
472168-2356/17 © 2017 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC

Leveraging Software
Configuration
Management in
Automated RTL
Design Debug
John Adler and Andreas Veneris
University of Toronto

Digital Object Identifier 10.1109/MDAT.2017.2713391

Date of publication: 8 June 2017; date of current version:

13 September 2017.

 Functional verification of hardware
designs is the major bottleneck in the design cycle
today, accounting for up to 70% of the total time [1].
The majority of this effort is taken by debugging,
a process that identifies errors once verification
demonstrates a failure. As debug remains a sem-
iautomated task, new tools and methodologies
are needed to contain the pain and improve the
modern verification cycle.

Traditionally, given a set of counterexamples
where the design fails, debug returns suspect lines
that may contain the error source(s). In the mod-
ern verification cycle, these counterexamples are
generated by simulation and formal tools that exer-
cise different parts of the design’s functional behav-
ior. Failures are usually recorded by monitors,

checkers, scoreboards,
or assertions. When a
failure is exposed, the
counterexample(s) are
used by the engineer to
manually trace through
the design with the help
of waveform viewers to

discover the error, or by debugging tools that auto-
matically return suspect locations. These debug
tools predominantly use a combination of simu-
lation and formal techniques, such as path-trace,
Boolean satisfiability (SAT) and binary decision
diagrams, to prune the solution space and look for
suspects [2]–[4].

Waveform-based debug tools allow users to back-
trace through the circuit using information obtained
from the counterexamples. They can also perform
what-if analysis and resimulation on the fly, allow-
ing users to inspect how changes to the circuit will
propagate forward. This aids the debug process, but
still requires a significant amount of manual effort to
decide where changes should be made. Simulation-
based automated debug tools researched in the
90s [2] perform this what-if analysis exhaustively,
simplifying decision making in root cause error anal-
ysis. BDD-based [4] automated debug, on the other

Editor’s note:
This article presents an enhancement to the existing automated debugging
software by leveraging statistics from the revision control history.

—Li-C Wang, University of California at Santa Barbara

September/October 2017

48 IEEE Design&Test

Verification

hand, is accomplished by modeling the failing cir-
cuit as a binary decision diagram. These techniques
make tradeoffs between resolution and memory uti-
lization which may limit their applicability.

More recent research in SAT-based debug [3]
provides a scalable and extensible platform when
compared with previous techniques. The original
design is enhanced with hardware and then mod-
eled as a SAT problem which is constrained by sim-
ulation input–output values and passed to a SAT
solver. Given the specific constraints, the SAT solver
will attempt to find a set of locations that must be
changed to correct the circuit. Based on the origi-
nal SAT-based debug formulation, various enhance-
ments have been proposed to improve runtime and
memory requirements, most notably abstraction and
refinement in the space and time domains [5].

Evidently, research in debug automation for
the past 20 years has been design-centric. In other
words, it focuses on an analysis of the design func-
tionality over a finite set of input stimuli to detect
and locate the root cause of the failure. An impor-
tant aspect of the design cycle that has been over-
looked during debug is the wealth of information
during its development history. This is usually
contained in version control systems (VCSs) and
issue tracking systems (ITSs), collectively known
as software configuration management (SCM).
These systems have become a necessity in today’s
geographically decentralized design world that
integrates new components with legacy and the
third-party intellectual property ones to build cir-
cuits comprised of hundreds of millions of gates.
In other words, the human insight and past engi-
neering effort recorded in historical revisions and
associated metadata is largely ignored by existing
automated debug methodologies.

This paper describes recent developments in
debug automation that factors in this significant
information with the use of statistical techniques
to expedite the task. The novel methodologies pro-
posed here complement existing design-centric
debug tools with results from human-centric histor-
ical data that is automatically parsed by machine
learning algorithms. Empirical results presented
here confirm that when traditional debug is collec-
tively enhanced with practical knowledge contained
in SCM, the overall task is simplified in the continu-
ous effort to further alleviate the burden behind the
verification/debug task.

Software Configuration Management
The two facets of SCM that contain both pertinent

and easy-to-parse information are VCSs and ITSs.
The former provides a record of all changes made
to a design in the form of revisions, while the latter
enhances revision metadata.

VCSs, such as Git or Subversion, are widely used
as they enable multiple designers from potentially dis-
tant locations to work on a single project in tandem
with ease. Each time a change is made to the design, a
revision records the change and associated metadata.
As exampled in Figure 1, a sample revision metadata
usually contains a unique revision id (line 1), the
time the change was committed (line 3), the user
that made the commit (line 2), and a user-specified
message describing the change (lines 5–7). Changes
are usually in diff form, which show differing lines
before and after the change is made, for each file
changed (lines 9–13).

In their simplest form, revisions are ordered as
a linear list, i.e., the changes for each revision are
applied in succession. Modern VCSs also support
branching schemes, allowing for isolation of the
development of a single feature or bugfix, as shown
in Figure 2. This branching structure can be explored
as a Directed Acyclic Graph (DAG). The mainline, or
master branch, here comprised of revisions R0, R1,
R2, and R7, is analogous to the linear list of revisions,
with merge revisions (R7) applying the cumulative
diff of a branch onto the mainline.

Figure 1. Sample revision metadata.

Figure 2. Revision history as directed
acyclic graph.

