
Trace Compaction using SAT-based
Reachability Analysis

Sean Safarpour, Andreas Veneris, Hratch Mangassarian
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{sean, veneris, hratch}@eecg.toronto.edu

Abstract— In today’s designs, when functional verification fails,
engineers perform debugging using the provided error traces.
Reducing the length of error traces can help the debugging task
by decreasing the number of variables and clock cycles that
must be considered. We propose a novel trace length compaction
approach based on SAT-based reachability analysis. We develop
procedures and algorithms using pre-image computation to effi-
ciently traverse the state space and reduce the trace lengths. We
further introduce a data structure used to store the visitedstates
which is critical to the performance of the proposed approach.
Experiments demonstrate the effectiveness of the reachability
approach as approximately 75% of the traces are reduced by
one or two orders of magnitudes.

I. I NTRODUCTION

Functional verification of digital circuits is a major problem for
the VLSI design community. It is reported that up 70% of the cost
and effort of VLSI design is due to verification and debugging[1].
Debugging, which consists of locating and fixing errors or bugs in an
erroneous design, is responsible for approximately 50% of the overall
verification cost [1].

Given a sequential circuit and golden model that specifies the
correct behavior of the circuit, verification tools can determine
whether the circuit is consistent with the golden model. Many
different verification approaches exist today such as simulation-based
methods, and bounded and unbounded formal techniques [2]. Despite
the recent advances in the field of formal verification, most VLSI
companies still use simulation techniques as a central verification
strategy [1].

Performing verification via simulation cannot prove the correct-
ness of a design unless the complete behavior of the design is
exercised [2]. Since proving the correctness may not be an option
for today’s large designs, performing a large number of simulations
can achieve a high level of confidence in the design’s correctness.
A testbench can exercise the design with the help of random or
semi-random stimulus generators. The testbench can also determine
whether the design and the model are inconsistent in their response
to the stimulus. In this case, anerror trace or a counter-example,
consisting of a sequence of actions or states from the initial states to
the error, is produced.

The verification engineer has the responsibility of determining why
a design and a golden model have inconsistent behaviors based on the
error trace(s). Since a trace is often derived from random simulation,
the sequence of events leading to the error can be unnecessarily long.
In other words, a shorter error trace may be able to describe the
same erroneous behavior in less clock cycles. With a shortertrace,
the debugging task of the verification engineer can be considerably
reduced as fewer signals and clock cycles must be considered. As
a result, reducing the length of traces can substantially increase the
efficiency of design debugging.

Previous work shows that for random and semi-random based
simulations, error traces can often be reduced to a fractionof their

initial size [3], [4], [5], [6]. One such technique uses forward image
computation using Binary Decision Diagrams (BDDs) to reduce the
traces [3]. In [4], techniques are presented to remove variables from
counter examples in order to simplify them, but their lengths are
not reduced. Another recent work uses several techniques based on
performing further simulations and Bounded Model Checking(BMC)
to achieve small traces [5]. The technique of [6] is the closest to ours
as they utilize a sequential Boolean Satisfiability (SAT) solver to find
short-cuts in the original trace. More specifically, [6] seeks to find
the shortest path from the initial state to some candidate intermediate
state similar to BMC but using a sequential SAT solver.

In this work, we propose a trace length compaction technique
where the shortest path from the initial state to a final stateis sought.
This approach is based onreachability analysiswhere an all-solution
SAT solver is used as thepre-imagecomputation engine [7], [8], [9].
The benefits over the existing BDD [3] and BMC techniques [5] are
that the BDD memory explosion problem can be averted and that
compactions exceeding the finite bound of BMC approaches maybe
applied. Our technique appears to share many of the advantages of the
sequential SAT approach proposed in [6]. The main difference is that
ours relies on reachability analysis and pre-image computation while
making use of a novel data structure to determine state containment
relationships.

More specifically, the contributions of this paper are the following.
• A trace compaction technique based purely on pre-image com-

putation and reachability analysis using an all-solution SAT
solver.

• A set of containment rules that help draw relationships between
existing states and states found through pre-image computation
which may result in shorter traces.

• A state selection procedure within the reachability analysis
engine and a set of heuristics that improve the performance
of the overall approach in practice.

• A novel data structure for storing visited states that allows for
quick identification of state containment relationships.

This paper is organized as follows. In the next section, some
background information is provided on finite state machines, pre-
image computation, and reachability analysis. Section IIIpresents
the proposed trace compaction approach and discusses its central
procedures. Section IV, introduces a novel data structure critical
for the efficient performance of the proposed approach. Sections V
and VI demonstrate the experimental results and conclude the paper,
respectively.

