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Abstract— In today’s SoC design cycles, debugging is one of
the most time consuming manual tasks. CAD solutions strive
to reduce the inefficiency of debugging by identifying error
sources in designs automatically. Unfortunately, the capacity and
performance of such automated techniques must be consider-
ably extended for industrial applicability. This work aims to
improve the performance of current state-of-the-art debugging
techniques, thus making them more practical. More specifically,
this work proposes a novel design debugging formulation based
on maximum satisfiability (max-sat) and approximate max-sat.
The developed technique can quickly discard many potential
error sources in designs, thus drastically reducing the size of the
problem passed to an existing debugger. The max-sat formulation
is used as a pre-processing step to construct a highly optimized
debugging framework. Empirical results demonstrate the effec-
tiveness of the proposed framework as run-time improvements
of orders of magnitude are consistently realized over a state-of-
the-art debugger.

I. INTRODUCTION

Functional verification tasks dominate the effort of con-
temporary VLSI and SoC design cycles. A major step of
functional verification is design debugging, which determines
the root cause of failed verification tasks such as simulation
or equivalence checking. For example, when a simulation
run fails because a design’s behavior is inconsistent with its
specification, debugging identifies the components responsible
for the discrepancy.

Hardware debugging is overwhelmingly performed manu-
ally in the industry today. Designers and verification engineers
must analyze the failed verification instances, the design and
the specification to realize which design components or blocks
are the root cause of the failure. Due to the “guess-and-check”
nature of the problem, this task is accepted as one of the most
time-consuming processes of the VLSI and SoC design cycles.
As design complexities nearly double with every generation, so
does the daunting debugging effort. Clearly, automated debug-
ging solutions are needed to increase a designer’s debugging
and verification efficiency.

Automated debugging is a computationally intensive prob-
lem since its complexity increases dramatically with the size
of the design, the length of the error traces and with the
number of errors present in the design. There is a rich
history of debugging techniques and algorithms developed
over the last decades which seek to tackle this problem [1],
[2], [6]. Although efficient for relatively small design blocks
and particular design types, these solutions have not been

extended to industrial problems. More recently, several debug-
ging techniques based on formal techniques such as Boolean
Satisfiability (SAT) [10] and Quantified Boolean Formula
(QBF) [5] have demonstrated great promise and encouraged
further research in formal techniques for debugging. Despite
these successes, the capacity and performance of both tra-
ditional and newer debugging techniques must be greatly
improved to make debugging practical for industrial problems.

This work proposes a novel framework with the aim of
greatly reducing the run-time of state-of-the-art debuggers.
This technique presents the first maximum satisfiability (max-
sat) formulation for design debugging. The formulation is
constructed using the constraints corresponding to the erro-
neous design, the input stimulus, and the expected correct
response. The formulation is unsatisfiable, since the incorrect
design cannot produce the correct response, and it can only
be satisfied if some of the constraints are removed. An all-
solution max-sat solver can iteratively find maximal satisfi-
able subsets of the constraints. The complement of any of
these subsets is a set of constraints whose removal makes
the problem satisfiable. These constraints will be shown to
correspond directly to the erroneous gates or components in
the design. The proposed max-sat technique is developed for
combinational and sequential circuits as well as for problems
with single or multiple input stimuli and expected responses.

The proposed technique is an alternative approach to
hardware debugging which can be easily enhanced to over-
approximate solutions. The over-approximation allows for a
trade-off between the tool’s performance and the resolution of
the solutions. More specifically, approximation can reduce the
problem complexity and thus require less run-time at the cost
of finding larger, less precise solutions. Although not exact,
this approach can be employed as a pre-processing step that
filters solutions for a second stage exact debugger. The second
debugger benefits from having fewer suspect error sources
which translates into faster run-times. The combined two-step
debugging framework reduces the complexity of both stages,
resulting in an efficient debugging solution.

A suite of experiments on combinational and sequential
circuits for single and multiple vectors are conducted to
demonstrate the benefit of the proposed framework. On aver-
age, the over-approximation technique quickly eliminates 92%
of the suspects. The second stage debugger uses the filtered
suspects to find the exact error sources in a fraction of the time



it would take otherwise. Overall, performance improvements
of 200 times or two orders of magnitude over a state-of-the-art
debugger are observed consistently.

