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ABSTRACT
Design debug remains one of the major bottlenecks in the
VLSI design cycle today. Existing automated solutions strive
to aid engineers in reducing the debug effort by identifying
possible error sources in the design. Unfortunately, these
techniques do not provide any information regarding the
time at which the bug is active during an error trace or
counter-example. This work introduces an automated de-
bug technique that provides the user with both spatial and
temporal information about the source of error. The pro-
posed method is based on a Partial MaxSAT formulation
which models errors at the CNF clause level instead of the
traditional gate or module level. Thus, error sites are iden-
tified based on erroneous implications that correspond to
locations both in the design and in the error trace. Ex-
periments demonstrate that we can provide this additional
information at no extra cost in run time and are able to
prune about 61% of all simulation time frames from the de-
bugging process. When compared to a trivial formulation
we observe a performance improvement of up to two orders
of magnitude and 5× on average when using the proposed
formulation.

Categories and Subject Descriptors: J.6 [Computer-
Aided Engineering]: Computer-aided design (CAD)

General Terms: Algorithms, Verification

Keywords: Design Debugging, Maximum Satisfiability

1. INTRODUCTION
As design tools and methodologies for today’s Systems-on-

Chip (SoCs) and VLSI designs become increasingly sophis-
ticated, designing a bug free circuit remains the exception
rather than the norm. Functional verification tasks pose a
major bottleneck in the design process, consuming up to
70% of the design effort [1]. A multitude of methodolo-
gies, formal and semi-formal techniques exist for verifying
design functionality [2, 3]. These methods and techniques
verify whether a design implements its given specification.
However, once the design fails verification, the root cause
of the failure must be identified and rectified manually. As
the complexity of digital designs steadily increases, the cost
of design debug becomes substantial and unpredictable due
to the overwhelmingly manual nature of the debugging pro-
cess [4] and the increased intricacy of the design cycle. The
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tremendous time-to-market pressures of today’s applications
make automated design debug tools essential.

Today, design debug comprises of heavy manual engineer-
ing tasks such as examining stimulus traces, analyzing the
design components, and back-tracing design signals. The re-
sult of this arduous debug effort is a set of components and
circumstances responsible for the functional failure. Tra-
ditionally, automated debug solutions for hardware designs
have been proposed based on simulation [5], path tracing [6],
and Binary Decision Diagrams (BDDs) [7]. More recently,
advances based on formal engines such as SAT [8], QBF [9],
and MaxSAT solvers [10] have been successful at helping
the engineers. Without exception, all existing automated
debug techniques identify components (gates or modules) in
the design for manual analysis. Thus they provide spatial
debug information with respect to the error. Surprisingly,
none provide temporal information, that is, when during the
verification phase the error is active (i.e. it is excited and its
effects are propagated to an observation point). Temporal
information is very important for designers when determin-
ing how to remove the error and correct the design [11].

This work presents a novel alternative formulation to the
automated debugging problem for sequential circuits where
the solution is not limited to spatial error sources. More
specifically, the proposed technique identifies errors both
spatially and temporally thus localizing where and when dur-
ing the verification trace the errors are active.

The basis of our technique is a departure from conven-
tional debugging frameworks where errors are modeled as
either gates or modules [6,8,11]. Instead, errors are modeled
as implications or clauses in the Conjunctive Normal Form
(CNF) representation. By identifying a set of CNF clauses
as the root cause of an error, we can determine where in the
design and when in the simulation trace the erroneous gates
are excited to cause the wrong behavior.

Specifically, our approach builds an unsatisfiable Boolean
formula from the design, the verification trace and the ex-
pected behavior. We use a Partial MaxSAT solver to extract
the maximal subset of clauses that is satisfiable and comple-
ment this set to derive the minimal set of clauses whose re-
moval make the CNF formula satisfiable. This minimal set
represents a set of potential error sources which if corrected
allow the circuit to pass verification.

Our major contributions are summarized as follows:

• A novel method for efficiently determining spatial and
temporal error sources.

• A formulation of the design debug problem using a
Partial MaxSAT encoding with minimal overhead.

