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Abstract— Many CAD for VLSI techniques use time-frame
expansion, also known as the Iterative Logic Array representation,
to model the sequential behavior of a system. Replicating industrial-
size designs for many time-frames may impose impractically ex-
cessive memory requirements. This work proposes a performance-
driven, succinct and parametrizable Quantified Boolean Formula
(QBF) satisfiability encoding and its hardware implementation for
modeling sequential circuit behavior. This encoding is then applied
to three notable CAD problems, namely Bounded Model Checking
(BMC), sequential test generation and design debugging. Extensive
experiments on industrial circuits confirm outstanding run-time
and memory gains compared to state-of-the-art techniques, pro-
moting the use of QBF in CAD for VLSI.

I. INTRODUCTION

The tasks of verification, debugging and functional testing constitute
major bottlenecks in the VLSI design cycle consuming up to 70%
of the overall design effort [1]. When handling sequential circuits,
some solutions explicitly unfold the circuit for a bounded number of
time-frames specified by the problem. This is known as time-frame
expansion or the Iterative Logic Array (ILA) representation of the
circuit. Some popular applications using the ILA include sequential
equivalence checking [2], Bounded Model Checking (BMC) [3], [4],
trace compaction [5], sequential test generation (ATPG) [6] and design
debugging [7], among others.

Despite the pre-eminence of the ILA, replicating the circuitry of a
modern industrial-size design for a large number of cycles can lead
to memory explosion issues. As such, more compact representations
of sequential circuit behavior are required to ensure the scalability of
verification and testing tools without sacrificing performance.

This work presents an original, performance-driven and parametriz-
able QBF-based ILA encoding supported by illustrative hardware
constructions. This QBF formulation aims at not only reducing mem-
ory consumption, but also at achieving competitive run-times when
compared to state-of-the-art Boolean satisfiability (SAT) solutions.
Specifically, the major contributions of this paper are as follows:

• A novel QBF-based general-purpose ILA encoding using a single
copy of the circuit, dramatically reducing memory requirements.

• A detailed hardware implementation for this encoding.
• An innovative and empirically vital extension of this encoding,

titled time-frame windowing, generalizing the QBF-based ILA en-
coding, enabling further compression and boosting performance.

• Applications of this new framework to BMC, debugging and
sequential ATPG, demonstrating its ease-of-use and practicality.

Alongside SAT-based initiatives aimed at reducing memory con-
sumption when dealing with sequential behavior [8], recently the
formalism of Quantified Boolean Formulas (QBF) was tested in BMC in
an effort to bypass circuit replication using universal quantification [9],
[10]. Experiments from [9], [10] suggest that memory compression
comes at the cost of run-time performance. In contrast, an extensive
suite of experiments on industrial circuits for the proposed formalism
confirms the expected memory savings but also shows performance
gains when compared to SAT. The memory footprint is reduced by an
average of 89% and run-times are comparable and sometimes better by
orders of magnitude. Due to the efficient memory management, the total
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number of solved instances is increased by 24%. Admittedly, the results
encourage research in QBF-based encodings and solvers as platforms
to efficiently tackle intractable CAD problems.

The paper is organized as follows. Section II contains preliminar-
ies and Section III describes the general QBF-based ILA encoding.
Sections IV, V and VI illustrate the QBF formulations for BMC,
design debugging and sequential ATPG using the new ILA encoding.
Section VII discusses the differences with previous work, Section VIII
gives experimental results and Section IX concludes the paper.

II. PRELIMINARIES

A. SAT and QBF
Given a propositional logic formula Φ, SAT asks whether there exists

a satisfying assignment to the variables V in Φ that evaluates it to
1 (Φ is SAT) or whether no such variable assignment exists (Φ is
UNSAT). Formally, the SAT problem asks if ∃V | Φ. Traditionally,
Φ is given in Conjunctive Normal Form (CNF) as a conjunction of
clauses where each clause is a disjunction of literals. A literal is an
instance of a variable or its negation. For example, the formula Φ =
(a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (c) is SAT because {a = 1, b = 0, c = 1} is a
satisfying assignment. A logic circuit can be converted to CNF in linear
time [11]. Today, industrial VLSI problems with millions of variables
and clauses can be solved efficiently by modern SAT solvers [12], [13].

All variables in SAT are existentially quantified. QBF satisfiability
is a generalization of SAT where variables can be universally and
existentially quantified. A QBF formula in prenex normal form is
written as:

Q1V1, Q2V2, . . . , QrVr | Φ

where
• the prefix Q1V1, Q2V2, . . . , QrVr consists of quantifiers Qi ∈

{∀, ∃}, such that Qi 6= Qi+1, and mutually disjoint variable sets
Vi (also called scopes).