In the next section, background is provided on the max-
sat approach used as well as on design debugging. Sec. III
presents the proposed max-sat approach for combinational
circuits and Sec. IV extends this for sequential circuits and
for multiple vectors. Sec. V present the over-approximation
technique and the overall framework developed for opti-
mal performance, respectively. Experiments are presented in
Sec. VI followed by the conclusion in Sec. VII.

II. BACKGROUND

A. Maximum Satisfiability

The algorithm from [8] is used to solve a generalization of
the max-sat problem. While max-sat is concerned with finding
a satisfiable set of clauses with maximum cardinality, this can
be generalized to find Maximal Satisfiable Subsets (MSSes).
An MSS is a satisfiable subset of a formula’s clauses that is
maximal in the sense that adding any one of the remaining
clauses would make it UNSAT. Any max-sat solution is of
course an MSS, but MSSes can be different (smaller) sizes as
well. In this work, the complements of MSSes, sets of clauses
whose removal makes the instance satisfiable, are of interest.
Just as an MSS is maximal, its complement is minimal, and
we refer to such a set as a Minimal Correction Set (MCS).
This work makes use of two following techniques developed
as extensions to the algorithm from [8]:

• Finding all MCSes up to size k

• Grouping clauses to produce ”approximate” MCSes

Finding all MCSes up to size k is performed by the
algorithm AllMCSes from [8], which was developed as the
first phase of an approach for finding all Minimal Unsatisfiable
Subsets (MUSes). This procedure solves consecutive optimiza-
tion problems, finding MCSes in order of increasing size
(equivalent to finding their complementary MSSes in order
of decreasing size). MCSes are returned as they are found,
and execution can be stopped when a size limit is reached.

The second ability, of grouping clauses, depends on the
way the algorithm uses clause-selector variables. Every clause
Ci is augmented with a new variable yi, producing C ′

i =
(yi + Ci) = (yi → Ci). When yi is assigned TRUE, the
original clause Ci must be satisfied, while when yi is FALSE,
C ′

i is satisfied, essentially disabling the original clause. This
gives a standard SAT solver the ability to enable and disable
constraints implicitly within the normal backtracking search.
By assigning the same y variable to multiple clauses, a set
of clauses can be treated as a single higher-level constraint
(the conjunction of all clauses given the same y variable) that
can be enabled and disabled at once. Using this approach,
each MCS is a minimal set of groups of constraints whose
removal makes the instance satisfiable. This leads to an over-
approximation of an MCS of the original clauses, because
extra clauses will be included in groups even though they may
not be necessary. The benefit of the over-approximation is that

it can greatly increase the performance of the algorithm as the
search space is reduced exponentially.

This work uses the MCS techniques outlined above for
debugging. Although not precise in the general case, the
term max-sat is used throughout to refer collectively to the
techniques above for simplicity.

B. Automated Design Debugging

The problems of design debugging and fault diagnosis,
which occur at different stages of the VLSI design cycle,
have strong similarities. The latter occurs when a fabricated
chip fails during the testing phase due to the presence of
manufacturing defects [10], while design debugging occurs at
the early stages of the design cycle, when the implemented
design does not meet its functional specifications. In this
paper the terminology and assumptions are those of design
debugging, however, the proposed techniques can apply to
fault diagnosis as well.

The input of the design debugging problem is an erroneous
circuit C, a set of input stimuli I for which the design fails
verification, and the corresponding correct output responses O.
The components I and O, also called input/output vectors, can
be obtained from simulation-based verification tools or formal
tools such as equivalence checkers and model checkers.

An error source at the circuit-level exhibits an erroneous
response at the primary outputs for at least one of the provided
vectors. In this paper, a model-free diagnosis strategy is
used, which can “detect” any type of gate/module error. The
error cardinality Ng is the maximum number of simultaneous
error sources the debugger assumes exist in the circuit. The
complexity of design debugging increases exponentially with
the error cardinality [11]. A design debugging tool must return
all possible solutions, i.e. all potential error tuples up to the
size of the error cardinality.