II. PRELIMINARIES

In this section we provide some background on Finite State
Machines, traces, image and pre-image computation, and reachability
analysis. We assume that the reader is familiar with SAT solver
terminology [7] .

A. Finite State Machines
A sequential digital circuit can be modeled by a Finite State

Machine (FSM) represented by a 6-tupleM := (Q, Σ, ∆, δ, λ, q0)



whereQ is the finite set of states,Σ are∆ are the input and output
alphabets respectively,δ : Q×Σ → Q is the state transition function,
λ : Q×Σ → ∆ is the output function, andq0 is the initial state [2].
Figure 1 illustrates a simple FSM where the states are represented
by nodes and the transitions are represented by edges.

q0

a
a

a

a

6
7

8
9

10a
q4

a1 a3

a4

a5

a2q1 q2

q6

q5

q3

Fig. 1. Finite State Machine with 7 states

A trace of lengthk for an FSM is an input sequence
< a1, a1, ..., ak > that leads the FSM through a sequence of states
< q0, q1, ..., qk−1, qk >. Note that some states may be repeated in
the state sequence. Figure 2 represents one possible trace for the FSM
of Figure 1.

6

a a a a2 3 4 5a1
qq0 q1 q2 q3 q1

Fig. 2. A sample trace for the above FSM

B. Image and Pre-image Computation
Given a sequential circuit with current state variablesV and

next state variablesV ′, a set of current states and a set of
next states are labeled byQ(V ) and Q(V ′) respectively. The
transition relation from a set of statesQ(V ) to Q(V ′), denoted
by T (Q(V ), Q(V ′)), is true for each pair ofQ(V ) and Q(V ′) if
δ(Q(V )) = Q(V ′) for a set of input assignments [2]. Given the
above, the image and pre-image of a circuit can be defined as follows.

IMAGE: Q(V ′) = ∃V.(T (Q(V ), Q(V ′)) ∧ Q(V ))
PRE-IMAGE: Q(V ) = ∃V ′.(T (Q(V ), Q(V ′)) ∧ Q(V ′))

Intuitively, the image of a stateqi is all the states that can be
reached fromqi under all possible input combinations in a single
clock cycle. Similarly, the pre-image ofqi comprises of all the states
that can lead toqi under all possible input combinations in one clock
cycle. In the FSM of Figure 1, the image of stateq1 is {q2, q6} while
its pre-image is{q0, q3}.

Although the image and pre-image of circuits are traditionally
computed using BDDs [2], some techniques based on all-solution
Boolean Satisfiability (SAT) solvers can also be used [8], [9], [10],
[11]. All-solution SAT solvers can compute the pre-image set Q(V )
by constraining the circuit CNF toQ(V ′) and iteratively finding
all the solutions that satisfy the CNF in terms of the current
state variablesV [10]. Recent work on SAT-based Unbounded
Model Checking (UMC) and pre-image computation techniqueshave
demonstrated considerable advancements [8], [9], [10], [11].

In this work, we are mainly concerned with SAT-based pre-image
computation. Since this technique finds states one at a time,we use
the termpre-imageloosely to also refer to asinglestateqj that belongs
to the pre-image ofqi. Furthermore, we use the term state to refer to
a state cube, which is a state encoding that may containunassigned
or don’t carevariables. As such, a state may be a superset (cover) of
other states. For instance, the state cube{v1, v2, v3} =1X1 covers
the states{v1, v2, v3}=101 and{v1, v2, v3}=111. For brevity, in the
remaining of this paper we drop the variable names (i.e.v1, v2, v2)
when describing state values.

C. Reachability Analysis

Reachability analysis is the process of determining whether a
stateqk is reachable from another stateq0. In the realm of UMC,

initial state found

0q

k

pre-image 3

pre-image 1

pre-image 2

q

pre-image i

Fig. 3. Illustration of reachability analysis

reachability analysis can be used to check CTL properties oftype
EFqk whereqk is a bad state andq0 is a legal or initial state [2].

Intuitively, reachability analysis traverses the state space back-
wards from stateqk until a stateq0 is found or a fix-point, where
no new states are found, is reached [2]. Pre-image computation is a
central procedure of reachability analysis as it performs the single
backward steps. The manner in which the state space is traversed
depends on which of the visited states is selected for each pre-
image computation step. If the visited states are stored in astack-like
data structure, a depth-first traversal is performed, whilea queue-like
data structure results in a breadth-first traversal. Figure3 illustrates
a breadth-first reachability analysis process that eventually finds
the initial stateq0. In this figure, the black nodes represent states
while each cone represents a set of states found by one pre-image
computation step.

III. PROPOSEDTRACE COMPACTION APPROACH

In this section we present our proposed trace length compaction
approach. First we introduce the central concept followed by details
of the state selection procedure and the all-solution SAT solver.

