solver uses circuit don't cant®
determine whether variables may remain unassigned whilshsag
the problem [10], [12]. Since the don't cares are propagékesck-
wards through a gate (from output to input) they are idealpii@-
image computation where current state variablegan be viewed
as pseudo inputs to the circuit. The all-solution SAT solv@ntains
many solution reduction techniques to ensure that smaltisok are

returned in an efficient manner [8], [9], [10]. For our apption, Fig. 7. lllustrating state storage data structure
achieving small state cubes is critical to traversing treesspace)
efficiently. The hash table contains all states that map to the same drdere

Each pre-image computation step corresponds to a call talthe cube. For instance, at the node corresponding to the ordarieel
solution SAT solver. Since it may not be practical to find dittee 001XX in Figure 7, there can be two unique state cubes XXO0@iL an
pre-image states due to the exponential nature of the proliee XO00X1. Figure 7 |||UStrateS. how the St_ates 1101X, 001X1, XX0
all-solution SAT solver is also equipped with a linit If all the X00X1, X11XX are stored in the described data structure.
pre-image state cubes are not found in a time and memoryesifici Given a stateg;, this data structure can efficiently determine
manner, the all-solution SAT solver will return the fitsstate cubes Whetherg; already exists irG, whetherg; is a subset of other states
it finds. This allows us to perform reachability analysis bydfng in G, and whetheg; is a superset of other stateséh For all three

partial pre-images. tasks, first the node; corresponding to ordered cube @f must be
located in the binary tree. i, exists in the hash table pointed by
IV. STORING VISITED STATES noden;, theng; already exists irG.

The success of the reachability analysis approach desdciibe To find whetherg; is a proper subset of other states, all the nodes
Section Il depends on the ability to quickly apply the rules with at least as many don't cares (X)ashave to be visited. At each
Section IlI-A. More specifically, the situations where a hefound node, the states within the hash tables must be tested torile¢e
stateq; 1) is equal to existing states, 2) is a superset of existirifj¢; is a subset. Within the tre®, the nodes with at least as many
states, or 3) is a subset of existing states must be rapidiytified. don’t cares as; are found inside am+ 1 by s+ 1 rectangle, where
In this section we introduce a data structure that storethalktates r is the number of zeros andis the number of ones ig;,. Therefore,
belonging toG while identifying the state containment relationshipshere argr+1) x (s+1) nodes that can potentially contain supersets
quickly. Note that this data structure is not only viable toace of ¢; (including noden;). These nodes are illustrated in the dashed
compaction, but can also be used for reachability analysisima rectangle above node; in Figure 8.

UMC framework [9], [8], [11]. Similarly, to find whetherg; is a proper superset of other states,
- . . . all the nodes with at least as many zeros and ones must bedvisit
A. Determining State Containment Relationships and the states within the hash tables must be tested to degeifn

The data structure described here is composed of two comfmney; is a superset. Within the treE, these nodes are found inside an
1) a binary treel” and 2) a hash table. The binary tree is used tgosceles triangle with equivalent sides— r — s. Therefore, there
detect the state containment relationships, while the teslb is used are (“~—"—)(-"—*t1) nodes that can potentially be subsetsgof

to locate the exact state. (including noden;). These nodes are illustrated in the dashed triangle
The state containment relationship depends on the numiskondf under the node:; in Figure 8.
cares in each state. A state with more don’t cares may covewnith As demonstrated through Figure 8, only the white nodes meist b

fewer, while the converse is not true irrespective of the@qbosition considered when searching for subsets and supersets fdieerine
of the don't cares. To take advantage of the above, we adoaat number of comparisons required may be only a fraction of thal t
ordered cubeor each state. The ordered cube is defined as the staigmber of existing states. In practice, this data strudsifeund to
value with all the zeros in the most significant positiondloieed pe very efficient since the treE is often not fully populated and the
by all ones, followed by the don't cares (X) in the least sigant number of items in each hash table is relatively small.