• An error cardinality model based on error excitations
and propagations.

To demonstrate the effectiveness of the proposed tech-
nique, we develop an automated debug framework using the
Partial MaxSAT solver in [12]. We show that our technique
accurately identifies time frames where errors are excited
and their effect propagated to the outputs. We also show
that our formulation is superior to a non-optimized clause



level MaxSAT approach resulting in speedups of up to two
orders of magnitude with an average of 5×. Versus an exist-
ing MaxSAT-based debugger, our technique is more effective
as it provides additional temporal information while demon-
strating a competitive 1.29× speedup.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses some of the previous contributions to the
field. In Section 3 we provide the necessary background re-
garding automated design debugging and Partial MaxSAT.
Our proposed debugging approach is given in Section 4. Sec-
tion 5 extends on ideas from Section 4 by introducing a new
cardinality model for sequential circuits. Finally, our exper-
iments and conclusions are given in Sections 6 and 7.

2. PREVIOUS WORK
Existing formal SAT-based techniques for design debug-

ging can be grouped into two broad categories. Approaches
that are based on satisfiability (i.e. finding a satisfying as-
signment to the CNF problem) and those that are based
on unsatisfiability (i.e. identifying which parts of the CNF
problem cannot be satisfied). For this paper we will mainly
focus on approaches based on unsatisfiability as the debug-
ging problem is naturally unsatisfiable and recent advances
in Maximum Satisfiability solvers are showing promising re-
sults for industrial applications [13].

There are two major contributions to the field of design de-
bugging using unsatisfiability. In [10] the first MaxSAT for-
mulation for design debug is introduced. The use of clauses
for identifying exact error locations in combinational circuits
is presented but deemed impractical. Instead, for sequential
circuits, it is shown that MaxSAT can be used as a powerful
tool to group clauses together for a quick over-approximation
of the solutions. Error locations are modeled at the gate
level as clauses are grouped across time frames. By increas-
ing the granularity of errors, Safarpour et al [10] combine
a groupings based MaxSAT formulation with an exact SAT
based debugger to achieve performance gains.

Furthermore the solver [14] used by [10] significantly dif-
fers from the solution technique presented here. In [14]
all satisfiable subsets are enumerated, independent of their
size, using disjunctions of relaxation variables. This paper
presents an algorithm which enumerates MaxSAT solutions
using no relaxation variables.

In [15], unsatisfiable cores are used to speed up the de-
bugging process for multiple fault diagnosis problems. This
approach extracts a set of unsatisfiable cores from the CNF
problem and prunes potential error locations not contained
in any of the cores. A SAT based exact debugger is then used
to find the actual error locations from the reduced problem.

Both contributions focus on using unsatisfiability during
pre-processing to improve performance. Error sources are
modeled as physical locations in the design (gates or mod-
ules) and the final solution is returned by a secondary SAT
based debugger. Our approach differs from previous ap-
proaches in that we do not attempt to balance the use of
unsatisfiability and satisfiability for performance gains. In-
stead we use a Partial MaxSAT solver on sequential circuits
to find the exact error location in the design without the
need for an additional solver. Our formulation models er-
rors at a finer level of granularity offering a better resolution
than other approaches in addition to being the first formula-
tion able to locate suspects in time. Even though the search
space of our problem is significantly increased, our experi-
ments show that the impact on run time is insignificant due
to advances made in modern MaxSAT solvers.

3. BACKGROUND
3.1 Automated Design Debugging

Design debugging occurs at the early stages of the design
cycle when the implementation of a design does not meet the
specification. At this stage, the RTL design has failed veri-
fication (simulation or formal). Given an erroneous circuit,

a sequence of input values (stimulus trace) and expected
output values, design debugging seeks to find a set of er-
ror sources in the design, that if corrected can rectify the
problem. This is similar to fault diagnosis which focuses
on locating defects in silicon [6]. While the techniques pre-
sented here are also applicable to fault diagnosis, we will
mainly focus our discussion on design debugging.

