The Day Sherlock Holmes Decided to do EDA

~ Andreas Veneris Sean Safarpour
University of Toronto, ECE Dept. & CS Dept. Vennsa Technologies, Inc.
Toronto, ON, Canada Toronto, ON, Canada
veneris@eecg.toronto.edu sean@vennsa.com
ABSTRACT Without a doubt, verification and debug are major bottlenecks. This

Semiconductor design companies are in a continuous search for desi@irden s expectebd to I][lcrease 675% by 20h1'5 as recziporpﬁﬁlrbyﬁs [1O]d
tools that address the ever increasing chip design complexity coupled€"® arg a ”u“; ero ;leasons éO 1“3‘.?.“’ this tren - ';'rISt y, the modern
with strict time-to-market schedules and budgetary constraints. A funS&Mcon uctorTﬁ5|gn ows anf (\j’e”. |cat|0(rjl me}. odologies are C(?m‘d
damental aspect of the design process that remains primitive is that cﬁ!ce;]( In nature. The processes of elslgn an dverl |ca|t|_0||1 alre C?mpfrlsg
debugging. It takes months to close, it introduces costs and it may jeop2 e’gerogeneouz cogngo?]en;s |r|np emﬁnte §|t multiple eve;ﬂ? ap-
ardize the release date of the chip. This paper reviews the debuggiry actions (p{;oc_le urg, e a\\;lo_rla, S\{ﬂDeLs'é%Le’ etc.) é‘s'”g her
problem and the research behind it over the past 20 years. The casgguages (Verilog, System Verilog, . PSL, etc) and ever chang-

for automated RTL debug tools and methodologies is also made to hel#gge?tsagfdczg%s I%T(ﬂ partgtjog\%srhggttjevrvﬁlﬂenﬁirYlljig:ir? u%grtlzg rr;;?grr]]g ntasng %?s
ease the manual burden and complement current industrial verificatio,; Y piexity oo : g transp cy
ficiency. The lack of a unified and centralized verification environment

practices. makes the debugging pain a growing challenge for the end engineer.
Further, design specifications often described in abstract models, may
Categories and Subject Descriptors not directly correspond to signals and transactions at the design level.
o ; ) i ) o For example, the specification can be described in a plain document, a
B.7.2 [Integrated Circuits]: Design Aids—Simulation, Verification Matlab model or in a software language such as C/C++, whereas the de-
sign is implemented in cycle-accurate Verilog or in VHDL. The separa-
tion between these two layers can result in misinterpretations and usu-
General Terms ally complicates verification/debugging efforts. Additionally, the ever
Design, Verification increasing size of modern devices poses challenges both to Electronic
Design Automation (EDA) tools and engineers alike. Typical design
blocks grow beyond the 400,000 synthesized gate mark and ercesstra
Keywords extend past thousands of cycles. Task outsourcing and geogriagibica
. o e persed teams only add extra layers of communication overhead to these
Debugging, Error Localization, Verification processes.
In 2006, the International Technology Roadmap for Semiconductors
1 INTRODUCTION (ITRS), issued its new set of needs for the current and next giéorera

design semiconductor processes. Although most topics saw minor nu-

In the past decade, there has been an exponential increase in the cB¥fiC revisions, the roadmap contains a major fourteen-page update in
and time required for verification and debugging of VLS| systems. Veri-design verification with a strong emphasis in debugging. The report [11]
fication checks the correctness of a design and if faulty, debugging iderptates thattechnological progress depends on the development of rig-
tifies the root-cause of the problem. Although debugging manifests itorous and efficient methods to achieve high-quality verification results
self in every step of the design cycle, in this study, we are interest in.- and techniques to ease the burden of debugging a design once a bug
functional Register Transfer Level (RTL) debugging. is found ... without major breakthroughs, verification will be a non-