• the matrix Φ is a CNF formula on the variables in the prefix.
Qr (Q1) is called the innermost (outermost) quantifier. A variable

v ∈ Vi is labeled as an existential (universal) variable if Qi = ∃
(Qi = ∀). A scope Vi is said to dominate a scope Vj if i < j. If there
exists a truth value assignment to each existential variable as a function
of its dominating universal variables, by which every combination of
assignments to the universal variables can be extended to satisfy the
matrix, the QBF problem is said to be SAT, otherwise it is UNSAT.
For example, ∃a∀b∃c | (b∨ c)∧ (ā∨ b̄∨ c̄)∧ (a) is SAT because when
a = 1, for all values of b, there exists an assignment to c (c = 1 when
b = 0 and c = 0 when b = 1) that satisfies the matrix. Today, state-
of-the-art QBF solvers [14]–[17] use search [16], [17], resolution and
expansion [14], skolemization [15], as well as BDD-based strategies to
solve QBF instances that typically contain tens to hundreds of thousands
of variables and clauses.

B. Notation
The following notation is used throughout the paper. x, y and s

(xi, yi and si) are the Boolean vectors (bits) denoting the (ith bit in
the) primary inputs, primary outputs and state elements of a sequential
circuit, respectively. Symbol b denotes the number of state elements
(flip-flops). The behavior of a sequential circuit can be formally
described by the predicate T (s, s′) expressing the transition relation
of the system. It evaluates to 1 if and only if s � s′ is a valid state
transition. A predicate T (s, s′, x, y) explicitly mentioning inputs and
outputs can also describe the system behavior.



Building the ILA of a sequential circuit for a bound k consists of
unfolding its combinational component k times such that the next-state
of each time-frame is connected to the current-state of the next time-
frame. This process shown in Fig. 1 is also referred to in the literature
as circuit unrolling or time-frame expansion.

sksk−1s2s1s0
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Fig. 1. Iterative Logic Array

Let sj−1 and sj respectively denote the current-state and next-state
variables of the jth time-frame. Using this notation, the ILA shown in
Fig. 1 can be formally encoded as:

∃s
0
, s

1
, . . . , s

k |
k�

j=1

T (sj−1
, s

j) (1)

Similarly, for each z ∈ {x, y} and subsequently defined circuit
variables, let zj denote the corresponding variable in time-frame j,
and Z = 〈z1, z2, . . . , zk〉 the sequence of all corresponding variables
in the ILA.

III. ILA ENCODING USING QBF
An ILA representation is required in many CAD procedures for

sequential circuits. Each of these problems contains a set of problem-
specific constraints along with the common ILA component, which
usually constitutes the bulk of the problem size.

What follows outlines a new succinct QBF encoding of an ILA. It
replaces the replicated transition relation � k

i=1 T shown in Fig. 1 with
a single copy of T using appropriate control logic. A novel hardware
construction allows the QBF solver to operate on different time-frames
using a single copy of T . As will be shown shortly, the described QBF
formulation consists of three quantifier scopes (∃∀∃) irrespective of
k and O(lg k) universal variables. In subsection III-A, this scheme is
generalized to include an arbitrary number of copies of T in the matrix
in an effort to boost performance.

To generate the encoding, a set of universal time-frame select
variables t = 〈t1, t2, . . . , tdlg ke〉 are created to allow indexing the
ILA time-frames. Fig. 2 shows the hardware construction consisting
of two appropriately constrained multiplexers (MUXes), respectively
connected to the current-state and next-state of the transition relation
T . The time-frame select variables are the common select lines of the
MUXes. For a given assignment of these variables corresponding to
time-frame j, where 1 ≤ j ≤ k, the two MUXes connect the current
state s of T to state sj−1 of the ILA and the next state s′ of T to state
sj . In effect, depending on the assignment given to vector t, the single
copy of T in Fig. 2 “simulates” a different ILA time-frame.

The next step is to state Eq. 1 as a QBF instance using the described
construction. In order to insure state contiguity, it is necessary that
the set of ILA states {s0, s1, . . . , sk} dominate the time-frame select
variables. Informally, the QBF problem can be stated as follows:

Does there exist an assignment to states s0, s1, . . . , sk, such
that for all time-frame select variables, T is satisfied?

The binary description inherent to a QBF formulation forces the
consideration of 2dlg ke = Θ(k) time-frames. To simplify the notation
and without loss of generality, the ceilings are dropped and it is assumed
that k is a power of 2 in the remaining of the paper, unless noted
otherwise. The left MUX in Fig. 2 is now formalized as follows:

MUXlg k(s, t, 〈s0
, s

1
, . . . , s

k−1〉) ≡
k−1�
j=0

[(λ(t) = j) → (s = s
j)] ≡ (s = s

λ(t)) (2)

where 0 ≤ λ(t) ≤ k denotes the integer encoded as a binary number
in the lg k-bit time-select vector t (e.g., λ(〈0, 1, 0〉) = 2). Observe that
the MUX given in Eq. 2 can be expressed using 2kb clauses of lg k+2
literals. The right MUX in Fig. 2 is similarly defined with a one-step
shift. For a certain assignment to t, the two MUXes in Fig. 2 set the
current-state s of T to sλ(t) and its next-state s′ to sλ(t)+1, thus making
T simulate time-frame λ(t) + 1 in the ILA.
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Fig. 2. Hardware construction for QBF bounded sequential model

The question above can now be formalized as:

∃s
0
, . . . , s

k ∀t ∃s, s
′ | T (s, s′) ∧ (s = s

λ(t)) ∧ (s′ = s
λ(t)+1) (3)

which can also be written explicitly mentioning primary inputs and
outputs by using the predicate T (s, s′, x, y) instead of T (s, s′).