Traditionally, error sources and their corresponding cor-
rection models are represented at either the gate or mod-
ule level [8, 11]. For SAT [8] and QBF [9] based debug, the
problem is converted to CNF using techniques that may [16]
or may not [17] take into account circuit information. The
stimulus and expected behavior are then used to constrain
the resulting CNF problem. Additional constraints are added
to limit the maximum number of errors, that can be simul-
taneously activated. Finding a satisfying assignment to the
resulting formula effectively finds a set of possible error loca-
tions El. A debugger is limited to finding the set of all sites
Eq functionally equivalent to El, such that |Eq| ≤ Ne. Ne is
a user defined cardinality providing the upper bound on the
number of errors that can be active in the circuit simultane-
ously [8]. Sets of error locations are said to be functionally
equivalent if they cannot be functionally distinguished from
each other under a given stimulus trace [6].

3.2 Maximum Satisfiability
This section reviews MaxSAT and its extensions, and briefly

overviews recent algorithms for MaxSAT, capable of han-
dling large complex problem instances.

Given an unsatisfiable CNF formula Φ, the MaxSAT prob-
lems consists of identifying an assignment to the problem
variables such that the number of satisfied clauses in Φ is
maximized [18]. The MaxSAT problem is a well-known NP-
Hard optimization problem.

In the Partial MaxSAT problem the CNF formula is or-
ganized into a set of hard clauses, which must be satisfied,
and a set of soft clauses, which may or may not be satisfied,
i.e. Φ = ΦH · ΦS . For Partial MaxSAT problems the objec-
tive is to find an assignment that satisfies all the hard clauses
and that maximizes the number of satisfied soft clauses.

In the remainder of this paper, hard clauses will be repre-
sented in square brackets and soft clauses in round brackets.
For example, consider the following formula:

Φ = [x1 + x2][x3] · (x1)(x2)(x3 + x1) (1)
The first two clauses are hard clauses, and so must be sat-
isfied, whereas the remaining three clauses are soft clauses
and may or may not be satisfied.

In the recent past [18], the most effective MaxSAT algo-
rithms have been based on branch-and-bound search (B&B),
supported by effective lower bounding and dedicated infer-
ence techniques. Nevertheless, most of the experimental
evaluation associated with B&B MaxSAT solvers assumed
random and handmade problem instances, which unfortu-
nately often bear little relationship with hard industrial in-
stances. As a result, recent work has addressed alternative
approaches, aiming the use of MaxSAT algorithms in indus-
trial settings, and focusing on instances derived from realis-
tic applications. The most effective algorithms are based on
solving MaxSAT with unsatisfiable sub-formula identifica-
tion and relaxation [12,19,20]. The relaxation of the clauses
in each unsatisfiable sub-formula is achieved by associating
a relaxation variable with each such clause. Cardinality con-
straints are used to constrain the number of relaxed clauses.

4. DEBUGGING SEQUENTIAL CIRCUITS
WITH PARTIAL MAXSAT

For the design debugging problem we are primarily inter-
ested in sequential circuits specified using logic gates and
state elements. We use time frame expansion to model the
behavior of state elements over a finite number of clock cy-
cles k. This technique effectively transforms the sequential
circuit into a combinational circuit, otherwise known as an



Figure 1: Correct and erroneous circuit for Example 1

Iterative Logic Array (ILA) [6], by replicating the combina-
tional portion of the circuit k times. Adjacent time frames
are connected by their respective next and current state
variables. Let ILAk(C) be the ILA obtained by expand-
ing a buggy sequential circuit C over k time frames. Let
CNF (ILAk(C)) denote the Boolean formula obtained by
translating each gate in ILAk(C) into their respective CNF
representation as in [17]. We can formulate the debugging
problem as a Partial MaxSAT problem as follows:

Φ =

kY
i=1

[Ii][Oi] · [IS] · CNF (ILAk(C)) (2)

Where I1, I2, . . . , Ik is the sequence of input constraints pro-
vided by the stimulus trace, O1, O2, . . . , Ok is the sequence
of constraints based on the expected output values, and IS
is the initial state.