It is a well-accepted fact that debugging and verification take up toscalable, show-stopping barrier to further semiconductor progress
70% of the chip design time. With debugging contributing to as much ad/Vithout a doubt, the roadmap depicts a grim yet realistic picture that
half of this time, it directly results in millions of dollars in non-recurring €stablishes an urgent need for scalable automated debugging tools and
costs and may jeopardize the release date of the end product. To maRethodologies. _ _
things worst, silicon prototypes today are rarely bug-free. Functional 10 a certain extent, the tremendous growth of the semiconductor in-
bugs may escape pre-silicon verification only to be discovered duringlustry over the past decades can be partially attributed to the amount of
in-system silicon validation. It comes as no surprise that more thargutomation provided by the EDA community. Most manual steps of the
60% of design tape-outs require at least one re-spin and more than h&lesign flow (synthesis, placement, routing, test, verification, etc.) have
of the failures are not due to power, timing or manufacturing defect?€en automated to help close designs faster and cheaper. Unlike these

but due to logical or functional errors not discovered or properlgdix Processes, debugging remains a time-consuming and resourcéviatens
during verification [15]. manual task where graphical navigators and waveform viewers allow

engineers to perform simple "what-if* analysis. With no form of exag-
geration, the engineer today resembles the famous detective Sherlock
Holmes who searches for needles in a haystack and relies on a “hunch”
or “gut feel” to localize the culprit bug when verification fails.

Permission to make digital or hard copies of all or part of thirknfor In past years, VLSI design companies have in part alleviated this de-
personal or classroom use is granted without fee providatidbpies are bugging pain by allocating more verification engineers to the problem.

not made or distributed for profit or commercial advantage aatidbpies As a net effect, it has been reported, there are two to three times more
bear this notice and the full citation on the first page. Toyootherwise, to verification engineers than designers in design teams [3]. It is clear that
republish, to post on servers or to redistribute to listguies prior specific adding verification engineers cannot provide a sustainable solution as
permission and/or a fee. the pain continues to clime. Automated RTL debugging techniques to
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e s there a bug in the design or is the bug in the testbench?

e Which block in the design and which RTL line(s) should we focus
on?

e What is the root-cause of the bug?

Correct
Design

e Who should fix the bug and how should it be fixed?

The process that answers these questions today involves an arduous
manual task with many iterations to close it. It delays the subsequent

SUESSZ(;S steps of the design cycle and introduces significant non-recurrirtg. cos

3. DEBUGGING: THE EARLY DAYS

There is a consensus that the term “design error” is attributed to the
paper by Abadir et al. from 1988 [1]. That paper outlines a set of &pic
errors found in the design flow also knowndesign error modelsEs-
sentially, this is a dictionary of possible simple error types such as gate
replacement errors, missing or misplaced input gate line errors,retc. |
the same work, the authors prove theorems for the test set V to guarante
desi . . . 100% verification coverage using previous results for stuck-at faults.

esire to circumvent the manual problem and drastically improve the Following that work, in the 1990s, a great deal of automated al-
verification flow. : orithms were developed to tackle the problem using the design er-

This paper builds the case for robust automated RTL debugging too'?t)r model in [1]. A comprehensive review of those methods is found
and methodologies to aid the engineer. We first define the problery, [14]. Depending on the underline engine used to drive the algorithm,

and outline its multiple facets in the design cycle. Then we give ay,qqe techniques can be classifiedsgmbolic-basedind simulation-
historical review of the research in debugging from the early days tq, c.q

state-of-the-art advances and we present industrial case-stuthes.

paper concludes by re-iterating the need for further research tadprov ic- i
the platform for cost-effective automated debugging tools and scalabI(:e))'1 SymbOHC based Debuggmg

\ELIEL Error
Debug Trace

Figure 1: Typical verification and debugging design flow

methodologies to complement current industrial practices. Symbolic approaches typically perform diagnosis by generating and
solving anerror equationusing Binary Decision Diagrams (BDDs)
2. WHAT IS DEBUGGING? based on the functionality of both the correct and erroneous circuits.