A. Time-Frame Windowing
Eq. 3 gives a QBF encoding for an ILA using a single copy of the

transition relation, as shown in Fig. 2. The given formulation can be
generalized to include an arbitrary number of copies of T , forming a
fixed-length window of explicitly unfolded time-frames, as shown in
Fig. 3. This parameterization enhances the ability of the QBF solver to
make direct inferences spanning a number of contiguous time-frames.
As will be shown shortly, time-frame windowing also provides a means
to further minimize the encoding size. Fig. 3 shows the hardware
construction using a window of size τ time-frames. Notice that setting
τ = 1 reduces Fig. 3 to Fig. 2 with (s, s′) = (s0,1, s1,1). On the other
hand, when τ = k, windowing degenerates the proposed QBF encoding
to the original ILA in Fig. 1.

Instead of a current and a next-state (s, s′) getting assigned to
contiguous current and next-states in the ILA, for a window of size
τ there are τ + 1 states s0,τ , s1,τ , . . . , sτ,τ getting assigned to sets of
τ + 1 contiguous ILA states at a time. Given a bound k, d k

τ
e windows

of size τ are needed to cover all time-frames. Therefore, a generalized
t = 〈t1, t2, . . . , tdlgd k

τ
ee〉 for any τ ≥ 1 now denotes a window select

vector which, for each assignment, selects a different window using a
similar MUX-based scheme as before. Note that the total number of
considered time-frames now becomes τ2dlgd k

τ
ee = Θ(k). To simplify

the notation, the ceilings are dropped by assuming that k mod τ ≡ 0
and that k

τ
is a power of 2. The formal QBF encoding whose matrix is

equivalent to the hardware construction shown in Fig. 3 is given as:

∃s
0
, s

τ
, s

2τ
, . . . , s

k ∀t ∃s
0,τ

, s
1,τ

, . . . , s
τ,τ |

τ�
j=1

T (sj−1,τ
, s

j,τ ) ∧ (s0,τ = s
λ(t)·τ ) ∧ (sτ,τ = s

(λ(t)+1)·τ ) (4)

which can also be written in terms of T (sj−1,τ , sj,τ , xj,τ , yj,τ ) for
each circuit in the window.

Increasing the size of the window does not necessarily increase
the size of the matrix. In fact, each MUX in Fig. 3 can now be
expressed using 2k

τ
·b clauses with lg k

τ
+2 literals in each clause. This

corresponds to a Θ( τ
1−lg τ/ lg k

) reduction in the number of literals from
the CNF representation of each MUX of Fig. 2. Therefore, relaxing all
assumptions, the total number of literals in the CNF matrix of Eq. 4,
which is a reliable figure of merit for the matrix size, is given by:

τ · lit(T ) + 4b · 2dlgd k

τ
ee · (lgd

k

τ
e + 2) (5)

where lit(T ) denotes the number of literals in the CNF of T . The
window size τ∗ that minimizes Eq. 5 can be found numerically.

In the following three sections, the presented ILA framework is
adapted to three notable sequential CAD problems, namely BMC,
design debugging and sequential ATPG.
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Fig. 3. Hardware construction using a time-frame window of size τ



IV. BOUNDED MODEL CHECKING

A. Background
Model Checking is an area of formal verification which is concerned

with verifying (or falsifying) safety, liveness and other properties in a
finite-state system. For checking safety properties, the idea behind BMC
is to search within a bounded sequential limit for counter-examples
violating a given property [3]. For instance, the following (safety)
question:

Given a set of bad states B(s), is a bad state reachable in
exactly k time-frames starting from a valid initial state?

can be formulated with the following SAT problem:

∃s
0
, s

1
, . . . , s

k | I(s0) ∧

k�
j=1

T (sj−1
, s

j) ∧ B(sk) (6)

where I(s0) denotes the predicate of valid initial states. To answer the
question whether a bad state is reachable in at most k time-frames, it
suffices to replace B(sk) in Eq. 6 by � k

j=1 B(sj).
Given Eq. 6, a SAT solver will either return a counter-example which

consists of a sequence of states leading to a bad state (SAT), or it will
prove that a bad state can not be reached in exactly k time-frames
(UNSAT). In principle, BMC is complete for a large enough bound of
k. However, as k increases, SAT-based BMC may require excessive
memory due to the underlying ILA structure [3].

