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ABSTRACT
Semiconductor design companies are in a continuous search for design
tools that address the ever increasing chip design complexity coupled
with strict time-to-market schedules and budgetary constraints. A fun-
damental aspect of the design process that remains primitive is that of
debugging. It takes months to close, it introduces costs and it may jeop-
ardize the release date of the chip. This paper reviews the debugging
problem and the research behind it over the past 20 years. The case
for automated RTL debug tools and methodologies is also made to help
ease the manual burden and complement current industrial verification
practices.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits ]: Design Aids—Simulation, Verification

General Terms
Design, Verification
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1. INTRODUCTION
In the past decade, there has been an exponential increase in the cost

and time required for verification and debugging of VLSI systems. Veri-
fication checks the correctness of a design and if faulty, debugging iden-
tifies the root-cause of the problem. Although debugging manifests it-
self in every step of the design cycle, in this study, we are interest in
functional Register Transfer Level (RTL) debugging.

It is a well-accepted fact that debugging and verification take up to
70% of the chip design time. With debugging contributing to as much as
half of this time, it directly results in millions of dollars in non-recurring
costs and may jeopardize the release date of the end product. To make
things worst, silicon prototypes today are rarely bug-free. Functional
bugs may escape pre-silicon verification only to be discovered during
in-system silicon validation. It comes as no surprise that more than
60% of design tape-outs require at least one re-spin and more than half
of the failures are not due to power, timing or manufacturing defects
but due to logical or functional errors not discovered or properly fixed
during verification [15].
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Without a doubt, verification and debug are major bottlenecks. This
burden is expected to increase 675% by 2015 as reported byEETimes [10].
There are a number of reasons to justify this trend. Firstly, the modern
semiconductor design flows and verification methodologies are com-
plex in nature. The processes of design and verification are comprised
of heterogeneous components implemented at multiple levels of ab-
stractions (procedural, behavioral, synthesizable, etc.) using different
languages (Verilog, System Verilog, VHDL, PSL, etc) and ever chang-
ing standards and protocols. Interacting with such components adds
layers of complexity and overhead while hindering transparency and ef-
ficiency. The lack of a unified and centralized verification environment
makes the debugging pain a growing challenge for the end engineer.

Further, design specifications often described in abstract models, may
not directly correspond to signals and transactions at the design level.
For example, the specification can be described in a plain document, a
Matlab model or in a software language such as C/C++, whereas the de-
sign is implemented in cycle-accurate Verilog or in VHDL. The separa-
tion between these two layers can result in misinterpretations and usu-
ally complicates verification/debugging efforts. Additionally, the ever
increasing size of modern devices poses challenges both to Electronic
Design Automation (EDA) tools and engineers alike. Typical design
blocks grow beyond the 400,000 synthesized gate mark and error-traces
extend past thousands of cycles. Task outsourcing and geographical dis-
persed teams only add extra layers of communication overhead to these
processes.

In 2006, the International Technology Roadmap for Semiconductors
(ITRS), issued its new set of needs for the current and next generation
design semiconductor processes. Although most topics saw minor nu-
meric revisions, the roadmap contains a major fourteen-page update in
design verification with a strong emphasis in debugging. The report [11]
states that“technological progress depends on the development of rig-
orous and efficient methods to achieve high-quality verification results
... and techniques to ease the burden of debugging a design once a bug
is found ... without major breakthroughs, verification will be a non-
scalable, show-stopping barrier to further semiconductor progress”.
Without a doubt, the roadmap depicts a grim yet realistic picture that
establishes an urgent need for scalable automated debugging tools and
methodologies.

To a certain extent, the tremendous growth of the semiconductor in-
dustry over the past decades can be partially attributed to the amount of
automation provided by the EDA community. Most manual steps of the
design flow (synthesis, placement, routing, test, verification, etc.) have
been automated to help close designs faster and cheaper. Unlike these
processes, debugging remains a time-consuming and resource intensive
manual task where graphical navigators and waveform viewers allow
engineers to perform simple "what-if" analysis. With no form of exag-
geration, the engineer today resembles the famous detective Sherlock
Holmes who searches for needles in a haystack and relies on a “hunch”
or “gut feel” to localize the culprit bug when verification fails.

In past years, VLSI design companies have in part alleviated this de-
bugging pain by allocating more verification engineers to the problem.
As a net effect, it has been reported, there are two to three times more
verification engineers than designers in design teams [3]. It is clear that
adding verification engineers cannot provide a sustainable solution as
the pain continues to clime. Automated RTL debugging techniques to
localize the source of an error have become an urgent necessity if we



Figure 1: Typical verification and debugging design flow

desire to circumvent the manual problem and drastically improve the
verification flow.