As the erroneous circuit cannot produce the expected out-
put response, Φ is inherently unsatisfiable. The comple-
ment of the solution set obtained from a Partial MaxSAT
solver is the minimal set of clauses whose removal satisfies
Φ (i.e. the clauses corresponding to a possible error). Due
to the many-to-one mapping between clauses and gates in
the CNF, this solution set also corresponds to a minimal
collection of logic gates in C that may be responsible for the
discrepancy between the observed and expected behavior.
The input, output, and initial state constraints are specified
as hard clauses, as indicated by the square brackets, since
their removal trivially satisfies the CNF formula. We can
also specify trusted portions of the circuit (such as adders
and multipliers) as hard clauses to reduce the solution space.
For the remainder of this paper the phrase ’MaxSAT solu-
tion’ will refer to the set complement of the Partial MaxSAT
solution.

The most basic Partial MaxSAT formulation is one that
relates each clause found as a solution back to its gate or
module level representation. The following example demon-
strates this process for a simple circuit.

Example 1 Fig. 1(a) and (b) give an example of a correct
and erroneous circuit. Gate A in the correct circuit was
wrongly implemented by an AND gate. Fig. 1(c) shows the
time frame expansion model of the erroneous circuit under
a set of input and correct output constraints and an initial
state of 0. The time frame number is given by the subscript.

Note that that since the output is registered, the output val-
ues provided by b1, b2, and b3 are constrained by the expected
output values in the next time frame. The CNF representa-
tion of the ILA from Fig. 1(c) is given below along with the
gates represented by each set of clauses.

[i1][j1][c0][b1]
A1: (i1 + a1)(j1 + a1)(i1 + j1 + a1)

B1: (j1 + b1)(c0 + b1)(j1 + c0 + b1)

C1: (a1 + c1)(b1 + c1)(a1 + b1 + c1)

[i2][j2][b2]

A2: (i2 + a2)(j2 + a2)(i2 + j2 + a2)

B2: (j2 + b2)(c1 + b2)(j2 + c1 + b2)

C2: (a2 + c2)(b2 + c2)(a2 + b2 + c2)
[i3][j3][b3]

A3: (i3 + a3)(j3 + a3)(i3 + j3 + a3)

B3: (j3 + b3)(c2 + b3)(j3 + c2 + b3)

C3: (a3 + c3)(b3 + c3)(a3 + b3 + c3)
One of the possible solutions returned by the MaxSAT solver
is (j2 + a2) from A2, correctly implying that the behavior of
gate A at time frame 2 is the cause of the error. Since the
erroneous behavior due to the incorrect gate A also propa-
gates through gates C and B, the clauses (a2 + b2 + c2) and

(c2 + b3) are also possible MaxSAT solutions. In fact, these
3 solutions are the only solutions obtainable for this trace.

4.1 Obtaining Multiple Solution Sets
Typically, a Partial MaxSAT solver will only return a sin-

gle solution per call. In Example 1, any one of the three
solution clauses could be returned by the solver as all of
them are of minimal cardinality. For the debug problem, we
are generally interested in obtaining all sets of clause level
solutions of cardinality ≤ Nc, where Nc is a user defined
constant. This requires a mechanism to effectively block
previously found solutions during iterations. For solutions
of cardinality one, this can be trivially done by denoting
them as hard clauses instead of soft clauses in the CNF.

For cardinality m solutions however (m > 1), a set of so-
lution clauses Sc = {Cl1, Cl2, . . . , Clm} needs to be blocked.
This means that for future solutions at least one of the
clauses in Sc must evaluate to true in the satisfying as-
signment of the satisfiable subset of clauses obtained by
MaxSAT. Thus Sc can be blocked as a solution by adding
one additional hard clause Clc = [Sc] = [Cl1 + Cl2 + · · · +
Clm] to the CNF.

Using maxsat(Φ) to denote a solver returning a minimal
set of unsatisfiable clauses, the algorithm to obtain all sets
of clause level error sources Sc such that |Sc| ≤ Nc is given
in Algorithm 1.