B. Proposed QBF-based Formulation
The BMC formulation given in Eq. 6 can be translated using the

QBF-based ILA encoding of Eq. 3 as follows:

∃s
0
, s

1
, . . . , s

k ∀t ∃s, s
′ |

I(s0) ∧ T (s, s′) ∧ (s = s
λ(t)) ∧ (s′ = s

λ(t)+1) ∧ B(sk) (7)

The QBF-based BMC encoding for a window of size τ (using Eq. 4)
is given as follows:

∃s
0
, s

τ
, s

2τ
, . . . , s

k ∀t ∃s
0,τ

, . . . , s
τ,τ | I(s0) ∧

τ�
j=1

T (sj−1,τ
, s

j,τ )

∧ (s0,τ = s
λ(t)·τ ) ∧ (sτ,τ = s

(λ(t)+1)·τ ) ∧ B(sk) (8)

If the assumption that k mod τ ≡ 0 is relaxed, sk might not be
available in the first scope of the prefix in Eq. 8. The reader can verify
that state sk in the ILA would then correspond to state s(k−1)modτ+1,τ

in the d k
τ
eth window (i.e., when λ(t) = d k

τ
e − 1). Therefore, the

“bad state constraint” B(sk) in Eq. 8 would be replaced by (λ(t) =
d k

τ
e−1) → B(s(k−1)modτ+1,τ ), which, for a given bad state in B(s),

can be expressed in b clauses of lgd k
τ
e+1 literals. For instance, given a

single 2-bit bad state 〈s1, s2〉 = 〈0, 1〉, k = 5 and τ = 2, the constraint
becomes (t1 ∨ t̄2 ∨ t3 ∨ s̄

1,2
1 ) ∧ (t1 ∨ t̄2 ∨ t3 ∨ s

1,2
2 ).

In the following example, the given QBF-based formulation is
generated in bit-level detail for a specific BMC instance.

Example 1 Fig. 4(a) depicts a modulo-3 incrementer where the output
y2y1 is a binary number incremented if and only if the input x1 = 1.
Fig. 4(b) shows the circuit’s state transition diagram with initial state
〈s1, s2〉 = 〈0, 0〉. Note that state 〈s1, s2〉 = 〈1, 1〉 is unreachable.

Given the incorrect implementation in Fig. 4(c) (gate g2 is NAND
instead of NOR), a BMC problem can be formulated to ask whether
the bad state 〈s1, s2〉 = 〈1, 1〉 is reachable for a given bound. I(s) =
s̄1∧s̄2 and B(s) = s1∧s2 are given. The QBF-based BMC formulation
for k = 2 (it is UNSAT for k = 1) using τ = 1 and the hardware
implementation are given by Eq. 9 and Fig. 4(d), respectively.

∃s0
1, s0

2, s1
1, s1

2, s2
1, s2

2 ∀t1 ∃s1, s2, s′1, s′2 | s̄0
1 ∧ s̄0

2 ∧ T (〈s1, s2〉, 〈s
′
1, s′2〉)∧

(〈s1 , s2〉 = 〈s
λ(t1)
1 , s

λ(t1)
2 〉) ∧ (〈s′1, s′2〉 = 〈s

λ(t1)+1
1 , s

λ(t1)+1
2 〉) ∧ s2

1 ∧ s2
2

(9)
When t1 = 0, Fig. 4(d) simulates the first ILA time-frame, where

〈s0
1, s

0
2〉 = 〈0, 0〉 is the initial state, and 〈s1

1, s
1
2〉 represents the next-

state. When t1 = 1, the same 〈s1
1, s

1
2〉 constrains the current-state of

the second time-frame, while 〈s2
1, s

2
2〉 = 〈1, 1〉 constrains the (bad)

final state. As shown in Fig. 4(d), a counter-example reaching the bad
state is the sequence of states 〈s1, s2〉: 〈0, 0〉 � 〈1, 0〉 � 〈1, 1〉,
corresponding to the input sequence 〈x1

1, x
2
1〉 = 〈〈1〉, 〈1〉〉.
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Fig. 4. BMC example

V. DESIGN DEBUGGING

A. Background
Given an erroneous design and a set of counter-examples, design

debugging locates all possibly erroneous lines [7], [18]. SAT-based
design debugging [7] encodes the problem as a SAT instance whose
satisfying assignments correspond to the potential error locations in the
circuit. For each counter-example, the encoding process consists of the
following three steps:

i) The erroneous circuit is enhanced with extra hardware. A multi-
plexer with select line ei is introduced at the output of every gate gi,
as done in Fig. 5(a) for the circuit in Fig. 4(c). An inactive multiplexer
select line (ei = 0) does not modify the circuit, whereas an active select
line (ei = 1) disconnects gi from its fanouts and replaces it with a new
unconstrained primary input wi. This can freely “fix” any potential
error at the output of gi. The enhanced transition relation is denoted
as Ten(s, s′, {x, w, e}, y), where w and e respectively represent the
unconstrained inputs and select lines of the multiplexers.

ii) The enhanced circuit is unfolded as an ILA. A set of constraints
ΦC(s0, 〈x1, . . . , xk〉, 〈y1, . . . , yk〉) is added in order to ensure that the
initial-state, primary inputs and primary outputs of the (enhanced) ILA
match the correct behavior of the circuit given that counter-example.
Added multiplexers on the same original gate share a common select
line throughout the ILA.

iii) A final constraint ΦN (e) setting the error cardinality (that is, the
number of activated select lines) to N is added.

In this work, we give the formal encoding of the design debugging
problem for one counter-example of k time-frames. For a discussion
on collapsing multiple counter-examples using QBF, refer to [18]. For
brevity, for each z ∈ {x, y,w}, we let Zτ = 〈z1,τ , z2,τ , . . . , zτ,τ 〉.