This paper builds the case for robust automated RTL debugging tools
and methodologies to aid the engineer. We first define the problem
and outline its multiple facets in the design cycle. Then we give a
historical review of the research in debugging from the early days to
state-of-the-art advances and we present industrial case-studies.The
paper concludes by re-iterating the need for further research to provide
the platform for cost-effective automated debugging tools and scalable
methodologies to complement current industrial practices.

2. WHAT IS DEBUGGING?
Every time a design or a silicon prototype fails to adhere to a set of

specifications, a debugging problem usually follows. As such, debug-
ging manifests itself in virtually every step of the design cycle. When
the design does not meet its power requirements, the engineer has to de-
bug the problem and fix it by optimizing certain portions. When a place
and route tool cannot meet timing closure, the designer does it manually
by exploiting flexibilities not seen by the tool. When a silicon prototype
fails test, silicon debug identifies the error root-cause to fix it so that the
re-spun prototype passes test.

In this study we are interested in the problem of RTL debug for func-
tional failures. Once verification fails, it returns with anerror-traceor
a counter-examplethat exhibits the erroneous behavior at some obser-
vation points. The input to debugging is the actual design, the set of
error-traces V and the correct responses to those error-traces asshown
in Fig. 1. A debugging tool localizes the error source orsuspectswith
references to the RTL files, gate-level netlists or design schematics.

Note that a debugging tool utilizes a golden or reference model that
provides the expected logic values for the erroneous design. In our con-
text, there is a fundamental assumption that this model acts as a “black
box”, i.e., there is no structural correspondence between internal lines
of the model with this of the design. For example, the golden model can
be a Matlab program while the design is in Verilog. This complicates
the debugging effort dramatically because the solution space explodes
exponentially to the number of errors in the design [21]:

solution space= (circuit lines)# errors (1)

Another implication is that the only observation points to to the de-
bugger are the primary output design signals or the embedded asser-
tions/properties. These may be cycle- or no-cycle- accurate values cap-
tured by interface monitors, checkers or assertions. In other words,we
are interested in debugging that follows simulation-based verification,
formal verification and emulation flows [12]. We do not include com-
binational equivalence checking in this category since it utilizes struc-
tural equivalences to solve the problem [8]. To that end, the problem
of functional RTL debug resembles this of fault diagnosis (or silicon
debug) [20].

Once verification identifies that a design contains an error(s), debug-
ging usually involves the following questions:

• Is there a bug in the design or is the bug in the testbench?

• Which block in the design and which RTL line(s) should we focus
on?

• What is the root-cause of the bug?

• Who should fix the bug and how should it be fixed?

The process that answers these questions today involves an arduous
manual task with many iterations to close it. It delays the subsequent
steps of the design cycle and introduces significant non-recurring costs.

3. DEBUGGING: THE EARLY DAYS
There is a consensus that the term “design error” is attributed to the

paper by Abadir et al. from 1988 [1]. That paper outlines a set of typical
errors found in the design flow also known asdesign error models. Es-
sentially, this is a dictionary of possible simple error types such as gate
replacement errors, missing or misplaced input gate line errors, etc. In
the same work, the authors prove theorems for the test set V to guarantee
100% verification coverage using previous results for stuck-at faults.

Following that work, in the 1990s, a great deal of automated al-
gorithms were developed to tackle the problem using the design er-
ror model in [1]. A comprehensive review of those methods is found
in [14]. Depending on the underline engine used to drive the algorithm,
those techniques can be classified assymbolic-basedand simulation-
based.

3.1 Symbolic-based Debugging
Symbolic approaches typically perform diagnosis by generating and

solving anerror equationusing Binary Decision Diagrams (BDDs)
based on the functionality of both the correct and erroneous circuits.
In [9], algorithms for single and multiple design error diagnosis and
correction are presented. For single errors, an error equation is gen-
erated in turn for each linel in the netlist. For a netlist with inputs
X, the error equation for linel is notedEl (X,z(X)), wherez(X) is an
unspecified function over the circuit inputs. By construction, if there
exists some functionz(X) that satisfies the equationEl = 0, then re-
placing the linel with a circuit implementingz(X) will “correct” the
behavior of the netlist according to its specification. Moreover,z∗(X) ∈

[El (X,0),El (X,1)] specifies the family of all solutionsz∗(X) that cor-
rect the circuit atl .

Essentially,El is an algebraic representation of a miter for the two
circuits. Although effective for single errors, it exhibits memory prob-
lems as it uses BDDs [5] to build the error equation. Furthermore, its
applicability to multiple errors is limited to cases depending on their
structural proximity [9].

3.2 Simulation-based Debugging
To overcome the excessive memory requirements of BDD-based ap-

proaches, debugging with simulation has been extensively investigated.
Those methods provide a time/space trade-off as they remain polyno-
mial in the input size but they may require more time to give an answer.