A. Reachability Based Trace Compaction
A trace can be represented by a directed graphG = (N, E) where

the nodesN represent states and the edgesE represent transitions
between states. An edge from stateqi to qj denotes thatqi belongs to
the pre-image ofqj andqj belongs to the image ofqi. Our objective
is to reduce the length of the path from the initial stateq0 to the final
stateqk by applying pre-image computation and reachability analysis
techniques.

Our proposed approach performs reachability analysis on all the
states belonging to the original trace. The manner in which states
are selected for reachability analysis is described in Section III-C.
All the states (or state cubes) found by the pre-image computation
steps of the reachability engine are added to the graphG. GraphG
is updated with edges denoting that each newly found statesqi is a
pre-image of some stateqj , selected for pre-image computation.

2

5q

q

4qq0 q1 q2 q3

Fig. 4. Updating the graph G with new nodes and edges

When states found by pre-image computation already exist in
the graphG, extra edges may be drawn inG to illustrate new
legal transitions. These transitions may provide a shorterpath (or
short-cut) from the initial state to the final state thus reducing the
overall trace length. For example consider the situation described
in Figure 4 where the original trace is shown as the sequence
< q0, q1, q2, q3, q4 > and the dashed nodes are states found through
reachability analysis. Sinceq2 is found as a pre-image ofq4, and
q1 is the pre-image ofq2 in the original trace, a new edge shown



as dashed line can be drawn directly from the original (non-dashed)
q2 to q4 and the dashedq2 can be removed. The overall result is a
shorter path fromq0 to q4 which skips nodeq3.

As motivated by the above example, finding state equivalences
in the graphG can lead to more “short-cuts” which can reduce
the overall trace size. Along with the state equivalence relation
discussed, there are other state containment relationships that can
lead to further short-cuts in the graph. The following rulesdetermine
how the graphG is updated after each pre-images computation step.

Consider stateqi found as a pre-image of stateqi+1, and the
sequence< qj−1, qj , qj+1 > existing in the graphG.

• Rule 1. If qi = qj : Stateqi is not added toG, but an edge is
drawn fromqj to qi+1.

• Rule 2. If qi ⊃ qj : Stateqi is added toG, an edge is drawn
from qi to qi+1, and another edge is drawn fromqj to qi+1.

• Rule 3. If qi ⊂ qj : Stateqi is added toG, an edge is drawn
from qi to qi+1, another edge is drawn fromqj−1 to qi, and
another edge is drawn fromqi to qj+1.

The correctness of rule 1 is evident as the images of equivalent
states are also equivalent. Rule 2 can be explained by expanding the
state cubeqi, into two componentsqi = {qj}

S

{qi−qj}. From here
we use the fact that any image ofqi is also an image ofqj . Similarly,
rule 3 can be explained by expandingqj into two componentsqj =
{qi}

S

{qj − qi}.

1X1=

j-1 j+1

i+1

j
qqq

q
i

q

...

...

...

=101 1X1

101=

j-1 j+1

i+1

j
qqq

q
i

q

...

...

...

=

(a) (b)

Fig. 5. Illustrating rules 2 and 3

The following example helps clarify rules 2 and 3. Consider
state qi found as a pre-image of stateqi+1, and the sequence
< qj−1, qj , qj+1 >, where stateqi =1X1 and the stateqj = 101.
By rule 2, an edge is first drawn fromqi to qi+1 to indicate thatqi

is a pre-image of stateqi+1. Since 1X1⊃ 101 andqi+1 is an image
of qi =1X1= {101}

S

{111}, then qi+1 must also be an image of
qj = 101. This scenario is illustrated in Figure 5 (a) with the new
edges drawn as dashed lines. Similarly, by rule 3 an edge is first
drawn to indicate thatqi is a pre-image of stateqi+1. Since state
qi =101 is a subset of stateqj =1X1= {101}

S

{111}, then the
statesqj−1 and qj+1 must be a pre-image and an image ofqi also,
respectively. The three edges added in this scenario are drawn as
dashed lines in Figure 5 (b).

Our overall trace compaction technique using reachabilityanalysis
is shown in Figure 6. Lines 1-7 set up the problem, build the
initial graphG and determine the initial trace length. The remaining
lines perform reachability analysis by selecting a state for pre-
image computation (line 10), computing the pre-images (line 12),
and applying the state containment rules (line 14). The reachability
analysis is terminated after all states have been selected for pre-image
computation or after a maximum,max, number of steps have been
performed determined by the counter.