positions. For example, five states and their correspondidgred The procedure for finding the supersets (covers) of a givate st
cubes are shown below. qi is presented in Figure 9. Lines 2-3 generate the ordered anthe
STaies TT0TX T O0LXL | XX00L T XO0XL | XIIXX find its location in the tred’. Line 4 gets all the potential superset

ordered cubg 0111X | 0011X | 00IXX | 001IXX | 11IXXX

When states are added to the graph they are also stored
according to their ordered cube in the binary tiéeEach node of a
given depth in the binary tree corresponds to a positionérotidered
cube. The top-most node at depth zero of the tree representadst
significant position, the nodes at depth 1 represent thensenwst
significant position, the nodes at depth 2 represent thel tmost
significant position, etc. The left (right) edge of a node ates a
zero (one) in the ordered cube at the position correspondiripe
parent node. There are no edges corresponding to a don’trctre
ordered cube. By scanning over the values of an ordered cobe f
the most significant to the least significant, the binary isdeaversed
for that cube. Traversal ends when the ordered cube is fodpreed
or when a don't care is encountered. By the end of the tralversa

the final visited node points to a hash table where the stdte va
stored. Fig. 8. Finding supersets and subsets in the free

; gf;é‘;;;f?) — Order(er experiments on all ISCAS’89 and ITC'99 circuits for tracddemgth
+ ordered.cube = Order(g;) 50, 100 and 1000. The first column shows the circuit namesevthé
3: n; = Get_treenode(ordered_cube) S
4 Supset —get rectangle(n;) remaining columns are orggnlzed into three sections basetheir
5: for all (nodes n; in Supset) do original trace length. The first column of each section labeirg
6: for all (states g; in hash table of n;) do describes the original length of each trace (50, 100, or 10DBe
7 if (¢j 2 ¢;) then second column of each section labefed describes the length of the
8: Covers = Covers|J g; traces after performing the single step pre-image processritbed
9: end if in Section III-B. We chose to find single step pre-images for n
1‘1* ‘;n? for more than 50 states to achieve a balance between the humpes-of
1 er or

images found and the time required to find them. The thirdroalu
of each section labeleach presents the length of the traces after
applying the proposed reachability analysis method. Asritesd in
section llI-B, it is most beneficial to first find the single [stpre-
nodes by finding the nodes contained in the rectangle. Thainémy images followed by the reachability analysigdch method. The
lines iterate through these nodes and test the states itisdeash fourth and fifth columns of each section, labelegu pre and cpu
tables to determine whether they are supersets.dfiote that testing reachrespectively, present the runtimes in seconds associatdtet
whether a particular node is a superset or a subset of anistteer pre and reachtechniques.
simple comparison procedure where the states must beddéentier Table | shows that the pre-image computation techniquep hel
all positions except where the superset is a don't care. Aquore reduce the traces considerably. For many circuits, thanaligrace
similar to that of Figure 9 is used to find the subsetsgofwhere length is first reduced greatly by the single step pre-imgwe) (
the getrectangleprocedure is replace withettriangle as described technique and further reduced by the reachability analgrsiach.
previously. For example, the trace for circuit s344 is first reduced frdn®b33

V. EXPERIMENTS using pre, and then again from 33 to 1 usimgach

In this section we demonstrate the effectiveness and eftigie Analyzing the results of Table I, we notice that many traces a
of the proposed trace compaction approach. All experiments reduced to having a single clock cycle (length of 1) or a venals
conducted on a Sun Blade 1000 with a 750MHz Sparc processor dffice Size after applying reachability analysis. This ltesan be
2.5GB of memory. Traces of length 50, 100, and 1000 are aidainPartially attributed to the state selection heuristics ett®n 11I-C
via random simulation for the circuits in the ISCAS'89 andCrgg ~ and the performance improvement techniques of SectioB.IThese
benchmark suites. The reachability analysis engine isldeee using techniques can increase the number of “short-cuts” cretimenigh
the all-solutions SAT solver of [10] which is a circuit vamtaof the graphG' and likelihood that they will lead to the initial state.
zChaff [7] and Grasp [13]. To evaluate the overall propogaat@ach Table Il summarizes .the results in Table. | by prowdlng the
we limit the number of stored states to at most 10,000 states average length compactions (reductions) achieved by tfiereht
and do not use an explicit timeout. Since the compactionnigees components of the proposed approach for traces of size 30, 10
of previous works [3], [4], [6] are not publicly available dwdue to an_d_ 1000. Similar to Table I, the summaries are provided &mhe
the fact that the assertions and errors used are unknownamreot ©riginal trace length separately. Column one presents &menof
directly or indirectly compare with them. the compaction m_ethod: single step pre-image computatioe), (