Simulation-based techniques [14] [21] [22] simulate an error-trace
and trace backwards from primary output to primary input marking sus-
pect lines using different criteria. For each error-trace, they collectthe
suspect lines and since the error is present in each one of them, they in-
tersect the results for all runs. Although their memory requirements re-
main linear to the size of the circuit, the complexity mitigates to the time
domain. As the number of errors increases, their performance degrades.
For this reason, their applicability to sequential circuit debugging has
been rather limited [14].

To overcome these obstacles, the concept of simulation-based debug-
ging has been enriched with simulation of unknown values [4] to alle-
viate the need for an error model. Although practical in some cases,
unknowns can decrease the resolution of the solution for large designs
or for sequential designs. In the work of Liu et al. [16], an incremental
debugging method is proposed. That method outperforms conventional
techniques for multiple errors but since it is not exhaustive in the solu-
tion space, it may miss finding solutions.



4. DEBUGGING WITH SATISFIABILITY
Recently, the introduction of Boolean Satisfiability (SAT) in the field

opened new opportunities for cost effective automated debugging tools.

4.1 SAT-based Debugging
A SAT-based debuggingtechnique was proposed in SAT [20] where

the problem is formulated as a SAT instance for a conventional solver to
return solutions corresponding to suspects. A variety of SAT-based de-
bugging formulations have been proposed building on the initial work
[6] [13] [18]. Experiments show that SAT-based debugging outperforms
traditional simulation- and BDD-based techniques, in both time and
space, sometimes by orders of magnitude.
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Figure 2: SAT-based debugging

To model debugging [20], a multiplexermi is added for every gate
(and primary input)l i . The output of this multiplexer,mi , is connected to
the fanouts ofl i while l i is disconnected from its fanouts. This construc-
tion has the following effect: when the select linesi of a multiplexer is
inactive (si = 0), the original gatel i is connected tomi , otherwise, when
si = 1 a new unconstrained primary inputwi is connected. Figure 2
illustrates the above transformation for a combinational circuit.

This construction is later constrained with the input/output values of
the expected primary output responses for the particular error-trace. A
potential correction on linel i is indicated when the select linesi is as-
signed to1 under which condition the correction value is stored inwi .
The SAT solver can assign any value {0,1} to thesi andwi variables
such that the resulting Conjunctive Normal Form (CNF) satisfies the
constraints applied by the vectorsV. To force the SAT solver to find a
specific numberN of error locations, further logic is added to activate
at mostN select lines [20]. Thus forN = 1, a singlesi is set to1 which
correspondsto candidate error locationl i , etc. Finally, the construction
is repeated and constrained for each error-trace before given to a SAT
solver.

Following the initial formulation, a variety of advances have been
proposed to improve performance. More notably, the work in [18] bor-
rows the concepts of abstraction and refinement from formal verification
to ease the debugging effort. The authors in [2] use Quantified Boolean
Formula (QBF) Satisfiability to “compress” the memory required by
replicating the CNF for the different error-traces. Finally, orthogonal
to [20], the research in [7] and [19] introduces SAT-based techniques
to reduce the length of the error-traces and further reduce the memory
requirements for existing debugging methods.

4.2 QBF-based Debugging
The backbone of the SAT-based formulation proposed by [20] when

applied on sequential circuits is the repetition of the combinational cir-
cuitry for a number of cycles equal to this of the error-trace. This is
also known as the Iterative Logic Array representation or time-frame
expansion [17]. Clearly, replicating a half million gate block for pos-
sibly thousands of cycles of industrial-size error-traces, it may require
prohibitively excessive memory resources. Evidently, more compact
representations of sequential debugging problems are required to en-
sure scalability with no sacrifice in performance.

To that end, [17] presents a parameterizable encoding for debugging
using QBF Satisfiability. In Boolean SAT all variables in the CNF are
existentially quantified. QBF is a generalization of SAT that also al-
lows for universal (∀) quantification of the variables. A QBF formula in

prenex normal formis written as:

Q1V1 Q2V2 · · · QrV r | Φ (2)

The design debugging formulation using QBF is given by the follow-
ing equation:

∃e,s0
,s1

, . . . ,sk
,X,Y ∀t ∃s,s′,x,w,y |

k̂

j=1

tk( j) → [(s= sj−1)∧ (s′ = sj )]∧

k̂

j=1

tk( j) → [(x = x j )∧ (y = y j )]∧

Ten(s,s
′
,〈x,w,e〉,y)∧ΦC(s0

,X,Y)∧ΦN(e) (3)

wheree are the error location select lines,s0
. . .sk are state elements

for the k-cycle error-trace, andX (Y) is the set of design primary in-
put (output). Although the intricate details of the encoding are beyond
the context of this paper [17], pictorially the hardware construction that
corresponds to Eq. 3 is shown in Figure 3. In that figure,TEN is a single
copy of the combinational circuitry (i.e., transition relation) from Fig-
ure 2(b). Intuitively, the QBF formulation mitigates the space expan-
sion of the circuit into time using universal quantification. Experiments
shows the favorable nature of this encoding as it achieves a dramatic
92% reduction in space when compared to SAT and sometimes outper-
forms it in terms of run-time.