Traditionally, methods based on simulation, path-tracing
and binary decision diagrams have been used to tackle the
design debugging problem [1], [2], [6]. Recently, SAT-based
strategies [10] have been proven to be effective as their
performance increases with that of the underlying SAT solvers.
This approach formulates the design debugging problem by
constructing circuit constraints, translating it to a Boolean
formula in Conjunctive Normal Form (CNF), and giving it
to an all-solution SAT solver. Note that deriving a CNF
from a circuit is a simple linear time algorithm as there is
a one-to-one correspondence between circuit gates and CNF
formulas. Table I shows five basic gates along with their CNF
representations.

Gate CNF
y = NOT(x) (x + y) · (x + y)

y = AND(x1, x2, . . . , xn)
(x1 + y) · (x2 + y) · . . . · (xn + y)·

(x1 + x2 + · · · + xn + y)

y = OR(x1, x2, . . . , xn)
(x1 + y) · (x2 + y) · . . . · (xn + y)·

(x1 + x2 + · · · + xn + y)

y = XOR(x1, x2)
(x1 + x2 + y) · (x1 + x2 + y)·
(x1 + x2 + y) · (x1 + x2 + y)

y = MUX(s, x1, x2)
(x1 + y + s) · (x1 + y + s)·
(x2 + y + s) · (x2 + y + s)

TABLE I

GATE TO CNF TRANSLATION



III. DEBUGGING COMBINATIONAL CIRCUITS WITH

MAX-SAT

Given an erroneous circuit C, an input stimulus I , and the
corresponding correct output response O a CNF formula can
be produced as follows.

Φ = I · O · CNF(C)

This CNF problem is naturally unsatisfiable because the er-
roneous circuit cannot produce the correct output response
under the given input vector. Since the inconsistency between
a circuit’s actual and correct response is due to some gate-level
error sources, the unsatisfiability of the problem is due to the
clauses derived from these error sources. In other words, the
clauses that are at conflict in the CNF correspond to the circuit-
level error sources from which they are derived. Therefore, the
circuit-level errors can be identified by finding the CNF-level
error clauses.

The max-sat approach in Sec. II-A can identify Maximal
Satisfiable Subsets (MSSes) whose complements are Minimal
Correction Sets (MCSes). These MCSes represent sets of
clauses whose removal from the CNF make the problem
satisfiable. In the formula Φ constructed using the constraints
I , O, and CNF(C), the MCSes map directly to error clauses.
Once the error clauses are identified through MCSes, the gate-
level suspects are found by mapping each clause to the gate
it is originally derived from as described in Sec. II.

e

d

c

1

1
0 a

b

1B

A

(a)

e

d

cb

a

01

1
0

B

A

(b)

Fig. 1. Correct and erroneous circuit

For example, consider the correct and erroneous circuit in
Fig. 1 (a) and (b) where gate A is mistakenly implemented as
an AND gate instead of an OR gate. Under the input stimulus
{a = 0, b = 1, d = 1} the circuit has a response of {e = 0}
instead of the correct response of {e = 1}. The corresponding
erroneous CNF for the circuit and the input/output vectors are
shown below.

(a) · (b) · (d) · (e)
(a + c) · (b + c) · (a + b + c)
(c + e) · (d + e) · (c + d + e).

Here, the max-sat approach described in Sec. II-A can return
the MCS (a + c) as a solution because removing this clause
from the CNF makes the formula satisfiable. Notice that this
clause is derived from the erroneous gate A.

The above example illustrates how the removal of an error
clause can help identify the error source. Further analysis of
the example demonstrates that there are other clauses such

as (c + e) whose removal can satisfy the problem. Indeed,
more than one error clause may exist in a given problem
corresponding to the many potential error sources at the gate-
level. These are more commonly known as equivalent errors
or faults in the diagnosis literature [1]. Note that the removal
of the clause (a) also satisfies the problem, however since this
constraint is not part of the circuit component of the CNF (i.e.
C), it is not considered as an error clause.