In [9], algorithms for single and multiple design error diagnosis and
Every time a design or a silicon prototype fails to adhere to a set oforrection are presented. For single errors, an error equation is gen

Speciﬁcationsy a debuggmg prob|em usua"y follows. As such, debugerated in turn for each linkin the netlist. For a netlist with inputs
ging manifests itself in virtually every step of the design cycle. WhenX, the error equation for lingis notedE' (X, z(X)), wherez(X) is an
the design does not meet its power requirements, the engineer has to despecified function over the circuit inputs. By construction, if there
bug the problem and fix it by optimizing certain portions. When a placeexists some functiom(X) that satisfies the equatidel = 0, then re-
and route tool cannot meet timing closure, the designer does it manuallyjacing the linel with a circuit implementingz(X) will “correct” the
by exploiting flexibilities not seen by the tool. When a silicon prototype hehavior of the netlist according to its specification. Moreox/diX) e

fails test, silicon debug identifies the error root-cause to fix it so that th o . .
re-spun prototype pasgses test. (TE' (X,0),E'(X,1)] specifies the family of all solutiorz (X) that cor-

In this study we are interested in the problem of RTL debug for func-"ect the circ”uit "f‘t: | . ion of & miter for th
tional failures. Once verification fails, it returns with arror-trace or _EssentiallyE' is an algebraic representation of a miter for the two
a counter-exampléhat exhibits the erroneous behavior at some obser-Circuits. Although effective for single errors, it exhibits memory prob-
vation points. The input to debugging is the actual design, the set d€MS s it uses BDDs [35] to build the error equation. Furthermore, its
error-traces V and the correct responses to those error-traséoas applicability to multiple errors is limited to cases depending on their
in Fig. 1. A debugging tool localizes the error sourcesospectsvith ~ Structural proximity [9].
references to the RTL files, gate-level netlists or design schematics. . . .

Note that a debugging tool utilizes a golden or reference model tha8-2 ~ Simulation-based Debugging

provides the expected logic values for the erroneous design. In aur co To overcome the excessive memor ;
! ! ! " y requirements of BDD-based ap-
text, there is a fundamental assumption that this model acts as a bla%oaches, debugging with simulation has been extensively investigated.

box”, i.e., there is no structural correspondence between internal line . ; :
1 : ; ; hose methods provide a time/space trade-off as they remain polyno-
of the model with this of the design. For example, the golden model ca ial in the input size but they may require more time to give an answer.

be a Matlab program while the design is in Verilog. This complicates Simulation-based techniques [14] [21] [22] simulate an error-trace

the debugging effort dramatically because the solution space explod%d trace backwards from bri : : h
2 p ; 3 primary output to primary input marking sus

exponentially to the number of errors in the design [21]: pect lines using different criteria. For each error-trace, they cattect
suspect lines and since the error is present in each one of them, they in-
tersect the results for all runs. Although their memory requirements re-

Another implication is that the only observation points to to the de-main linear to the size of the circuit, the complexity mitigates to the time
bugger are the primary output design signals or the embedded assetemain. As the number of errors increases, their performancadiegr
tions/properties. These may be cycle- or no-cycle- accurate valpes caFor this reason, their applicability to sequential circuit debugging has
tured by interface monitors, checkers or assertions. In other warls, been rather limited [14].
are interested in debugging that follows simulation-based verification, To overcome these obstacles, the concept of simulation-based debug-
formal verification and emulation flows [12]. We do not include com- ging has been enriched with simulation of unknown values [4] to alle-
binational equivalence checking in this category since it utilizes strucviate the need for an error model. Although practical in some cases,
tural equivalences to solve the problem [8]. To that end, the problenunknowns can decrease the resolution of the solution for large designs
of functional RTL debug resembles this of fault diagnosis (or siliconor for sequential designs. In the work of Liu et al. [16], an incremlenta
debug) [20]. debugging method is proposed. That method outperforms conveintiona

Once verification identifies that a design contains an error(s), debugechniques for multiple errors but since it is not exhaustive in the solu-
ging usually involves the following questions: tion space, it may miss finding solutions.

solution space=(circuit lines)* 's (1)



4., DEBUGGING WITH SATISFIABILITY prenex normal fornis written as:

Recently, the introduction of Boolean Satisfiability (SAT) in the field Q1V1 Q2 - Q¥ | @ (2)
opened new opportunities for cost effective automated debugging tools

4.1 SAT-based Debugging

A SAT-based debuggirigchnique was proposed in SAT [20] where Je, 307317,_,75&)(7\( vt 35,9, X,WY |
the problem is formulated as a SAT instance for a conventional solver to i
return solutions corresponding to suspects. A variety of SAT-based de k K 1 )
bugging formulations have been proposed building on the initial work NEG) = [(s=sHAa(g=9)A
[6] [13] [18]. Experiments show that SAT-based debugging outperé j=1
traditional simulation- and BDD-based techniques, in both time and
space, sometimes by orders of magnitude.