Algorithm 1 The mxs solve algorithm

mxs solve(Φ,Nc)

1: error sources ⇐ ∅
2: Sc ⇐ maxsat(Φ)
3: while |Sc| ≤ Nc and Sc 6= ∅ do
4: Φ ⇐ Φ · [Sc]
5: error sources = error sources ∪ {Sc}
6: Sc ⇐ maxsat(Φ)
7: end while
8: return error sources

4.2 Extracting Temporal Information
The MaxSAT solutions also provide valuable information

regarding the temporal location of the errors. In Example 1,
all the solution clauses originate from gates A2, C2, B3 in ei-
ther time frame 2 or 3. Thus, further analysis or correction
by the engineer can focus on clock cycles 2 or 3 within a
stimulus trace or counter-example. Incidentally, these so-
lution clauses describe a propagation path from the error
source in time frame 2 to the observed error at the output
in time frame 4. Even though gate A is also erroneous in
time frame 1, the value of a1 actually matches its expected
value. Thus the error is undetectable in time frame 1. In
contrast, existing automated debug solutions only provide
spatial information (gates A, B and C) regarding error sus-
pects.

Our experiments show that our method can reduce the
number of time frames requiring analysis for debug by an
average of 61%. Furthermore, we can measure the frequency
that a certain time frame is implicated from the set of so-
lutions returned. Experimentally, time frames which are



implicated by solutions more frequently are more likely to
contain the actual error excitation. In the example given,
two out of three solutions implicate the actual erroneous
time frame. For longer simulation traces this analysis allows
the designer to shorten the debugging process by prioritizing
their efforts to a small selection of simulation time frames.

4.3 Using Literal Information
Another benefit of modeling error sources at the clause

level is that a solution clause returned by MaxSAT does not
merely present a specific gate as erroneous. It also provides
additional information regarding the nature of the problem.
For instance, consider the solution (a2 + b2 + c2) from Ex-
ample 1. Since the removal of this clause makes the CNF
problem satisfiable, this clause must evaluate to false in the
satisfying assignment. The following observations can be
deduced regarding the nature of the error.

1. The error could have been caused by the incorrect be-
havior of gate C.

2. The literal c2 implies that setting c = 0 (gate C) only
in time frame 2 by some circuit modification would
rectify the problem.

3. The literals a2 and b2 imply that changing either the
output value of gate A or gate B in time frame 2 from
0 to 1 would rectify the problem.

Of these points, only observation 1 is returned by tradi-
tional automated debug techniques. Observations 2 and 3
are unique to clause level debugging as they reason about
implications in a particular time frame.

Further analysis can be made for the input literals in ob-
servation 3. Due to the output constraint imposed on on
gate B at time frame 2 (out3 = 0), setting b2 = 1 is not a
viable option. In general, this means that these additional
implied solutions should be checked against other clauses
to ensure the correcting assignment does not cause another
clause to evaluate to 0 due to multiple fanouts. Thus, gate
A in time frame 2 is the only other potential error source
implied by this solution.

Since each clause level solution effectively returns a small
cluster of gates as possibly erroneous we can effectively add
the extra gates found to the set of error sources returned
by Algorithm 1. Continuing with our above example, this
means that both the gates A2 and C2 are added as potential
error candidates to the error sources set after finding the
clause (a2 + b2 + d2).

5. MODELING ERROR CARDINALITY AS
EXCITATIONS AND PROPAGATIONS

In existing gate level debugging approaches, the maximum
cardinality of solution sets Ng is given by the user [8]. That
is, Ng represents an estimate on the maximum number of
simultaneous gate level error sources active in the circuit. In
this section we establish a new way to express error cardi-
nality which describes error sources at a finer level of granu-
larity. To do so, we must first find the relationship between
between Ng and Nc.

Consider the case where Φ is derived from a single clock
cycle simulation of a circuit C. We can treat C as a combina-
tional circuit. Let E be the set of all functionally equivalent
gate level error locations of cardinality ≤ Ng. We define
mcl to be the maximum number of clauses generated for
any gate in the circuit. For example, for a circuit with only
2-input AND/NAND gates and NOT gates, mcl = 3. Due
to the minimality of solutions returned by maxsat(Φ) every
element in E is found by mxs solve for Nc = Ng ·mcl.