For the debugging technique to be complete, all equivalent
errors must be found. Each of these is known as a suspect
error source because it may fix the problem such that erroneous
circuit produces the correct response for the given input vector.
As a result, the AllMCSes algorithm of Sec. II-A is used
to find all error clauses and consequently all gate-level error
suspects.

A. Error Clause Cardinality

Since the solution space for the AllMCSes algorithm is
exponential, an explicit limit for the maximum cardinality
of the MCSes is advised to prevent memory explosion. In
practice, this limit, called the error clause cardinality, must
be relatively small due to memory and performance considera-
tions. The error clause cardinality determines the completeness
and efficiency of the proposed technique.

Since this work is primarily concerned with gate-level
debugging the limit used must correspond with the gate-level
cardinality of conventional debuggers. In Sec. II the error
cardinality Ng is defined as the maximum gate tuples that
may be responsible for the erroneous behavior. At the level
of the CNF encoding, the error clause cardinality Nc must
be set to a value such that all the gate-level errors at Ng

can be found using the proposed max-sat approach. Thus
completeness in this context is with respect to the gate-level
debuggers such as [5]. The following theorem proves that the
proposed approach is complete for a given value of Ng .

Theorem: The algorithm AllMCSes called on the problem
Φ = I · O · CNF(C) with a limit of Nc is complete if Nc

is equal to [the maximum number of clauses derived for any
single gate in the CNF] ×Ng.

Proof: Proof by contradiction. Suppose there is a gate-level
error not identified by the proposed approach using the error
cardinality limit Nc. Since AllMCSes iteratively finds sets of
clauses with cardinality 1 up to Nc, the gate-level error must be
caused by more than Nc clauses. However, Nc is equal to the
maximum number of clauses derived from any one gate times
Ng, so the error must be caused by more than Ng gate-level
sources. Therefore the error is not found using conventional
debuggers with Ng either.

�

In many circuit-based SAT problems, the circuit is first con-
verted to a 2-input AND-INVERTER graph and then translated
into CNF [4], [7]. In such a CNF formula, the maximum
number of clauses from any gate is 3, thus Nc = 3×Ng. Using
this value for Nc results in finding all the solutions found using
conventional debuggers with Ng. In CNF formulas derived
from arbitrary circuits where the number of clauses generated



can greatly vary from one gate to another, the proposed max-
sat debugging technique may return more solutions than the
gate-level debugger for a given Ng. As discussed further
in Sec. V this scenario does not pose a problem under the
proposed framework.

B. Error Group Cardinality

The previous section presented a limit for the error clause
cardinality to guarantee completeness for the proposed ap-
proach. Although complete, increasing the error clause cardi-
nality is not always desired as the complexity of the debugging
problem is exponentially related to the error cardinality. Here,
the grouping ability described in Sec. II-A is used to reduce the
complexity of the problem while maintaining completeness.

Grouping all clauses derived from the same gate together
allows the max-sat solver to “enable” or “disable” all of those
clauses simultaneously. In effect, this gives the solver the
ability to treat each gate as a single high-level constraint,
leading to solutions (MCSes) found directly in terms of the
gates. Under this problem restriction, the error clause-group
cardinality, Ncg required to find gate-level errors can be
effectively Ng.

Theorem: By grouping all clauses derived from the same
gate together, the proposed technique is complete if the error
clause-group cardinality Ncg = Ng.

Proof: Since each group has a one-to-one correspondence
with a circuit gate, when a group is found as part of an MCS,
all clauses corresponding to the original gate are “disabled”
by the AllMCSes algorithm. Thus every solution found by
AllMCSes maps to a set of the original gates. Hence, lim-
iting the group cardinality is equivalent to limiting the gate
cardinality.

�

Re-visiting the example of Fig. 1, grouping the clauses of
gate A together with the clause-selector variable yA and the
clauses of gate B together with the clauses-selector variable
yB , results in the following CNF.

(a) · (b) · (d) · (e)
(a + c + yA) · (b + c + yA) · (a + b + c + yA)
(c + e + yB) · (d + e + yB) · (c + d + e + yB).