The design debugging formulation using QBF is given by the follow-
ing equation:

t*(j) = [(x=x) A (y=yh)] A

~ .

1

J
Ten(svslv <X7\Nve>7y) /\CDC(SOaxvY) A®N (e) (3)

wheree are the error location select lines’...s are state elements
for the k-cycle error-trace, anX (Y) is the set of design primary in-
put (output). Although the intricate details of the encoding are beyond
the context of this paper [17], pictorially the hardware construction that
corresponds to Eq. 3 is shown in Figure 3. In that figligg, is a single
copy of the combinational circuitryi.€., transition relation) from Fig-
ure 2(b). Intuitively, the QBF formulation mitigates the space expan-

(@ (b) sion of the circuit into time using universal quantification. Experiments
shows the favorable nature of this encoding as it achieves a dramatic
Figure 2: SAT-based debugging 92% reduction in space when compared to SAT and sometimes outper-

To model debugging [20], a multiplexan is added for every gate forms itin terms of run-time.

(and primary input);. The output of this multiplexeny, is connected to
the fanouts of; while | is disconnected from its fanouts. This construc- 5. INDUSTRIAL CASE STUDIES

tion has the following effect: when the select ligeof a multiplexer is

inactive § = 0), the original gatd is connected tany, otherwise, when With the help of recent advances, automated debugging tools for in-
s = 1 a new unconstrained primary inpwt is connected. Figure 2 dustrial problems are within reach. In this section, we present three
illustrates the above transformation for a combinational circuit. case studies representative of common bugs found in the RTL. For eac

This construction is later constrained with the input/output values of°f the cases, we show a code snippet in Verilog containing the bug as
the expected primary output responses for the particular error-ttace Well as the correct implementation shown in commenes (/ ). We
potential correction on ling is indicated when the select lirgis as- ~ Present how a state-of-the-art industrial automated debugger using th
signed tol under which condition the correction value is storesjn ~ Methodologies from Sections 4 and 4.2 efficiently tackles the problem
The SAT solver can assign any value {0,1} to tyeandw; variables  in Table 1. I . .
such that the resulting Conjunctive Normal Form (CNF) satisfies the I the first example, shown in Fig. 4, the 0 and 1 input of the multi-
constraints applied by the vectdrs To force the SAT solver to find a  Plexer are incorrectly connected. This type of mistake is very common,
specific numbeN of error locations, further logic is added to activate @S it iS €asy to mix-up the signals or forget the polarity of the condi-
at mostN select lines [20]. Thus foX = 1, a singles; is set tol which tion. In this case, the bug is detected by a self-checking testbench when
correspondso candidate error locatidi, etc. Finally, the construction  the output of the memory controller is found to be different than the

is repeated and constrained for each error-trace before givenAd a S €xpected value. - . )
solver. In the second example, shown in Fig. 5, a single clock fifo module,

Following the initial formulation, a variety of advances have beenv9a_fifo0, is erroneously instantiated instead of dual clock fifo module,
proposed to improve performance. More notably, the work in [18] bor V92_f i fo_dc. This type of error can be caused by missing details in
rows the concepts of abstraction and refinement from formal veiidita ~ SPecifications that do not explicitly require a dual clock fifo. This bug
to ease the debugging effort. The authors in [2] use Quantified Booleal§ caught by an end checker when the pixels generated by the vga con-
Formula (QBF) Satisfiability to “compress” the memory required by troller do not match those of a golden C model. In this case, it can be
replicating the CNF for the different error-traces. Finally, orthogonal Very hard to narrow down the problem from the controller output all the
to [20], the research in [7] and [19] introduces SAT-based techsiqueWay to the fifo module.
to reduce the length of the error-traces and further reduce the memory
requirements for existing debugging methods. X2 X

4.2 QBF-based Debugging

The backbone of the SAT-based formulation proposed by [20] when
applied on sequential circuits is the repetition of the combinational cir-
cuitry for a number of cycles equal to this of the error-trace. This is
also known as the Iterative Logic Array representation or time-frame
expansion [17]. Clearly, replicating a half million gate block for pos-
sibly thousands of cycles of industrial-size error-traces, it may requir
prohibitively excessive memory resources. Evidently, more compac
representations of sequential debugging problems are required to en-
sure scalability with no sacrifice in performance.