SAT-based design debugging finds N erroneous gates by activating
the corresponding bits in e to match the expected behavior of the circuit.
N is initialized to 1 and increased until Eq. 10 becomes SAT:

∃e, s
0
, s

1
, . . . , s

k
, X, W,Y |

k�
j=1

Ten(sj−1
, s

j
, {xj

, w
j
, e}, yj)

∧ ΦC(s0
, X, Y ) ∧ ΦN (e) (10)

B. Proposed Debugging Formulation
The design debugging problem given in Eq. 10 can be encoded using

the QBF-based ILA encoding of Eq. 3:

∃e, s
0
, s

1
, . . . , s

k
, X, Y ∀t ∃s, s

′
, x, w, y | T (s, s′, {x, w, e}, y)

∧ (s = s
λ(t)) ∧ (s′ = s

λ(t)+1) ∧ (x = x
λ(t)+1) ∧ (y = y

λ(t)+1)

∧ ΦC(s0
, X, Y ) ∧ ΦN (e) (11)

For a window of size τ , using Eq. 4, the formulation becomes:



∃e, s
0
, s

τ
, s

2τ
, . . . , s

k
, X, Y ∀t ∃s

0,τ
, . . . , s

τ,τ
, X

τ
, W

τ
, Y

τ |
τ�

j=1

T (sj−1,τ
, s

j,τ
, {xj,τ

, w
j,τ

, e}, yj,τ ) ∧ (s0,τ = s
λ(t))

∧ (sτ,τ = s
λ(t)+1) ∧

τ�
j=1

[(xj,τ = x
λ(t)·τ+j) ∧ (yj,τ = y

λ(t)·τ+j)]

∧ ΦC(s0
, X, Y ) ∧ ΦN (e) (12)

In the following example, the given QBF-based formulation is
generated in bit-level detail for a specific design debugging instance.

Example 2 Consider the correct and erroneous designs in Fig. 4(a)
and Fig. 4(c). In Example 1, BMC yielded a 2-time-frame counter-
example with initial state 〈s0

1, s
0
2〉 = 〈0, 0〉 and the sequence of inputs

〈x1
1, x

2
1〉 = 〈〈1〉, 〈1〉〉. According to the correct state transition diagram

shown in Fig. 4(b) (the states and outputs have the same values),
the expected output sequence corresponding to this counter-example
is 〈〈y1

1 , y2
1〉, 〈y

2
1 , y2

2〉〉 = 〈〈1, 0〉, 〈0, 1〉〉. Therefore, ΦC(s0, X, Y ) =
s̄0
1∧ s̄0

2∧x1
1∧x2

1∧y1
1 ∧ ȳ1

2 ∧ ȳ2
1 ∧y2

2 . The QBF-based design debugging
formulation with τ = 1 and N = 1 and its corresponding hardware
construction are shown respectively in Eq. 13 and Fig. 5(b).

∃e1, e2, e3, s0
1, s0

2, s1
1, s1

2, s2
1, s2

2, x1
1, x2

1, y1
1 , y1

2 , y2
1 , y2

2 ∀t1

∃s1, s2, s′1, s′2, x1, w1, w2, w3, y1, y2 |

T (〈s1, s2〉, 〈s
′
1, s′2〉, {x1, 〈w1, w2, w3〉, 〈e1, e2, e3〉}, 〈y1, y2〉)

∧ (〈s1, s2〉 = 〈s
λ(t1)
1 , s

λ(t1)
2 〉) ∧ (〈s′1, s′2〉 = 〈s

λ(t1)+1
1 , s

λ(t1)+1
2 〉)

∧ (x1 ↔ x
λ(t1)+1
1 ) ∧ (〈y1 , y2〉 = 〈y

λ(t1)+1
1 , y

λ(t1)+1
2 〉)

∧ s̄0
1 ∧ s̄0

2 ∧ x1
1 ∧ x2

1 ∧ y1
1 ∧ ȳ1

2 ∧ ȳ2
1 ∧ y2

2 ∧ (e1 + e2 + e3 = 1) (13)

Fig. 5(b) also shows the ΦC(s0, X, Y ) constraints applied at the
initial-state/inputs/outputs of the circuit. The variables of interest for the
design debugging problem are the select lines e = 〈e1, e2, e3〉. Eq. 13
is SAT and a QBF solver will return the assignment 〈e1, e2, e3〉 =
〈0, 1, 0〉, which means that gate g2 is erroneous.

VI. SEQUENTIAL TEST GENERATION

A. Background
A circuit line is stuck-at-0 (stuck-at-1) if it always assumes a constant

value of 0 (1). Sequential ATPG for stuck-at faults finds an input
test sequence which deviates the primary output(s) of the sequential
circuit containing the fault from its correct behavior. It is a mature,
yet intractable problem that has been tackled using several approaches
including SAT-based ones that use an ILA [6], [19].

Let Ta(sa, s′a, xa, ya) (Tb(sb, s
′
b, xb, yb)) denote the transition rela-

tion of the fault-free (faulty) circuit. The sequential ATPG problem can
be formulated as follows:
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where Ya = 〈y1
a, . . . , yk

a〉 (Yb = 〈y1
b , . . . , yk

b 〉) denotes the output
sequence of the fault-free (faulty) circuit.
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Fig. 5. Design debugging example

This SAT-based sequential ATPG formulation essentially searches for
the common sequence of inputs X feeding to both Ta and Tb, which
causes at least one primary output in Ya to be different from Yb.