B. Creating More Short-cuts

As discussed in the previous section, the containment rulesare
critical for creating short-cuts in the graphG. To increase the
likelihood of applying these rules, the reachability engine is slightly
modified from its typical UMC application. Traditionally inUMC,
reachability engines focus on finding only new states and “block”
previously visited states [8]. This allows them to quickly identify

1: G = ∅
2: V isited = ∅
3: counter = 0
4: for all (states qi between q0 to qk (inclusive))

do

5: V isited.add(qi)
6: G = add to graph(qi)
7: end for

8: length = BFS(G, qk, q0)
9: while (counter ≤ max && !V isited.empty())

do

10: qj = select state(V isited)
11: V isited = V isited− qj

12: PreImages = pre-image(qj)
13: for all (states qi ∈ PreImages) do

14: apply rules1 2 3(G, qi, qj)
15: end for

16: V isited = V isited
⋃

PreImages

17: counter = counter + 1
18: length = BFS(G, qk, q0)
19: Print(Trace is of size length)
20: end while

21: return length

Fig. 6. Trace compaction procedure using reachability analysis

when a fixed-point is reached, or when all legal states are visited [9].
In contrast, this work encourages finding previous states orstates
that cover or are covered by others. These containment relationships
allow us to draw additional edges between nodes and increasing the
likelihood of reducing the trace. It should be noted that precautions
are taken to avoid repeatedly visiting the same set of states.

A second technique used to increase the likelihood of applying
the containment rules is to populate the graph with more states than
those provided in the original trace. Since the original trace only
has as many states as its trace length, there may not be enough
unique states to create many short-cuts. We propose populating the
graph initially by computing a single pre-image for the states in the
original trace. This approach allows us to quickly add statecubes
to the graph which leads to more applications of the containment
rules. The practical advantage of this technique is highlighted in the
experiments of Section V.

C. State Selection Procedure
During reachability analysis, which state is selected for pre-image

computation determines the manner in which the state space is
traversed. For instance, if the most recently visited (found) state
is always selected, then the state space is traversed in a depth-first
manner. Here, we develop state selection criteria that helpguide the
reachability engine towards finding short-cuts from the initial state
to the final state. It should be noted that these criterias areheuristics
which may not always be advantageous.

The first criteria is to select a candidate state from the set of visited
states with the smallesthamming distanceto the initial stateq0. The
hamming distance between two states is the number of state variables
with different values (0 or 1). For states with don’t cares (X), every
X matches both the 0 and 1 value. For instance, if states{1100,
1011, 110X, XX01} are visited andq0 = 0000, then state XX01
is selected since it has a hamming distance of 1 with respect to q0.
The intuition behind the above criteria is that states with asmaller
hamming distance toq0 require less state variables to change to reach
q0 as a pre-image. Therefore, the likelihood of findingq0 at the next
step may be higher.

A second factor that influences the state selection procedure is
the path length from a candidate state to the last stateqk. If this
length is greater than 50% of the current shortest path fromq0 to qk

then the state is not considered for selection. This criteria encourages
finding many pre-images near the end of the trace (closer toqk) and
less closer to the initial state. Together, both criterias increase the
probability of creating large short-cuts between states atthe two ends
of the original trace.



D. All-Solution SAT Solver
The reachability engine is highly dependent on the performance

of the pre-image computation engine, which is based on an all-
solution SAT solver. This SAT solver uses circuit don’t cares to
determine whether variables may remain unassigned while satisfying
the problem [10], [12]. Since the don’t cares are propagatedback-
wards through a gate (from output to input) they are ideal forpre-
image computation where current state variablesV can be viewed
as pseudo inputs to the circuit. The all-solution SAT solvercontains
many solution reduction techniques to ensure that small solutions are
returned in an efficient manner [8], [9], [10]. For our application,
achieving small state cubes is critical to traversing the state space
efficiently.

Each pre-image computation step corresponds to a call to theall-
solution SAT solver. Since it may not be practical to find all of the
pre-image states due to the exponential nature of the problem, the
all-solution SAT solver is also equipped with a limitt. If all the
pre-image state cubes are not found in a time and memory efficient
manner, the all-solution SAT solver will return the firstt state cubes
it finds. This allows us to perform reachability analysis by finding
partial pre-images.

IV. STORING V ISITED STATES

The success of the reachability analysis approach described in
Section III depends on the ability to quickly apply the rulesof
Section III-A. More specifically, the situations where a newly found
stateqi 1) is equal to existing states, 2) is a superset of existing
states, or 3) is a subset of existing states must be rapidly identified.
In this section we introduce a data structure that stores allthe states
belonging toG while identifying the state containment relationships
quickly. Note that this data structure is not only viable fortrace
compaction, but can also be used for reachability analysis within a
UMC framework [9], [8], [11].