To that end, [17] presents a parameterizable encoding for debugging
using QBF Satisfiability. In Boolean SAT all variables in the CNF are . . . .
existentially quantified. QBF is a generalization of SAT that also al- Figure 3: Design debugging construction
lows for universal{) quantification of the variables. A QBF formula in




al wvays @ posedge cl k)
/1 correct line:
[/wb_data <= #1 ‘MC_MEM SEL ? mem: rf;
/1 bug bel ow.

wb_data <= #1 ‘MC_MEM SEL ? rf : nem

Figure 4: Case study 1: misinterpretation of condition in memory
controller

correct block:
vga_fifo_dc line_fifo(
.relk i

11
11
I relk ( clk_p_i )
11 welk  ( wh_clk_i )
I .relr ( 1'b0 )
I .welr ( ctrl_ven_not ),
I .weq ( line_fifo_weq ),
1 d ( line_fifo_d ),
Il rreq ( line_fifo_rreq )
I q (line_fifo_q )
I .empty ( line_fifo_enpty_rd ),
I full ( linefifo_full _w )
)
11
/'l bug bel ow.
vga_fifo line_fifo (
.clk ( clk_p_i )
.aclr ( 1'b0 )
.sclr( ctrl_ven_not )
.weq ( line_fifo_weq ),
.d ( line_fifo_d ),
.rreq ( line_fifo_rreq ),
.q (line_fifo_q )
.empty ( line_fifo_enpty_rd )
( )

full line_fifo_full _w

)s

Figure 5: Case study 2: wrong fifo instantiation in vga controller

The third example, shown in Fig. 6, contains multiple errors where
thei f conditions for signal®&_WandRC_Ware misinterpreted. In this
large communication block, the errors affect control circuitry which
triggers an assertion to fail dozens of clock cycles after the bug hal
been excited.

al ways@ posedge CLK)
/1 correct line:
[1if(RX_W== 1"h1)begin
/1 bug bel ow.
i f(RX_W==1"h0)begin
NTY_CTL <= RX_CTL;
NTY_DATA <= RX_DATA,
end
el se begin
Il correct line:
[1if(RC_W==1"h1)begin
/1 bug bel ow
i f(RC_W== 1"h0) begin
NTY_CTL[ 63: 48] <= RC_CTL[ 63: 48] ;
NTY_CTL[ 7: 5] <= REG RES_FRAME[ 2: 0] ;
end
end

Figure 6: Case study 3: multiple wrong conditions in communica-
tion block

For the three case studies, Table 1 shows the design type and sifES]

of the circuit in primitive gates in columns one and two respectively.

Columns three and four present the time required by the debugger to
localize the suspects, and the total number of suspects returned to thk9]
engineer. In all cases, the debugger eliminates more than 99% of the

code in a few seconds or minutes. The suspects returned point the e

gineer to a small set of Verilog lines where the design can be rectified
and the bug removed. The relatively small run-time of the tool makeg20]
the automated debugger a powerful and practical tool to aid engineers

in the daunting debugging task.

6. CONCLUSION

Debugging of RTL designs remains a manual and resource-intensive
task today. This paper outlines the rich research in debugging over the
past 20 years. It also builds the case for novel automated debuggin@?2]
methodologies for industrial applications. In the near future, these tools
can help reduce the manual debugging pain as well as the overall veri-

fication effort.

Table 1: Case study statistics

Design type # gates| Debug time| # Suspectg
memory controller 46K 26 sec. 5
vga controller 150K 32 sec. 12
communication blocki| 800K 672 sec. 10
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