5. INDUSTRIAL CASE STUDIES
With the help of recent advances, automated debugging tools for in-

dustrial problems are within reach. In this section, we present three
case studies representative of common bugs found in the RTL. For each
of the cases, we show a code snippet in Verilog containing the bug as
well as the correct implementation shown in comments (i.e. // ). We
present how a state-of-the-art industrial automated debugger using the
methodologies from Sections 4 and 4.2 efficiently tackles the problem
in Table 1.

In the first example, shown in Fig. 4, the 0 and 1 input of the multi-
plexer are incorrectly connected. This type of mistake is very common,
as it is easy to mix-up the signals or forget the polarity of the condi-
tion. In this case, the bug is detected by a self-checking testbench when
the output of the memory controller is found to be different than the
expected value.

In the second example, shown in Fig. 5, a single clock fifo module,
vga_fifo, is erroneously instantiated instead of dual clock fifo module,
vga_fifo_dc. This type of error can be caused by missing details in
specifications that do not explicitly require a dual clock fifo. This bug
is caught by an end checker when the pixels generated by the vga con-
troller do not match those of a golden C model. In this case, it can be
very hard to narrow down the problem from the controller output all the
way to the fifo module.
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always @(posedge clk)
// correct line:
//wb_data <= #1 ‘MC_MEM_SEL ? mem : rf;
// bug below:
wb_data <= #1 ‘MC_MEM_SEL ? rf : mem;

Figure 4: Case study 1: misinterpretation of condition in memory
controller

// correct block:
// vga_fifo_dc line_fifo(
// .rclk ( clk_p_i ),
// .wclk ( wb_clk_i ),
// .rclr ( 1’b0 ),
// .wclr ( ctrl_ven_not ),
// .wreq ( line_fifo_wreq ),
// .d ( line_fifo_d ),
// .rreq ( line_fifo_rreq ),
// .q ( line_fifo_q ),
// .empty ( line_fifo_empty_rd ),
// .full ( line_fifo_full_wr )
// );
//
// bug below:

vga_fifo line_fifo (
.clk ( clk_p_i ),
.aclr ( 1’b0 ),
.sclr ( ctrl_ven_not ),
.wreq ( line_fifo_wreq ),
.d ( line_fifo_d ),
.rreq ( line_fifo_rreq ),
.q ( line_fifo_q ),
.empty ( line_fifo_empty_rd ),
.full ( line_fifo_full_wr )

);

Figure 5: Case study 2: wrong fifo instantiation in vga controller

The third example, shown in Fig. 6, contains multiple errors where
theif conditions for signalsRX_W andRC_W are misinterpreted. In this
large communication block, the errors affect control circuitry which
triggers an assertion to fail dozens of clock cycles after the bug has
been excited.

always@(posedge CLK)
// correct line:
//if(RX_W == 1’h1)begin
// bug below:
if(RX_W == 1’h0)begin

NTY_CTL <= RX_CTL;
NTY_DATA <= RX_DATA;

end
else begin

// correct line:
//if(RC_W == 1’h1)begin
// bug below:
if(RC_W == 1’h0)begin
NTY_CTL[63:48]<= RC_CTL[63:48];
NTY_CTL[7:5]<= REG_RES_FRAME[2:0];

end
end

Figure 6: Case study 3: multiple wrong conditions in communica-
tion block

For the three case studies, Table 1 shows the design type and size
of the circuit in primitive gates in columns one and two respectively.
Columns three and four present the time required by the debugger to
localize the suspects, and the total number of suspects returned to the
engineer. In all cases, the debugger eliminates more than 99% of the
code in a few seconds or minutes. The suspects returned point the en-
gineer to a small set of Verilog lines where the design can be rectified
and the bug removed. The relatively small run-time of the tool makes
the automated debugger a powerful and practical tool to aid engineers
in the daunting debugging task.

6. CONCLUSION
Debugging of RTL designs remains a manual and resource-intensive

task today. This paper outlines the rich research in debugging over the
past 20 years. It also builds the case for novel automated debugging
methodologies for industrial applications. In the near future, these tools
can help reduce the manual debugging pain as well as the overall veri-
fication effort.

Table 1: Case study statistics

Design type # gates Debug time # Suspects
memory controller 46K 26 sec. 5
vga controller 150K 32 sec. 12
communication block 800K 672 sec. 10
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