B. Proposed Sequential ATPG formulation
Using the QBF-based ILA formulation of Eq. 3, Eq. 14 can be

encoded in QBF using two copies of the transition relation, Ta and
Tb. However, it is possible to give the QBF-based sequential ATPG
formulation using a single transition relation as follows. The circuit
is enhanced by introducing a multiplexer at the stuck-at-fault location,
which chooses between the correct and faulty line using a select line l.
For the circuit in Fig. 4(a) and a stuck-at-1 at the output of gate g2, the
enhanced circuit Ten is given in Fig. 6(a). Now, the sequential ATPG
problem corresponds to the following question:

Do there exist an initial state s0, a common sequence of
inputs X and different outputs Ya and Yb, such that for both
values of l, there exist states s0, s1, . . . , sk such that for a
given time-frame j, the primary outputs of Ten evaluate to
yj

a if l = 0 and y
j
b if l = 1?

This question can be formalized as follows:
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Figure 6(b) shows the hardware construction corresponding to the
matrix of Eq. 15 for the circuit in Fig. 4(a). We do not show the
formulation using time-frame windowing due to lack of space.

VII. COMPARISON TO PREVIOUS WORK

In [9], a QBF-based BMC encoding is given, which introduces two
universal state variables, and hence Θ(b) universal bits, to traverse the
ILA states. A related BMC formulation [10] introduces k universal
bits to traverse all k ILA time-frames using a forced one-hot encoding.
Additionally, the non-copying iterative squaring encoding in [10] recur-
sively defines the reachability T 2k(s, s′) of state s′ starting from state
s in 2k time-frames as a function of T k. This corresponds to a BMC
formulation with Θ(lg k) universal variables and Θ(lg k) quantifier
scopes. The authors in [10] conclude that QBF solvers are not taking
advantage of those compact encodings to improve performance.

One of the subtle differences with the work here is the presentation
of a general-purpose ILA encoding in Section III as opposed to the
confinement to a particular application (BMC). The resulting BMC
formulations are also different due to the underlying ILA encoding
and our novel hardware multiplexer-based implementation. In fact,
the proposed BMC formulation introduces at most O(lg k) universal
variables, thus preserving the advantage of the non-copying iterative
squaring method in the worst case, while using a constant number of
quantifier scopes (∃∀∃) and a linear representation of time. All these
unique characteristics seem to have a significant impact on performance,
as shown in Section VIII.

Another major novelty of the proposed formulation given in Eq. 8,
is the time-frame windowing technique, which will be shown to have a
positive impact on the results. This explicit unrolling of the transition
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Fig. 6. Sequential ATPG example



TABLE I
QBF-BASED VERSUS SAT-BASED BMC

Circuit Info SAT (QBF,τ = 1) (QBF,τ = 16) (QBF,τ∗)

circuit
name

# # # time mem # time mem # time mem avg # time mem
gates DFFs solved (sec) (MB) solved (sec) (MB) solved (sec) (MB) τ ∗ solved (sec) (MB)

AC97 15, 601 1, 452 8/12 670.9 295.4 6/12 1, 196.8 145.0 12/12 129.9 20.6 14.0 12/12 120.2 17.2
Divider16 5, 248 388 8/12 772.7 108.4 8/12 853.4 33.6 10/12 771.9 6.4 12.0 8/12 809.9 4.9
ERP 2, 449 347 10/12 347.2 45.3 12/12 67.3 29.9 10/12 385.5 3.5 16.7 10/12 382.3 3.0
ReacTimer 265 22 12/12 0.5 3.3 12/12 8.8 1.6 12/12 0.5 0.2 14.0 12/12 0.5 0.2
RSDecoder 12, 041 521 2/12 1, 666.8 244.1 2/12 1, 667.6 52.0 2/12 1, 668.7 13.6 8.3 2/12 1, 667.4 9.0
SPI 2, 012 90 11/12 249.3 34.5 12/12 36.6 7.7 12/12 3.5 2.0 9.0 12/12 3.1 1.4
Aqu 22, 319 1, 504 6/12 1, 001.9 514.6 11/12 300.0 148.9 12/12 120.3 30.1 12.0 12/12 112.0 24.0
Fibonacci 652 36 12/12 0.6 11.0 12/12 24.4 2.6 12/12 1.0 0.6 12.0 12/12 0.9 0.5
AE18 2, 520 116 4/12 1, 358.3 48.9 6/12 1, 194.3 10.0 4/12 1, 429.3 2.7 9.0 4/12 1, 412.0 1.9

relation not only allows further size compression (Eq. 5), but also boosts
the inference power of the QBF solver over several time-frames.

In [18], a QBF-based design debugging formulation is given to han-
dle multiple counter-examples. In other words, [18] does not propose
a QBF-based ILA encoding but describes a technique for collapsing
multiple ILAs for different test vectors into a single ILA. In this sense,
the work here and that of [18] are complementary and non-overlapping.
For the debugging experiments, following next, we integrate both those
orthogonal formulations into the final approach.