We first evaluate the effectiveness of the state selectiopepiure "®achability analysisrgact), or combined. For each trace length, the
described in Section 11I-C. We compare this heuristic agathree Overall average reduction is presented under the labg! reduced
other selection approaches, Depth-First Search (DFSpdBmneFirst This field is calculated by adding the reduction in size ovitr a
Search (BFS), and random selection. The above techniqeessad Circuits divided over the number of circuits. Slnpe not aklcuait
to perform reachability analysis from a random state to tiisal traces are reduced by the proposed method, this number ntay no
state given a timeout of 200 seconds. The runtimes over all tRrovide a good representation of the average factor of temuc
benchmarks are collected and presented in Figure 10. BetbEs achieved. Instead, the columns labetffiectedand reducedshow
and BFS methods result in runtimes of over 4000 secondsewihd the percentage of traces that are affected by each approath a
random method fares better at over 3500 seconds. The pptate the amount by which they are reduced, respectively. For piam
selection strategy based on the smallest hamming distatfative to fOr traces of length 50, the proposed approaches sepatblgve
the initial state and the position of the state in the grapresults in 10-08 times and 3.81 times reductions while the combinedoagh
runtimes of just over 3000 seconds. This performance deimates '€aches 19.67 times reductions. Furthermore, approxiyna@b of
that the proposed state selection heuristics is an effieetall the circuits are affected by there techniques which results in an

: return Covers

-
N

Fig. 9. Determine the states that are supersets of this state

reachability analysis procedure. average reduction of 13.77 times. Similarly, tieechtechnique and
the combined approach affect 37% and 74% of traces for a tieduc
4500- of 8.45 times and 25.72 times, respectively.

The experimental results demonstrate that not only is tbpqsed
approach effective for reducing traces, but it is also védiigient. For
the majority of circuits in Table |, compacted traces arenfbwithin
a few minutes. This performance reaffirms the practicalitythe
data structure introduced in Section IV. The memory requéets of
the overall approach are also manageable since memory nsage
exceeds 300MB when storing up to 10,000 state cubes. Thigyabil

Runtime (s)
w w Iy
o a o
o o o
P P @

25001 to quickly reduce traces in a memory efficient manner is alufcr
20004 making this approach viable in real-life debugging envinemts.
BFS DFS = random propos
State selection methods VI. CONCLUSION
This work proposed a novel trace reduction technique usiiy S
Fig. 10. Comparison of state selection methods based reachability analysis and a set of state containnedstion-

Next, we demonstrate the effectiveness of the overall mego ships. The components of the reachability analysis engiadfiae-
trace compaction approach. Table | illustrates the resoftgshe tuned to increase the likelihood of generating short-aute original