For circuit problems optimized through Boolean Constraint
Propagation (BCP), where all unit literal clauses are re-
moved, mcl can be further be replaced by (mcl − 1) in the
above upper bounds.

Theorem 1: In BCP optimized circuit problems with no
unit literal clauses the maximum number of clauses that can
be unsatisfiable per gate is mcl − 1.

Figure 2: Erroneous circuit and its respective time
frame expansion model for Example 2

Proof: Every clause in the minimal CNF representation
of a single output logic gate G with output variable y must
either contain the literal y or y. Both the literals y and y
must appear in CNF (G) at least once as otherwise CNF (G)
could be reduced to a unit literal clause by BCP. Therefore,
no matter what value y is assigned at least one clause in
CNF (G) is satisfied. Thus MaxSAT can return a maximum
of (mcl − 1) clauses per gate.

For sequential circuits, since a gate is replicated k times
in ILAk(C), in the worst case Nc = (mcl− 1) ·Ng · k to find
all gate level solutions of cardinality ≤ Ng. Notice that k
actually denotes the maximum number of times that a gate
level error is active, i.e. the gate level error is excited and
its effect is propagated to the output [6]. Since in general
a gate level error is not active for every clock cycle, k can
be effectively replaced by kep, where kep ≤ k denotes the
expected number times the error site is active.

Since errors are modeled at the clause level, errors from
the same or different gate level sources are not distinguished.
Thus, once a clause cardinality Nc is specified, mxs solve
finds all clause level errors irrespective of their corresponding
gates. As a result, Nc can be more appropriately specified as
Nc = (mcl − 1) ·Nep, where Nep is the maximum expected
number of error excitations and propagations for a given
stimulus trace. This is in contrast to previous definitions
of gate level error cardinality which demand the estimated
number of error locations that are active in the circuit at
once. Similar to Ng, the user can provide an estimate for
this number based on trace length and the complexity of the
problem [8].

Example 2 shows a simple circuit where using a Nc inde-
pendent of the gate level locations provides valuable debug
information.

Example 2 Consider the erroneous circuit in Fig 2(a). Some
gates irrelevant to the problem are omitted in the time frame
expansion model of Fig 2(b). The correct circuit is derived
by replacing gate A with an OR gate so the actual number
of error excitations and propagations is 2. Suppose mcl = 3
and we guess Nep = 2. Consequently, mxs solve with Nc =
(mcl−1) ·Nep = 4 returns a total of 9 solutions (all of cardi-
nality 2). Three of these solutions are given below with their
gate level representations shown for clarity.

S1 = {A2 : (i2 + a2), B2 : (a1 + b2)}
S2 = {A1 : (i1 + a1), A2 : (i2 + a2)}
S3 = {C3 : (b3 + c3), C3 : (b2 + c3)}

These three solutions return three different types error sources.
In the case of S1, the two possible error locations are gates
A and B in time frame 2. For S2 the spatial location is
gate A, while the temporal locations are time frames 1 and
2. Finally, S3 implicates gate C in time frame 3. Note that
additional solutions can be inferred when taking into consid-
eration input literals.

6. EXPERIMENTS
In this section we demonstrate the effectiveness of our

temporal and spatial debug techniques. The techniques de-
scribed in this paper are implemented using C++, Perl and
the Partial MaxSAT solver from [12]. All experiments are
run on a 2.20GHz Intel Core2 Duo machine with 2GB of
memory and a timeout of 6 hours. In total five educational
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Figure 3: Temporal debug information based on frequency of time frames found for circuits cct4, divider-2, and fpu-1

circuits (cct1-5) and three circuits obtained from Open-
Cores.org [21] (divider, fpu, rsdecoder) are presented. These
circuits are modified at the RTL level where a single Verilog
error is inserted. The buggy circuits are first simulated to
verify that the errors are detected. They are then synthe-
sized and converted to CNF using the method in [17]. The
input and output constraints are captured from simulation.