IV. EXTENSION TO SEQUENTIAL CIRCUITS AND

MULTIPLE VECTORS

Debugging sequential circuits is similar to that of combina-
tional circuits except that their behavior must be modeled for a
finite number of clock cycles. These clock cycles are necessary
to excite and observe the errors. A popular approach for
modeling sequential circuits is to use the time-frame expansion
technique or the Iterative Logic Array (ILA) representation.
These techniques replicate a circuit’s transition relation, called
a time-frame, and connect the current-state and the next-
state of adjacent time-frames together. In effect, the sequential
circuit is transformed into an “unfolded” combinational circuit
that can be debugged like any other combinational circuit.

Since the complexity of debugging increases exponentially
with the number of error sources, debuggers must be careful
not to consider the “replicated” gates across time-frames as

unique error sources. For example, a single gate-level error in
an ILA with 3 time-frames may appear to have 3 distinct error
locations, however, replacing the functionality of a single gate
in the original sequential circuit will fix the problem in all
time-frames.

The proposed max-sat debugging technique can be extended
to handle sequential designs efficiently. First, the sequential
circuit is converted to an ILA and then translated into CNF.
Similar to the previous formulation the CNF is then con-
strained with input stimulus and output response, I and O

resulting in

Φ = I · O · CNF(ILA(C)).

The second step is to account for the replication due to the
ILA by grouping all clauses derived from the same gate but
from any time-frame. As a result, clauses from a particular
gate will be “enabled” and “disabled” at once irrespective of
the time-frames they represent.
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Fig. 2. Erroneous sequential circuit and its ILA representation
For example consider the erroneous sequential circuit shown

in Fig. 2(a) and its ILA in Fig. 2(b). Here, the gate A has
been erroneously implemented as an AND gate instead of an
OR gate. As a result, the output of A in the first and second
time-frames should be 1 instead of 0. Note that the input
stimulus and correct response are also shown in Fig. 2(b). The
corresponding CNF for the constrained ILA is shown below.

(a1) · (b1) · (d1) · (e1)

(a1 + c1) · (b1 + c1) · (a1 + b1 + c1)

(a1 + e1) · (d1 + e1) · (a1 + d1 + e1)

(c1 + a2) · (c1 + a2)

(b2) · (d2) · (e2)

(a2 + c2) · (b2 + c2) · (a2 + b2 + c2)

(a2 + e2) · (d2 + e2) · (a2 + d2 + e2)

(c2 + a3) · (c2 + a3)

(b3) · (d3) · (e3)

(a3 + c3) · (b3 + c3) · (a3 + b3 + c3)

(a3 + e3) · (d3 + e3) · (a3 + d3 + e3)

In the above example, the clauses corresponding to gate A in
both time frames 1 and 2 are responsible for the discrepancy
between the actual and correct response. Specifically, these
are (b1 + c1) and (b2 + c2). However, by grouping all clauses
derived from gate A together and those from gate B together,
irrespective of the time-frames, the single group solution is
returned. Below is the modified CNF based on grouping
clauses from gate A (B) together with the clause-selector
variable yA (yB).



(a1) · (b1) · (d1) · (e1)

(a1 + c1 + yA) · (b1 + c1 + yA) · (a1 + b1 + c1 + yA)

(a1 + e1 + yB) · (d1 + e1 + yB) · (a1 + d1 + e1 + yB)

(c1 + a2) · (c1 + a2)

(b2) · (d2) · (e2)

(a2 + c2 + yA) · (b2 + c2 + yA) · (a2 + b2 + c2 + yA)

(a2 + e2 + yB) · (d2 + e2 + yB) · (a2 + d2 + e2 + yB)

(c2 + a3) · (c2 + a3)

(b3) · (d3) · (e3)

(a3 + c3 + yA) · (b3 + c3 + yA) · (a3 + b3 + c3 + yA)

(a3 + e3 + yB) · (d3 + e3 + yB) · (a3 + d3 + e3 + yB)

For debugging problems with multiple vectors, ~I =
{I1, I2, ...}, ~O = {O1, O2, ...}, the union of the CNF problems
for each vector results in a single constraint system. In other
words the CNF corresponding to the circuit, C is again repli-
cated for each vector. Similar to the approach for sequential
circuit, all clauses derived from the same gate, regardless of
which replica of C they occur in, must be grouped together
and treated as a single error source. It should be noted that
the groupings for multiple vectors and sequential circuits is in
addition to the gate groupings discussed in Sec. III.