A. Determining State Containment Relationships
The data structure described here is composed of two components

1) a binary treeT and 2) a hash table. The binary tree is used to
detect the state containment relationships, while the hashtable is used
to locate the exact state.

The state containment relationship depends on the number ofdon’t
cares in each state. A state with more don’t cares may cover one with
fewer, while the converse is not true irrespective of the actual position
of the don’t cares. To take advantage of the above, we allocate an
ordered cubefor each state. The ordered cube is defined as the state
value with all the zeros in the most significant positions, followed
by all ones, followed by the don’t cares (X) in the least significant
positions. For example, five states and their correspondingordered
cubes are shown below.

states 1101X 001X1 XX001 X00X1 X11XX
ordered cube 0111X 0011X 001XX 001XX 11XXX

When states are added to the graphG, they are also stored
according to their ordered cube in the binary treeT . Each node of a
given depth in the binary tree corresponds to a position in the ordered
cube. The top-most node at depth zero of the tree represents the most
significant position, the nodes at depth 1 represent the second most
significant position, the nodes at depth 2 represent the third most
significant position, etc. The left (right) edge of a node denotes a
zero (one) in the ordered cube at the position correspondingto the
parent node. There are no edges corresponding to a don’t carein the
ordered cube. By scanning over the values of an ordered cube from
the most significant to the least significant, the binary treeis traversed
for that cube. Traversal ends when the ordered cube is fully scanned
or when a don’t care is encountered. By the end of the traversal,
the final visited node points to a hash table where the state value is
stored.

0

0

1

1

1

1

1

1

1

1

2

3

4

5

2

3 3

4

5

Hash table

1101X

XX001
X00X1

001X1

X11XX

Fig. 7. Illustrating state storage data structure

The hash table contains all states that map to the same ordered
cube. For instance, at the node corresponding to the orderedcube
001XX in Figure 7, there can be two unique state cubes XX001 and
X00X1. Figure 7 illustrates how the states 1101X, 001X1, XX001,
X00X1, X11XX are stored in the described data structure.

Given a stateqi, this data structure can efficiently determine
whetherqi already exists inG, whetherqi is a subset of other states
in G, and whetherqi is a superset of other states inG. For all three
tasks, first the nodeni corresponding to ordered cube ofqi must be
located in the binary tree. Ifqi exists in the hash table pointed by
nodeni, thenqi already exists inG.

To find whetherqi is a proper subset of other states, all the nodes
with at least as many don’t cares (X) asni have to be visited. At each
node, the states within the hash tables must be tested to determine
if qi is a subset. Within the treeT , the nodes with at least as many
don’t cares asni are found inside anr+1 by s+1 rectangle, where
r is the number of zeros ands is the number of ones inqi. Therefore,
there are(r+1)×(s+1) nodes that can potentially contain supersets
of qi (including nodeni). These nodes are illustrated in the dashed
rectangle above nodeni in Figure 8.

Similarly, to find whetherqi is a proper superset of other states,
all the nodes with at least as many zeros and ones must be visited
and the states within the hash tables must be tested to determine if
qi is a superset. Within the treeT , these nodes are found inside an
isosceles triangle with equivalent sidesn − r − s. Therefore, there
are (n−r−s)(n−r−s+1)

2
nodes that can potentially be subsets ofqi

(including nodeni). These nodes are illustrated in the dashed triangle
under the nodeni in Figure 8.

As demonstrated through Figure 8, only the white nodes must be
considered when searching for subsets and supersets. Therefore, the
number of comparisons required may be only a fraction of the total
number of existing states. In practice, this data structureis found to
be very efficient since the treeT is often not fully populated and the
number of items in each hash table is relatively small.

The procedure for finding the supersets (covers) of a given state
qi is presented in Figure 9. Lines 2-3 generate the ordered cubeand
find its location in the treeT . Line 4 gets all the potential superset

n-r-s
ni

r

n-r-s

s

Fig. 8. Finding supersets and subsets in the treeT



1: Covers = ∅
2: ordered cube = Order(qi)
3: ni = Get tree node(ordered cube)
4: Supset =get rectangle(ni)
5: for all (nodes nj in Supset) do

6: for all (states qj in hash table of nj) do

7: if (qj ⊇ qi) then

8: Covers = Covers
⋃

qj

9: end if

10: end for

11: end for

12: return Covers

Fig. 9. Determine the states that are supersets of this state

nodes by finding the nodes contained in the rectangle. The remaining
lines iterate through these nodes and test the states insidethe hash
tables to determine whether they are supersets ofqi. Note that testing
whether a particular node is a superset or a subset of anotheris a
simple comparison procedure where the states must be identical over
all positions except where the superset is a don’t care. A procedure
similar to that of Figure 9 is used to find the subsets ofqi where
the get rectangleprocedure is replace withget triangle as described
previously.