As described in Section 4 providing temporal debug infor-
mation such as the most likely time frame when an error is
active is crucial. The temporal information provided by our
technique is illustrated in Fig. 3. The histograms in Fig. 3
show the frequency a time frame is implicated by a literal
in solution clauses. The likelihood of an error being active
at a particular time frame is indicated by the height of the
bars. The scatter plots underneath the histograms illustrate
which error locations are found for which time frame. The
y-axis lists all unique error locations found by the algorithm
and the x-axis shows the time frames during which these
locations can be excited to cause the error.

Fig. 3(a) shows the results for cct4 which is a large state
machine with a wrong state transition. In total 30 unique
error locations are found. The graphs show two visible spikes
at time frames 43 and 47. The actual error location was
excited in time frame 43.

For divider-2 (Fig. 3(b)) a constant assignment is in-
serted into the datapath and excited by the testbench at
time frame 21. We see a wider distribution of possible erro-
neous time frames as the erroneous behavior is propagated
through multiple pipeline stages

Similarly, for fpu-1, an RTL operation is replaced with
another in the datapath. The peak in Fig. 3(c) correctly
implies that the bug is excited in time frame 6. As the er-
ror propagates through the datapath the number of possible
error sources for the observed bug decreases.

These graphs can allow the designer to focus on these
locations during these time frames to correct the problem.
For all three circuits our technique correctly indicates the
time frame during which the bug is excited and propagated
to the output. The frequency of the erroneous time frame,
i.e. when the error is active, is more than double that of the
next highest data point for the three circuits shown.

These histograms and scatter plots can therefore be used
to reduce the amount of time spent on analyzing simulation
waveforms by reducing the search space to a few clock cycles.
For example in cct4, if the engineer is aware of when state
transitions occur, the error source in the state machine may
be deduced even without any spatial information.

Table 1 summarizes the performance of our technique on
all the sample circuits. For the larger circuits multiple in-
teresting error instances are considered (four for divider,
three for fpu, two for rsdecoder).

Columns 1 to 3 give the instance of the buggy circuit, the
number of gates, and the number of state elements, respec-
tively. Columns 4 and 5 indicate the length of the stimu-
lus trace in clock cycles and the number of literals in the
MaxSAT formulation. The number of equivalent gate level
error locations is given in column 6.

Columns 7 to 10 provide run time information for the ba-
sic Partial MaxSAT formulation as described in Section 4.
For each clause, only the gate that it was derived from is
considered a solution. Column max card provides the max-
imum cardinality Nc required to find all error locations at
the clause level. The run time to find all equivalent error
locations using this method is summarized in columns iter
(number of iterations), time/iter (average solver time per
iteration), and total (total run time).

Columns 11 to 14 present the cardinality requirements
and run time results for the case where clause literals are
interpreted as solutions as presented in Section 4.3. The im-
provement in run time of this method over the basic formu-
lation is given by the improv column. On average we observe
a speedup of around 5× for finding all equivalent error lo-
cations when comparing against the basic formulation with
best results reaching up to two orders of magnitude (cct4
and fpu-1). Finally, the percentage of time frames pruned
due to temporal information is given in the last column. Our
formulation is able to prune about 61% of all possible error
excitation time frames on average. Note that this number
does not take into consideration visible spikes in frequency
as given by the histograms in Fig.3 which could further re-
duce the time to find the actual erroneous time frame.

Consider divider-2 with 5670 gates and 424 state ele-
ments which is simulated for 27 clock cycles resulting in a
MaxSAT formulation with 176,481 literals. The inserted er-
ror results in 15 equivalent error locations at the gate level.
The clause based method finds all 15 error locations after
64 iterations with an Nc of 2. In contrast, our literal based
method finds all error locations in 13 iterations requiring an
Nc of 1. Since the error trace ran for a total of 27 time
frames and our formulation found 7 possible time frames
during which the error could be excited the percentage of
possible error excitation time frames pruned is 74%.