V. DEBUGGING WITH APPROXIMATE MAX-SAT

In practice, debugging via an exact max-sat formulation
may not be practical, as the number of groups and clauses
under consideration can be quite high thus resulting in a “hard”
max-sat problem. The proposed max-sat strategy can be easily
modified to perform an over-approximation instead of finding
exact solutions. The benefit of the over-approximation is that
the speed and resolution trade-off can be adjusted for the
problem: reducing the resolution or granularity of the solutions
found yields decreased run-time.

The over-approximation is achieved by grouping clauses
together as described in Sec. II-A and finding the MCSes
in terms of the groups. Note that the groupings discussed
here are in addition to those presented in Sec. III and IV.
Different grouping strategies can be easily formulated ranging
from random groupings to those based on a circuit’s topology
or structure. Similarly, groups can differ in cardinality from
a single clause to thousands of clauses. For instance, a set
of clauses can be grouped together if they are in the same
fanout-free cone which is similar to the dominator debugging
technique introduced in [10]. Another example is grouping
based on a high-level modules derived from RTL similar to
the technique of [3]. Intuitively, generating groups based on
the circuit’s structure or modularity may be advantageous
as fewer solutions/suspects may be returned compared to
arbitrary grouping schemes.
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Fig. 3. Error masking in clause groupings
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Grouping clauses may increase the effect of error masking,
in which some error sources may not be detected as they are
masked by others [3]. This also occurs in traditional diagnosis
techniques when error-free models are used. For instance,
consider the gates shown in Fig. 1 and a pair of errors on
gates A and B. In this scenario, the single model-free error,
A, masks the pair solution of A and B.

Similar scenarios can occur when grouping clauses together,
especially if the groups are made arbitrarily. For instance,
consider the CNF illustrated in Fig. 3 where some clauses are
grouped in A and other are grouped in B. Further consider a
pair of error clauses illustrated by the “X”. Here, the single
solution identifying group A masks the pair solution A and B.
It should be emphasized that error masking is not unique to the
proposed technique as it occurs in gate-level and hierarchical
debugging as well [3].

A. Efficient Max-sat Framework

This section presents a performance optimized debugging
framework using the discussed max-sat technique. The com-
plexity of conventional debugging techniques such as SAT-
based tools depend to a large extent on the number of
suspects that must be considered. In the past, divide and
conquer schemes based on the problem hierarchy have proven
beneficial [3]. Here, the approximate max-sat approach can
be used as a filter to remove the majority of the suspects by
quickly finding over-approximate solutions. Subsequently, any
exact debugging approach can be used and will benefit greatly
by not having to consider all the original suspects during its
analysis.

Any type of grouping can be used; however, in the remain-
der, clauses are grouped in sets of size G according to their
corresponding circuit-level topology. Every group contains G

clauses (except for one group that contains the remainder of
the clauses in the CNF) from gates in close proximity to one
another. For sequential circuits and multiple vectors, the group
size is G× [the total number of replications] as described in
Sec. IV. Fig. 4 illustrates the flow of the proposed framework
where the suspects are first filtered by the max-sat engine and
then processed by the exact debugger. The optimal value of
G, found experimentally, determines how the debugging effort
is divided between the two stages.

VI. EXPERIMENTS

The proposed framework is implemented in C++ using
the max-sat algorithm (AllMCSes) in [8] and the SAT-based
debugging engine in [5] as a second stage debugger. Six com-
binational and ten sequential circuits from ISCAS85, ISCAS89
and ITC99 benchmarks as well as OpenCores.org [9] are used