V. EXPERIMENTS

In this section we demonstrate the effectiveness and efficiency
of the proposed trace compaction approach. All experimentsare
conducted on a Sun Blade 1000 with a 750MHz Sparc processor and
2.5GB of memory. Traces of length 50, 100, and 1000 are obtained
via random simulation for the circuits in the ISCAS’89 and ITC’99
benchmark suites. The reachability analysis engine is developed using
the all-solutions SAT solver of [10] which is a circuit variant of
zChaff [7] and Grasp [13]. To evaluate the overall proposed approach
we limit the number of stored states to at most 10,000 statecubes
and do not use an explicit timeout. Since the compaction techniques
of previous works [3], [4], [6] are not publicly available and due to
the fact that the assertions and errors used are unknown, we cannot
directly or indirectly compare with them.

We first evaluate the effectiveness of the state selection procedure
described in Section III-C. We compare this heuristic against three
other selection approaches, Depth-First Search (DFS), Breadth-First
Search (BFS), and random selection. The above techniques are used
to perform reachability analysis from a random state to the initial
state given a timeout of 200 seconds. The runtimes over all the
benchmarks are collected and presented in Figure 10. Both the DFS
and BFS methods result in runtimes of over 4000 seconds, while the
random method fares better at over 3500 seconds. The proposed state
selection strategy based on the smallest hamming distance relative to
the initial state and the position of the state in the graphG results in
runtimes of just over 3000 seconds. This performance demonstrates
that the proposed state selection heuristics is an efficientoverall
reachability analysis procedure.

2000

2500

3000

4000

4500

R
un

tim
e 

(s
)

3500

BFS DFS random proposed
State selection methods

Fig. 10. Comparison of state selection methods

Next, we demonstrate the effectiveness of the overall proposed
trace compaction approach. Table I illustrates the resultsof the

experiments on all ISCAS’89 and ITC’99 circuits for traces of length
50, 100 and 1000. The first column shows the circuit names while the
remaining columns are organized into three sections based on their
original trace length. The first column of each section labeled org
describes the original length of each trace (50, 100, or 1000). The
second column of each section labeledpre describes the length of the
traces after performing the single step pre-image process described
in Section III-B. We chose to find single step pre-images for no
more than 50 states to achieve a balance between the number ofpre-
images found and the time required to find them. The third column
of each section labeledreach, presents the length of the traces after
applying the proposed reachability analysis method. As described in
section III-B, it is most beneficial to first find the single step pre-
images followed by the reachability analysis (reach) method. The
fourth and fifth columns of each section, labeledcpu pre and cpu
reach respectively, present the runtimes in seconds associated to the
pre and reach techniques.

Table I shows that the pre-image computation techniques help
reduce the traces considerably. For many circuits, the original trace
length is first reduced greatly by the single step pre-image (pre)
technique and further reduced by the reachability analysis(reach).
For example, the trace for circuit s344 is first reduced from 50 to 33
usingpre, and then again from 33 to 1 usingreach.

Analyzing the results of Table I, we notice that many traces are
reduced to having a single clock cycle (length of 1) or a very small
trace size after applying reachability analysis. This result can be
partially attributed to the state selection heuristics of Section III-C
and the performance improvement techniques of Section III-B. These
techniques can increase the number of “short-cuts” createdthrough
the graphG and likelihood that they will lead to the initial state.

Table II summarizes the results in Table I by providing the
average length compactions (reductions) achieved by the different
components of the proposed approach for traces of size 50, 100,
and 1000. Similar to Table I, the summaries are provided for each
original trace length separately. Column one presents the name of
the compaction method: single step pre-image computation (pre),
reachability analysis (reach), or combined. For each trace length, the
overall average reduction is presented under the labelavg. reduced.
This field is calculated by adding the reduction in size over all
circuits divided over the number of circuits. Since not all circuit
traces are reduced by the proposed method, this number may not
provide a good representation of the average factor of reduction
achieved. Instead, the columns labeledaffectedand reducedshow
the percentage of traces that are affected by each approach and
the amount by which they are reduced, respectively. For example,
for traces of length 50, the proposed approaches separatelyachieve
10.08 times and 3.81 times reductions while the combined approach
reaches 19.67 times reductions. Furthermore, approximately 70% of
the circuits are affected by thepre techniques which results in an
average reduction of 13.77 times. Similarly, thereach technique and
the combined approach affect 37% and 74% of traces for a reduction
of 8.45 times and 25.72 times, respectively.