circuits org | pre | reach | cpu pre | cpu reach || org | pre | reach | cpu pre | cpu reach || org pre | reach | cpu pre | cpu reach
$208.1 50 | 25 25 0.00 0.56 100 | 51 51 0.07 0.60 1000 | 244 244 0.08 9.26
5298 50 1 1 0.00 0.00 100 | 3 1 0.59 0.86 1000 1 1 0.34 0.01
s344 50 | 33 1 0.00 0.00 100 | 55 1 0.31 0.00 1000 | 10 5 0.42 0.08
$349 50 | 33 1 0.00 0.00 100 | 55 1 0.32 0.00 1000 | 10 5 0.39 0.08
$382 50 | 3 1 0.00 0.17 100 | 4 2 0.75 0.00 1000 1 1 0.89 0.00
s386 50 1 1 0.00 0.00 100 | 2 2 0.09 0.00 1000 2 2 0.06 0.00
s400 50 | 3 1 0.00 0.01 100 | 2 1 0.69 0.01 1000 2 1 0.74 0.05
$420.1 50 | 21 21 0.01 1.20 100 | 44 44 0.13 0.97 1000 | 505 505 0.14 25.85
s444 50 2 1 0.01 0.01 100 | 3 1 0.98 0.93 1000 1 1 0.67 0.01
s510 50 | 24 24 0.00 0.87 100 | 10 10 0.13 0.66 1000 | 25 25 0.12 0.56
s526 50 2 1 0.00 0.03 100 | 3 1 1.27 0.86 1000 1 1 1.09 0.03
s526n 50 2 1 0.00 0.03 100 | 3 1 1.26 0.86 1000 1 1 1.17 0.02
s641 50 | 3 3 0.00 1.65 100 | 4 4 1.81 2.10 1000 2 2 1.72 5.86
s713 50 | 3 3 0.00 1.65 100 | 4 4 1.80 2.01 1000 2 2 1.76 2.88
$820 50 1 1 0.00 0.00 100 | 1 1 0.00 0.00 1000 1 1 0.38 0.00
s832 50 1 1 0.00 0.00 100 | 1 1 0.00 0.00 1000 1 1 0.4 0.00
$838.1 50 | 26 26 0.00 1.87 100 | 45 45 0.26 2.07 1000 | 510 510 0.27 48.48
s953 50 | 6 5 0.00 1.38 100 | 1 1 2.52 0.00 1000 1 1 3.25 0.01
s1196 50 | 8 1 0.00 0.05 100 | 14 1 0.89 0.12 1000 5 1 1.11 0.03
51238 50 | 8 1 0.01 0.05 100 | 14 1 0.84 0.11 1000 5 1 0.96 0.02
s1423 50 | 50 2 0.01 3.41 100 | 57 2 6.19 3.55 1000 | 15 3 6.24 67.61
s5378 50 | 50 50 0.04 0.89 100 | 100 | 100 23.76 1.03 1000 | 1000 | 1000 26.18 5.86
$9234.1 50 | 50 50 0.04 22.67 100 | 100 | 100 50.26 1.76 1000 | 1000 | 1000 49.89 11.55
$9234 50 | 34 34 0.02 1.67 100 | 36 36 46.99 1.66 1000 | 35 35 47.41 10.76
s13207.1 || 50 | 50 50 0.28 3.52 100 | 100 | 100 96.76 4.20 1000 | 1000 | 1000 | 105.92 7.61
513207 50 | 50 50 0.23 3.29 100 | 100 | 100 91.57 417 1000 | 1000 | 1000 98.79 7.74
s15850.1 || 50 | 50 50 0.12 5.82 100 | 100 | 100 145.67 87.18 1000 | 1000 | 1000 | 140.31 9.01
s15850 50 | 50 50 0.07 3.45 100 | 100 | 100 96.18 4.19 1000 | 1000 | 1000 | 222.94 8.09
s38417 50 | 50 50 1.07 40.58 100 | 100 | 100 311.05 154.30 1000 | 1000 | 1000 | 340.83 25.74
s38584.1 || 50 | 50 50 1.27 11.83 100 | 100 | 100 336.97 12.37 1000 | 1000 | 1000 | 375.70 25.68
$38584 50 | 50 50 1.26 59.15 100 | 100 | 100 315.11 185.30 1000 | 1000 | 1000 | 344.44 23.85
b01 50 | 6 2 0.09 0.00 100 | 4 4 0.10 0.04 1000 4 4 0.9 0.04
b02 50 2 2 0.04 0.00 100 | 4 4 0.04 0.01 1000 4 4 0.4 0.01
b03 50 | 14 2 1.17 0.07 100 | 26 2 1.20 0.05 1000 8 8 1.32 13.54
b04 50 | 50 50 6.57 3.79 100 | 100 | 100 6.26 4.54 1000 | 1000 | 1000 6.89 27.88
b06 50 | 3 1 0.65 0.00 100 | 3 3 0.63 0.04 1000 2 2 0.62 0.03
b07 50 | 43 43 0.35 1.81 100 | 51 51 0.34 1.70 1000 | 56 56 0.28 14.56
b08 50 | 43 7 0.11 1.17 100 | 92 2 0.16 0.00 1000 | 329 5 0.16 0.02
b09 50 | 50 17 0.16 0.96 100 | 97 97 0.17 1.56 1000 | 82 82 0.18 18.70
b10 50 | 22 22 0.36 1.19 100 | 45 21 0.31 1.56 1000 | 32 32 0.59 9.56
b1l 50 | 35 25 1.44 3.06 100 | 98 88 2.50 4.07 1000 | 550 550 1.92 27.68
b12 50 | 14 14 8.03 5.97 100 | 20 20 7.51 2.50 1000 | 36 36 7.89 34.85
b13 50 | 45 45 2.10 2.22 100 | 99 98 2.05 2.80 1000 | 1000 | 1000 2.57 19.54
b14 50 | 50 50 42.48 1.84 100 | 100 | 100 47.68 24.18 1000 | 1000 | 1000 52.92 3.93
b15 50 | 49 49 76.63 6.19 100 | 100 | 100 56.65 43.78 1000 | 87 87 52.11 230.41
TABLE |