Circuit and debugging info Debug Max-sat20+debug

name
# # # # error time max-sat debug total time X

improv.gates vecs repl. locs (sec) # grps # suspects % susp red time (sec) time (sec) (sec)

mot-comb1 2, 162 1 1 4 4.79 3 49 97.73% 0.03 0.05 0.08 59.88
mot-comb2 5, 487 1 1 13 54.50 13 178 96.76% 0.13 0.24 0.37 147.30
mot-comb3 11, 268 1 1 16 357.67 14 189 98.32% 0.27 0.47 0.74 483.34
c6288 3, 466 1 1 75 67.96 48 536 84.54% 0.45 1.23 1.68 40.45
c7552 2, 644 1 1 248 25.66 74 789 70.16% 0.11 3.11 3.22 7.97
c5315 1, 884 1 1 11 4.83 7 99 94.75% 0.04 0.07 0.11 43.91

rsdecoder 12, 041 1 2 11 572.68 7 126 98.95% 0.67 0.65 1.32 433.85
spi 2, 012 1 21 19 80.54 12 194 90.36% 1.15 2.99 4.14 19.45
erp 2, 449 1 3 13 36.09 11 179 92.69% 0.20 0.25 0.45 80.20
ac97 15, 599 1 6 4 [TO] 3 58 99.63% 2.22 1.45 3.67 > 980.93
reactimer 265 1 512 7 51.81 6 89 66.42% 47.58 6.15 53.73 0.96
divider 5, 248 1 15 4 1, 160.39 3 52 99.01% 14.58 1.32 15.90 72.98
b14 5, 695 1 22 45 1, 377.86 36 627 88.99% 11.17 50.75 61.92 22.25
b15 8, 938 1 13 32 [TO] 40 645 92.78% 96.99 65.82 162.81 > 22.11
s15850 10, 481 1 2 19 747.36 12 183 98.25% 0.53 0.71 1.24 602.71
s38584 21, 006 1 14 58 [TO] 34 566 97.31% 28.02 36.00 64.02 > 56.23

rsdecoder 12, 041 4 8 11 [TO] 7 126 98.95% 2.88 2.01 4.89 > 736.20
spi 2, 012 4 81 4 264.07 6 107 94.68% 4.95 4.39 9.34 28.27
erp 2, 449 4 12 4 73.71 5 101 95.88% 0.82 0.52 1.34 55.01
ac97 15, 599 4 23 4 [TO] 3 58 99.63% 9.95 5.05 15.00 > 240.00
reactimer 265 4 1, 745 6 172.30 6 89 66.42% 2, 845.80 21.48 2, 867.28 0.06
divider 5, 248 4 71 4 [TO] 3 52 99.01% 54.74 5.44 60.18 > 59.82
b14 10, 114 4 1, 216 − [MO] − − − [MO] − − −

b15 8, 938 4 62 − [TO] − − − [TO] − − −

s15850 10, 481 4 8 19 [TO] 12 183 98.25% 2.21 3.64 5.85 > 615.38
s38584 21, 006 4 178 35 [MO] 20 365 98.26% 626.45 376.62 1,003.07 > 3.59

Fig. 5. Max-sat+debug versus standalone debugger

to construct several design debugging problems. The erroneous
circuits are obtained by manually changing the functionality of
a single gate at random. The failing test vectors are generated
by running pseudo-random simulations until an erroneous
response is observed. Experiments are conducted using both
single and four failing test vectors. The performance of the
proposed framework utilizing the max-sat pre-processing is
compared against the efficiency of the SAT-based debugging
engine in [5] without pre-processing. In all experiments, the
size of the clause group error cardinality Ncg is set to one
to find the single error sources. In addition to the groups
created for the over-approximation, clauses are also grouped
together based on the circuit replicas as discussed in Sec. IV.
Experiments are conducted on a Pentium IV 2.8 GHz Linux
platform with a 1GB memory limit and 3600 seconds time-out.

In order to determine the effectiveness of the overall debug-
ging framework of Sec. V-A as a function of the group size G,
experiments are conducted on several representative circuits.
Fig. 6 (a) and (b) shows two such experiments, using circuit
c6288 and mot-comb3, where three curves representing the
run-times of the over-approximate max-sat stage, the exact
debugging stage, and the combined run-times are presented
for several group sizes. The run-time of max-sat increases
abruptly as the group size becomes very small, and it reaches
a maximum when the exact method is used (single-clause
groups). However, as the group size increases, the run-time of
the second stage debugger increases as it must consider many
more suspects due to the over-approximation. The combined
curve shows the total run-time of the overall framework is
minimized with group sizes of roughly 10 to 20 clauses.