The experimental results demonstrate that not only is the proposed
approach effective for reducing traces, but it is also very efficient. For
the majority of circuits in Table I, compacted traces are found within
a few minutes. This performance reaffirms the practicality of the
data structure introduced in Section IV. The memory requirements of
the overall approach are also manageable since memory usagenever
exceeds 300MB when storing up to 10,000 state cubes. The ability
to quickly reduce traces in a memory efficient manner is crucial for
making this approach viable in real-life debugging environments.

VI. CONCLUSION

This work proposed a novel trace reduction technique using SAT-
based reachability analysis and a set of state containment relation-
ships. The components of the reachability analysis engine are fine-
tuned to increase the likelihood of generating short-cuts in the original



circuits org pre reach cpu pre cpu reach org pre reach cpu pre cpu reach org pre reach cpu pre cpu reach

s208.1 50 25 25 0.00 0.56 100 51 51 0.07 0.60 1000 244 244 0.08 9.26

s298 50 1 1 0.00 0.00 100 3 1 0.59 0.86 1000 1 1 0.34 0.01

s344 50 33 1 0.00 0.00 100 55 1 0.31 0.00 1000 10 5 0.42 0.08

s349 50 33 1 0.00 0.00 100 55 1 0.32 0.00 1000 10 5 0.39 0.08

s382 50 3 1 0.00 0.17 100 4 2 0.75 0.00 1000 1 1 0.89 0.00

s386 50 1 1 0.00 0.00 100 2 2 0.09 0.00 1000 2 2 0.06 0.00

s400 50 3 1 0.00 0.01 100 2 1 0.69 0.01 1000 2 1 0.74 0.05

s420.1 50 21 21 0.01 1.20 100 44 44 0.13 0.97 1000 505 505 0.14 25.85

s444 50 2 1 0.01 0.01 100 3 1 0.98 0.93 1000 1 1 0.67 0.01

s510 50 24 24 0.00 0.87 100 10 10 0.13 0.66 1000 25 25 0.12 0.56

s526 50 2 1 0.00 0.03 100 3 1 1.27 0.86 1000 1 1 1.09 0.03

s526n 50 2 1 0.00 0.03 100 3 1 1.26 0.86 1000 1 1 1.17 0.02

s641 50 3 3 0.00 1.65 100 4 4 1.81 2.10 1000 2 2 1.72 5.86

s713 50 3 3 0.00 1.65 100 4 4 1.80 2.01 1000 2 2 1.76 2.88

s820 50 1 1 0.00 0.00 100 1 1 0.00 0.00 1000 1 1 0.38 0.00

s832 50 1 1 0.00 0.00 100 1 1 0.00 0.00 1000 1 1 0.4 0.00

s838.1 50 26 26 0.00 1.87 100 45 45 0.26 2.07 1000 510 510 0.27 48.48

s953 50 6 5 0.00 1.38 100 1 1 2.52 0.00 1000 1 1 3.25 0.01

s1196 50 8 1 0.00 0.05 100 14 1 0.89 0.12 1000 5 1 1.11 0.03

s1238 50 8 1 0.01 0.05 100 14 1 0.84 0.11 1000 5 1 0.96 0.02

s1423 50 50 2 0.01 3.41 100 57 2 6.19 3.55 1000 15 3 6.24 67.61

s5378 50 50 50 0.04 0.89 100 100 100 23.76 1.03 1000 1000 1000 26.18 5.86

s9234.1 50 50 50 0.04 22.67 100 100 100 50.26 1.76 1000 1000 1000 49.89 11.55

s9234 50 34 34 0.02 1.67 100 36 36 46.99 1.66 1000 35 35 47.41 10.76

s13207.1 50 50 50 0.28 3.52 100 100 100 96.76 4.20 1000 1000 1000 105.92 7.61

s13207 50 50 50 0.23 3.29 100 100 100 91.57 4.17 1000 1000 1000 98.79 7.74

s15850.1 50 50 50 0.12 5.82 100 100 100 145.67 87.18 1000 1000 1000 140.31 9.01

s15850 50 50 50 0.07 3.45 100 100 100 96.18 4.19 1000 1000 1000 222.94 8.09

s38417 50 50 50 1.07 40.58 100 100 100 311.05 154.30 1000 1000 1000 340.83 25.74

s38584.1 50 50 50 1.27 11.83 100 100 100 336.97 12.37 1000 1000 1000 375.70 25.68