VIII. EXPERIMENTS

For each of BMC, design debugging and sequential ATPG, a C++
module is implemented which produces the respective QBF formulation
from Sections IV, V and VI. The generated QBF instances are solved
using sKizzo [15], a state-of-the-art QBF solver based on symbolic
skolemization. Nine industrial circuits from OpenCores.org [20] are
used to construct the problem instances. All experiments are conducted
on a Pentium IV 2.8 GHz Linux platform with 2 GB of memory and
a timeout of 2000 seconds.

A. Bounded Model Checking
Safety BMC problems of the form of Eq. 6 are considered. For

each circuit, six exponentially increasing bounds of size 32, 64, 128,
256, 512 and 1024 are examined and two “bad” states are checked for
each bound: One that is reachable (SAT) and one that is not (UNSAT).
The proposed QBF-based formulations are evaluated against traditional
SAT-based encodings solved by MINISAT V1.14 [13], a state-of-the-art
SAT solver.

As shown in Table I, results for three QBF-based BMC encodings
with different time-frame windowing schemes are compared to the SAT
results. (QBF, τ = 1) does not use time-frame windowing, (QBF, τ =
16) uses a fixed window of size τ = 16 and (QBF, τ ∗) uses the window
size τ∗ which minimizes the number of literals in the formulation
according to Eq. 5. The first three columns of Table I respectively
show the circuit name, its number of gates and its number of state
elements (DFFs). Next, for each approach, columns # solved, time and
mem respectively show the number of solved problem instances out of
12, the average run-time in seconds, and the average memory footprint
of the files containing the problem instances in MBs. When averaging
the run-times, an unsolved instance is counted as 2000 seconds, which
is the time-out. Under (QBF, τ∗), column avg τ∗ gives the average
value of τ∗ for each circuit.

SAT solves a total of 73 BMC instances, whereas the three different
QBF-based windowing schemes (QBF, τ = 1), (QBF, τ = 16)
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Fig. 7. BMC Comparison Results

TABLE II
BMC USING quantor

(quantor,τ∗)

circuit
name

# solved largest k time mem
SAT UNSAT SAT UNSAT (sec) MB

AC97 6/6 6/6 1024 1024 86.8 17.2
Divider16 3/6 6/6 128 1024 536.9 4.9
ERP 4/6 6/6 256 1024 347.9 3.0
ReacTimer 6/6 6/6 1024 1024 1.1 0.2
RSDecoder 1/6 1/6 32 32 1667.4 9.0
SPI 6/6 6/6 1024 1024 25.8 1.4
Aqu 4/6 6/6 256 1024 392.2 24.0
Fibonacci 6/6 6/6 1024 1024 1.9 0.5
AE18 3/6 3/6 128 128 1143.7 1.9

and (QBF, τ∗) respectively solve 81, 86 and 84 instances out of
108. The most common aborting reason is running out of memory
for the SAT approach, and timing-out for the QBF approach. The
QBF encodings are respectively 65%, 94% and 95% smaller than the
SAT-based formulations on average. Although all three QBF options
outperform SAT in the number of solved instances, the effect of time-
frame windowing is vital in terms of memory, run-time and the number
of problem instances solved. In fact, (QBF, τ = 16) solves 5 more
instances than (QBF, τ = 1), and (QBF, τ ∗) uses 85% less memory
compared to (QBF, τ = 1).

In order to demonstrate the robustness of the proposed BMC en-
codings, the (QBF, τ∗) experiments are also run using quantor [14],
which is another state-of-the-art QBF solver based on resolution and
expansion. These results are shown in Table II. For each circuit, the
second and third columns respectively show the numbers of solved
SAT and UNSAT instances out of six. The fourth and fifth columns
respectively show the largest solved SAT and UNSAT bounds. The
sixth column gives the average run-time and the last column gives the
average memory footprint of the QBF instance file, which is the same
as before. quantor solves 85 instances out of 108, which is one more
than sKizzo using a window of size τ ∗. Also, UNSAT instances are
solved more easily than SAT ones, a fact that could be attributed to the
resolution-based strategy used by quantor.

Fig. 7(a) plots the number of solved BMC instances as a function
of run-time given in a logarithmic scale. It clarifies the QBF versus
SAT comparison and it highlights the positive influence of time-frame
windowing. It can be seen that SAT has an initial advantage on smaller
instances taking less than 30 seconds to solve. Both (QBF, τ = 16)
and (QBF, τ∗) outperform SAT given 80 seconds, while (QBF, τ = 1)
outperforms SAT given 300 seconds. All three QBF formulations take
advantage of the declining slope of the SAT curve in Fig. 7(a) as soon
as the problem instances grow in complexity. Fig. 7(b) compares the
memory footprints of the different methods. As expected, all three QBF
encodings require considerably less memory than SAT encodings, while
(QBF, τ∗) achieves maximum compression.