In the remaining, “max-sat20+debug” refers to the proposed

framework with a grouping size of G = 20. For sequential
designs and multiple vectors the actual number of clauses per
group is 20 times the number of circuit replicas. Figure 5
compares max-sat20+debug to the standalone debugger of [5].
Rows 1 − 6 report experiments with combinational circuits
given a single failing test vector, and 7− 16 (17− 26) report
experiments with sequential circuits given one (four) failing
test vector(s). The first four columns contain the circuit’s
name, its size in gates, the number of test vectors used,
and the total number of circuit replicas needed. The fifth
column (# error locs) gives the total number of potential error
locations that could explain the faulty behavior of the circuit
(the complete set). These are the locations expected to be
returned by both approaches when available. The sixth column
gives the run-time of the standalone debugger. An entry of
[TO] denotes a time-out, and [MO] denotes a memory-out.

The remaining columns present the results of our proposed
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Fig. 6. Run-time versus clause grouping size



10
−1

10
0

10
1

10
2

10
3

5

10

15

20

run−time (sec)

nu
m

be
r 

of
 s

ol
ve

d 
in

st
an

ce
s

max−sat20+debug
debug
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framework. The first four (# grps, # suspects, % susp red,
and time (sec)) report the number of groups (of 20× # repl.
clauses) returned by the AllMCSes algorithm in any MCS;
the number of suspect variables identified by those groups,
each corresponding to a potential gate-level error source; the
percent reduction in the number of suspect gates; and the
run-time of this first stage. The true benefit of the proposed
technique is evident when considering the number of suspects
that are filtered by the first stage with relatively small run-time.
For instance consider the circuit ac97 with a single vector.
The approximation technique rules out 99.64% of the suspects
in just 2.22 seconds. On average, the number of suspects is
reduced by over 92%.

The run-time in seconds of the second stage debugger using
the suspects of the first stage is shown in column debug time
(sec). Finally, the total time (sec) column shows the combined
run-time of the proposed framework. This number is compared
with the run-time of the standalone debugger in column six to
get the improvements shown in the final column (X improv.).

These results demonstrate the overwhelming advantage of
the proposed method over the standalone debugging engine
as the run-times are reduced by an average of 200 times.
For combinational circuits, the number of solved instances
is increased from 16 to 24 out of 26, a 50% improvement,
and for sequential circuits with one (four) test vector(s), the
number of solved instances is increased from 7 (3) to 10 (8),
a 43% (167%) improvement.

Fig. 7 plots the number of solved instances as a function
of run-time on a logarithmic scale for max-sat20+debug and
standalone debug. It can be seen that max-sat20+debug out-
performs the standalone approach by roughly two orders of
magnitude across all problems. Fig. 8 plots the total run-time
of max-sat20+debug for each instance against the correspond-
ing run-time of standalone debugger on a logarithmic scale.
Clearly, most points lie above the 45o line which indicate
the better performance of the proposed framework. Points
on the upper border indicate the instances solved by max-
sat20+debug but unsolved by the standalone approach. The
single point where the proposed framework fares essentially
worse is caused by the large run-time of the first stage. Such
cases can be addressed by increasing the group size G, thus

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

run−time of max−sat20+debug (sec)

ru
n−

tim
e 

of
 d

eb
ug

 (
se

c)

Fig. 8. max-sat20+debug versus debug

reducing the difficulty for the AllMCSes algorithm.
VII. CONCLUSION

This work presents an efficient two stage debugging frame-
work which uses a novel max-sat problem formulation. First,
it is shown that the debugging problem can be solved exactly
with a max-sat formulation. The approach is extended for
sequential circuits and for problems with multiple vectors. An
over-approximation technique is developed to take advantage
of the strengths of the max-sat techniques. This technique
considers groups of clauses together and can thus make
decisions based on the groups instead of the individual clauses.
The over-approximation technique is used as a pre-processing
step that filters the majority of suspects and reduces the
problem complexity drastically for any debugger used in the
second stage. Experiments demonstrate overwhelming run-
time improvements of two orders of magnitude on average.
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