s38584 50 50 50 1.26 59.15 100 100 100 315.11 185.30 1000 1000 1000 344.44 23.85

b01 50 6 2 0.09 0.00 100 4 4 0.10 0.04 1000 4 4 0.9 0.04

b02 50 2 2 0.04 0.00 100 4 4 0.04 0.01 1000 4 4 0.4 0.01

b03 50 14 2 1.17 0.07 100 26 2 1.20 0.05 1000 8 8 1.32 13.54

b04 50 50 50 6.57 3.79 100 100 100 6.26 4.54 1000 1000 1000 6.89 27.88

b06 50 3 1 0.65 0.00 100 3 3 0.63 0.04 1000 2 2 0.62 0.03

b07 50 43 43 0.35 1.81 100 51 51 0.34 1.70 1000 56 56 0.28 14.56

b08 50 43 7 0.11 1.17 100 92 2 0.16 0.00 1000 329 5 0.16 0.02

b09 50 50 17 0.16 0.96 100 97 97 0.17 1.56 1000 82 82 0.18 18.70

b10 50 22 22 0.36 1.19 100 45 21 0.31 1.56 1000 32 32 0.59 9.56

b11 50 35 25 1.44 3.06 100 98 88 2.50 4.07 1000 550 550 1.92 27.68

b12 50 14 14 8.03 5.97 100 20 20 7.51 2.50 1000 36 36 7.89 34.85

b13 50 45 45 2.10 2.22 100 99 98 2.05 2.80 1000 1000 1000 2.57 19.54

b14 50 50 50 42.48 1.84 100 100 100 47.68 24.18 1000 1000 1000 52.92 3.93

b15 50 49 49 76.63 6.19 100 100 100 56.65 43.78 1000 87 87 52.11 230.41

TABLE I

EXPERIMENTAL RESULTS FOR THE PROPOSED TRACE LENGTH COMPACTION APPROACH FOR TRACES OF LENGTH50, 100AND 1000.

orginal size 50 orginal size 100 orginal size 1000

approach avg. reduced affected reduced avg. reduced affected reduced avg. reduced affected reduced

pre 10.08 X 70 % 13.77 X 16.88 X 72 % 22.66 X 266.35 X 71 % 362.84 X

reach 3.81 X 37 % 8.54 X 6.10 X 35 % 15.36 X 2.77 X 15 % 12.40 X

combined 19.67 X 74 % 25.72 X 36.21 X 72 % 49.01 X 327.76 X 72 % 446.59 X

TABLE II

SUMMARY OF THE RESULTS FOR THE PROPOSED TRACE LENGTH COMPACTION APPROACH

trace. Furthermore, a novel data structure is presented which stores
visited states such that the state containment relationships can be
quickly applied. Experiments demonstrate the effectiveness of the
proposed techniques as approximately 75% of the traces are reduced
by one or two orders of magnitude.

REFERENCES

[1] P. Rashinkar, P. Paterson, and L. Singh,System-on-a-chip Verification:
Methodology and Techniques. Kluwer Academic Publisher, 1996.

[2] T. Kropf, Introduction to Formal Hardware Verification. Springer, 1999.
[3] Y. Chen and F. Chen, “Algorithms for compacting error traces,” inASP

Design Automation Conf., 2003, pp. 99–103.
[4] S. Shen, Y. Qin, and S. Li, “A faster counterexample minimization

algorithm based on refutation analysis,” inDesign, Automation and Test
in Europe, 2005, pp. 672–677.

[5] K. Chang, V. Bertacco, and I. Markov, “Simulation-basedbug trace
minimization with BMC-based refinement,” inInt’l Conf. on CAD, 2005,
pp. 1045–1051.

[6] S.-J. Pan, K.-T. Cheng, J. Moondanos, and Z. Hanna, “Generation of
shorter sequences for high resolution error diagnosis using sequential
sat,” in ASP Design Automation Conf., 2006, pp. 25–29.

[7] J. Marques-Silva and K. Sakallah, “GRASP – a new search algorithm
for satisfiability,” in Int’l Conf. on CAD, 1996, pp. 220–227.

[8] K. McMillan, “Applying SAT methods in unbounded symbolic model
checking.” inComputer Aided Verification, 2002, pp. 250–264.

[9] H.-J. Kang and I.-C. Park, “SAT-based unbounded symbolic model
checking,” IEEE Trans. on CAD, vol. 24, no. 2, pp. 129–140, 2005.

[10] S. Safarpour, A. Veneris, and R. Drechsler, “Integrating observability
don’t cares in all-solution SAT solvers,” inIEEE International Sympo-
sium on Circuits and Systems, 2006, pp. 1587–1590.

[11] B. Li, M. Hsiao, and S. Sheng, “A novel SAT all-solutionssolver for
efficient preimage computation,” inDesign, Automation and Test in
Europe, 2004, pp. 272–277.

[12] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Sat sweeping with local observability don’t-cares,” inDesign Automa-
tion Conf., 2006, pp. 229–234.

[13] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” inDesign Automation Conf., 2001,
pp. 530–535.