It should be noted that search-based QBF solvers such as [16],
[17] performed poorly compared to sKizzo and quantor. The
outstanding performance of sKizzo and quantor can be contributed
to the linear and highly non-random structure of the interaction graphs
of the problem matrices, which enables skolemization and resolution
to proceed without immediate memory explosions. On the other hand,
search-based QBF solvers seem to take a lot of time to “guess” correct
state transitions in the ILA.



TABLE III
QBF-BASED VERSUS SAT-BASED DESIGN DEBUGGING

Design Debugging Info SAT QBF
circuit
name

avg max # # time mem # time mem
k k loc. solv. (sec) (MB) solv. (sec) (MB)

AC97 32.3 60 2.0 4/6 702.9 272.7 6/6 111.4 30.1
Divider16 27.5 111 2.8 0/6 − 198.8 5/6 618.3 14.6
ERP 89.3 449 2.3 3/6 1001.4 350.6 5/6 517.5 64.7
ReacTimer 365.1 931 3.0 6/6 757.6 125.0 6/6 196.8 22.2
RSDecoder 2.5 8 3.5 6/6 5.1 27.0 6/6 5.0 2.1
SPI 21.5 56 2.0 6/6 145.4 56.3 6/6 13.7 3.2
Aqu 2.0 2 3.0 6/6 3.3 41.6 6/6 8.0 3.1
Fibonacci 3.0 4 2.0 6/6 0.2 1.1 6/6 0.1 0.1
AE18 156.1 504 5.0 0/6 − 580.1 6/6 464.7 68.6

TABLE IV
QBF-BASED VERSUS SAT-BASED SEQUENTIAL ATPG

SAT QBF
circuit
name

# time mem # time mem
solved (sec) (MB) solved (sec) (MB)

AC97 2/3 673.3 739.3 3/3 67.3 133.2
Divider16 2/3 668.7 304.2 3/3 59.1 60.8
ERP 3/3 10.3 79.1 3/3 30.5 12.7
ReacTimer 3/3 2.3 10.2 3/3 22.8 1.5
RSDecoder 1/3 1369.1 613.1 1/3 1376.7 113.0
SPI 3/3 7.6 70.9 3/3 25.2 9.6

B. Design Debugging
For the debugging problems, sKizzo has been purposely modified

to return not just one but all the valid assignments to e that identify
possible error sites when the instance is SAT. The erroneous circuits are
created by manually changing the functionality of certain modules to
introduce the error. Counter-example sequences are obtained by pseudo-
random simulation. For each circuit, six different design debugging
problem instances with eight counter-examples for each instance are
generated. All solutions are found using N = 1, i.e., there is a single
erroneous module in each instance. For each circuit, the results are
averaged out over the number of instances. In order to deal with multiple
counter-examples, the ideas in [18] are integrated in the approach.
The results of the proposed QBF-based formulation using a unit-size
window are compared to the SAT-based approach [7] that uses circuit
replication with zChaff [12] being the underlying SAT solver.

Table III presents the results of the proposed QBF formulation for de-
sign debugging. The second, third and fourth columns respectively show
the average counter-example length, the maximum counter-example
length and the average number of potentially erroneous modules in
the circuit. For each formulation (SAT and QBF), columns # solv., time
and mem respectively show the number of solved instances, the average
run-time in seconds and the average memory usage of the problem
formulation in MBs.

As clearly seen in Table III, the design debugging results are even
more favorable to QBF when compared to SAT. Along with an average
of 89% reduction in the memory footprint of the formulation, the run-
time performance is improved by 39% on average. The QBF-based
approach solves a total of 52 instances, while the SAT-based one solves
37, which amounts to a 41% increase in the number of solved instances
using QBF.

Fig. 8 plots the number of solved design debugging instances as
a function of run-time for SAT-based and QBF-based formulations.
Clearly, QBF has a run-time advantage over SAT. In fact, after less
than ten seconds, the performance of the QBF solver remains invariably
superior and SAT begins to plateau after 200 seconds because of
excessive memory problems.

C. Sequential Test Generation
Six circuits are used for the sequential test generation experiments.

For each circuit, three random stuck-at-faults are introduced for three
bounds of 10, 100 and 500 time-frames. The results for the SAT and
QBF-based formulations described in Section VI are shown in Table IV.
zChaff is used to evaluate the SAT instances. For each approach, the
columns # solved, time and mem respectively show the number of solved
problem instances out of three, the average run-time in seconds, and the
average memory footprint of the files containing the problem instances
in MBs. The QBF-based sequential ATPG formulation consumes 83%
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Fig. 8. Design debugging performance results

less memory than its SAT-based counterpart. It should be noted that
most of the solved instances returned UNSAT, which means that the
introduced faults could not be detected using a test sequence within
the given bounds.

IX. CONCLUSION

This work presents a novel, performance-driven and parametrizable
QBF-based ILA encoding and its implementation for modeling the
sequential behavior of a circuit. Moreover, applications of this ILA
encoding are presented for three problems, namely BMC, design debug-
ging and sequential test generation. Extensive experiments confirm the
major memory gains of the proposed approach and demonstrate its run-
time competitiveness over state-of-the-art SAT-based approaches. The
theory and results of this paper emphasize the need for further research
in QBF solvers and QBF-based CAD solutions as complementary
processes to current procedures.
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