We also implemented the debug problem using groupings
similar to the method presented in [10]. In this variation,



Table 1: Runtime comparison between clause level MaxSAT formulations with and without literals analysis
Circuit and error information Debug using only clause information Debug using literals information

circuit # gates # DFF # CLK # lits # equiv max # iter time/iter total max # iter time/iter total improv %tf
error locs card (sec) (sec) card (sec) (sec) pruned

cct1 225 16 15 4,020 7 2 13 0.57 7.45 1 11 0.56 6.19 1.20 60%
cct2 282 24 15 5,117 3 2 7 0.92 6.47 2 4 0.85 3.40 1.90 73%
cct3 234 11 32 8,567 12 2 14 1.52 21.33 2 10 1.51 15.08 1.41 85%
cct4 450 8 50 23,586 19 3 450 6.61 2,974.57 3 21 6.22 130.63 22.77 86%
cct5 226 8 17 4,305 11 2 12 0.71 8.48 2 8 0.70 5.61 1.51 71%
divider-1 5,670 424 39 255,134 126 - TO - - 2 115 52.78 6,069.39 >3.56 11%
divider-2 5,670 424 27 176,481 15 2 64 32.48 2,078.99 1 13 30.52 396.77 5.24 74%
divider-3 5,670 424 12 78,347 19 2 77 13.70 1,055.26 1 21 15.40 640.94 3.26 17%
divider-4 5,670 424 21 137,319 8 1 11 27.68 304.43 1 6 27.68 166.05 1.83 86%
fpu-1 19,868 715 12 255,594 25 2 325 58.22 18,920.49 1 19 48.46 920.76 20.55 67%
fpu-2 19,868 715 12 255,594 6 2 12 49.87 598.49 1 5 48.456 242.28 2.47 67%
fpu-3 19,868 715 12 255,594 29 2 54 51.67 2,789.97 1 24 48.51 1,164.23 2.40 58%
rsdecoder-1 10,753 521 17 200,702 11 1 11 55.14 606.59 1 9 53.50 481.52 1.26 76%
rsdecoder-2 10,753 521 24 283,374 60 2 89 78.89 7,020.90 1 73 58.03 4,236.15 1.66 17%

Average: 5.07 61%

Table 2: Runtime comparison against gate level debug
with groupings

Gate level groupings Our technique
circuit # iter time (sec) # iter time (sec) improv
cct4 19 114.40 21 130.63 0.87
cct5 11 8.42 8 5.61 1.50
divider-1 126 7164.61 115 6069.39 1.18
fpu-1 25 1331.62 19 920.76 1.45
rsdecoder-1 11 1228.36 9 481.52 2.55
Total: 9847.41 7607.91 1.29

solutions are found based on grouping clauses at the gate
level over all time frames by using additional CNF vari-
ables. For a fairer performance comparison we used the
Partial MaxSAT solver of [12] instead of the solver [14] orig-
inally used by [10]. Experimentally our Partial MaxSAT
solver outperforms the solver of [14] by a large margin for
our sample circuits. The results are not presented here due
to space constraints. A representative sample of the results
comparing our run times against gate level groupings is pre-
sented in Table 2. Since errors are modeled at the clause
level our formulation generally has a larger search space
and finds additional solutions not provided by a formula-
tion based on gate level cardinality. However, since a single
clause may imply multiple gate level error locations, in all
cases except for cct4, fewer iterations are required by our
proposed technique to find all equivalent error locations.

With the solve time per iteration almost identical be-
tween the two approaches, our technique results in an overall
performance improvement of 1.29× for the sample of cir-
cuits given. Furthermore, since the work in [10] also groups
clauses for gates across all time frames, no temporal debug
information can be deduced from the solutions. As a re-
sult, our formulation not only provides a speedup, but also
provides valuable temporal debug information to the user.

7. CONCLUSION
This work introduces a technique for debugging sequen-

tial circuits using a Partial MaxSAT formulation which pro-
vides both temporal and spatial information about error lo-
cations. Temporal information is critical to the user during
the debugging process. The proposed framework is a de-
parture from traditional debug techniques as error sources
are modeled at the clause and literal levels. Experiments
demonstrate that the temporal locations can accurately lo-
cate when in an error trace the errors are active. Perfor-
mance gains of orders of magnitude are observed in some
cases, with an improvement of 5× on average.
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