EXPERIMENTAL RESULTS FOR THE PROPOSED TRACE LENGTH COMPAGIN APPROACH FOR TRACES OF LENGT0, 100AND 1000.

orginal size 50 orginal size 100 orginal size 1000 \
approach || avg. reduced | affected | reduced || avg. reduced | affected | reduced || avg. reduced | affected | reduced
pre 10.08 X 70 % 13.77 X 16.88 X 72 % 22.66 X 266.35 X 71 % | 362.84 X
reach 381X 37 % 8.54 X 6.10 X 35 % 15.36 X 2.77 X 15 % 12.40 X
combined 19.67 X 4% | 25.72X 36.21 X 72% | 49.01X 327.76 X 72 % | 446.59 X
TABLE Il

SUMMARY OF THE RESULTS FOR THE PROPOSED TRACE LENGTH COMPAGIN APPROACH

trace. Furthermore, a novel data structure is presentedhwdibres
visited states such that the state containment relatipasban be

quickly applied. Experiments demonstrate the effectigsnef the

proposed techniques as approximately 75% of the tracesdueed

by one or two orders of magnitude.

REFERENCES

[1] P. Rashinkar, P. Paterson, and L. Sin§lystem-on-a-chip Verification

Methodology and TechniquesKluwer Academic Publisher, 1996.

[2] T. Kropf, Introduction to Formal Hardware Verification Springer, 1999.

[3] Y. Chen and F. Chen, “Algorithms for compacting errorcea,” inASP
Design Automation Conf2003, pp. 99-103.
[4] S. Shen, Y. Qin, and S. Li, “A faster counterexample miiziation

[12]

algorithm based on refutation analysis,”Dresign, Automation and Test

in Europe 2005, pp. 672-677.

(5]
minimization with BMC-based refinement,” Int'l Conf. on CAD 2005,
pp. 1045-1051.

K. Chang, V. Bertacco, and |. Markov, “Simulation-basedg trace

(23]

(6]

(7]
(8]
El

- [10]

(11]

S.-J. Pan, K.-T. Cheng, J. Moondanos, and Z. Hanna, “@G¢ioea of
shorter sequences for high resolution error diagnosisguseguential
sat,” in ASP Design Automation Con2006, pp. 25-29.

J. Marques-Silva and K. Sakallah, “GRASP - a new seargorihm
for satisfiability,” in Int'l Conf. on CADQ 1996, pp. 220-227.

K. McMillan, “Applying SAT methods in unbounded symbolimodel
checking.” inComputer Aided Verificatigr2002, pp. 250-264.

H.-J. Kang and I.-C. Park, “SAT-based unbounded synebatiodel
checking,”|IEEE Trans. on CADvol. 24, no. 2, pp. 129-140, 2005.
S. Safarpour, A. Veneris, and R. Drechsler, “Integrgtiobservability
don't cares in all-solution SAT solvers,” ilEEE International Sympo-
sium on Circuits and System2006, pp. 1587-1590.

B. Li, M. Hsiao, and S. Sheng, “A novel SAT all-solutiosslver for
efficient preimage computation,” iDesign, Automation and Test in
Europe 2004, pp. 272-277.

Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanniséntelli,
“Sat sweeping with local observability don’t-cares,”resign Automa-
tion Conf, 2006, pp. 229-234.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Maliichaff:
Engineering an efficient SAT solver,” Design Automation Conf2001,
pp. 530-535.