49September/October 2017

ITSs, which come in a much wider variety of fla-
vors than widely adopted VCSs, allow for additional
complementary information to be recorded about
revisions and their relationships. Issues can be asso-
ciated with revisions and branches. For example, the
revision in Figure 1 is linked to issue #128 (line 5).
Likewise, issues can be tagged as being bugfixes or
features. Additional relationships between branches
and/or revisions can also be represented: for exam-
ple, one branch might fix a bug introduced in the
previous branch. Different ITSs can provide numer-
ous other features, but the aforementioned features
are the most directly relevant to the debug problem
described here.

Statistical Automated Debug
Revision debug ranks revisions based on their

probability of having introduced an error into the
design. Formal- and simulation-based debug tech-
niques provide no ranking information for the sus-
pects to the engineer. Being able to rank revisions
allows the engineer a starting point to prioritize anal-
ysis and provides a starting context to the process,
ultimately reducing the expected number of sus-
pects that must be examined and speeding up the
debug process. This is accomplished by enhancing
results from a formal debug tool using information
available in the SCM system. A variety of techniques
using machine learning have been proposed to give
meaning out of this human-centric information.
Clustering-based revision debug [6] accomplishes
this by matching revision changes with approximate
error sources. Perceptron-based revision debug [7]
ranks revisions using a trained classifier.

The key motivator behind these techniques is
making use of the previously untouched human-us-
able information in the form of revisions and issues.
Engineers separate their coding into commits, write
detailed commit messages, and manually create
and close issues, all in an effort to provide context
to their work to other engineers. This information
can be used by properly tuned machine learning
techniques, a task which is impossible for traditional
formal techniques.

Clustering
Performing revision debug using clustering can

provide revision ranking immediately without the
need of a large training set, making it more effective
for designs with a short history. This technique is

separated into three distinct steps: suspect cluster-
ing, revision classification, and weighted revision
ranking. It can also optionally be extended to rank
branches in addition to revisions [8].

Affinity propagation clustering [9] is a cluster-
ing algorithm that can automatically partition into
groups a set of data points. Contrary to some simpler
clustering algorithms, it can determine the number
and location of exemplars (cluster centers) without
user input. This is important because clustering is
used to estimate the number of errors in the design
that caused the observed failures, which is unknown
and cannot be reliably estimated by the user.

Given a set of failures F = {f1, ..., f|F |}, for
each failure fi, a formal debug tool returns sus-
pects ​​S​ i​​ = ​{​s​ 1​ i ​ , … , ​ s​ ​|​S​ i ​​|​​ 

i ​ }​​. Each suspect is a set of RTL
lines that, if changed appropriately, will fix the erro-
neous behavior. Suspect clustering is used to group
these suspects. Each suspect ​​s​ j​ i​​ is mapped to a space
based on its location (i.e., file and line number).
This is illustrated in Figure 3, where the suspect sets
of five failures across two Verilog files are mapped
to a two-dimensional space. The axes correspond to
line numbers for each file. Affinity propagation clus-
tering [9] is then used on these mapped suspects
to automatically locate exemplars. Each exemplar
represents an error source, therefore, the number
of exemplars corresponds to an estimation of the

Figure 3. Clustering-based revision debug:
clustering step.

50 IEEE Design&Test

Verification

number of errors in the design. The Euclidean dis-
tance ​​D​ j​ i​​ between each suspect ​​s​ j​ i​​ and its exemplar
is calculated, as it will be used during weighted revi-
sion ranking. Intuitively, this distance corresponds to
the proximity between a suspect and an error source.

Next, revision classification is performed, with
the goal of tagging each revision as either a bugfix
or not. If the SCM includes an issue tracker, where
revisions are manually pretagged as such, then this
step can be replaced by using the ITS information
directly. To perform classification, a support vector
machine (SVM) [10] is trained on labeled commit
messages. This type of classifier is used since it can
predict the probability that an input sample belongs
to a certain class. Once trained, the SVM classifier is
used to predict the probability Pk that the kth revi-
sion Rk is a bugfix or not. Intuitively, revisions that
are bugfixes, are less likely to have introduced an
error into the design, which in effect can be factored
into the weighting.

Finally, weighted revision ranking is performed
using results from the previous steps. Suspects are
mapped to revisions by comparing suspect locations
to revision diffs. For each revision Rk, a weight is
assigned

	​​
​w​ k​​  =  mi​n​ i,j​​​(​ 

​D​ j​ i​ ________ 
ma ​x​ i,j​​​(​D​ j​ i​)​

 ​ + ​P​ k​​))​
​  

     ∀ i, j|​s​ j​ i​ ∈ ​R​ k​​

 ​​� (1)

The minimum sum between the Euclidean distance
and the bugfix probability is used as the weight.
Intuitively, the lower the assigned weight, the more
likely the revision has introduced an error. Revisions
that have suspects closer to an exemplar, i.e., made
changes in close proximity to an error, will have a
smaller weight. Revisions that are bugfixes, are less
likely to introduce errors, and so will have a large
probability Pk, increasing the weight.

This weight can now be used to sort revisions and
determine a relative ranking. For each cluster Ci, the
list of revisions with suspects in that cluster is sorted
by ascending weight. The lists are then merged, with
revisions in the same position being equally likely
to have introduced an error. For example, the list of
revisions for two clusters C1 and C2 are merged into
unified list C′:

	​​ C​ 1​​ = ​

⎛
 ⎜ 

⎝
​ 

​R​ 1​​

​ ​R​ 2​​​ 
​R​ 4​​

​ 

…

​

⎞
 ⎟ 

⎠
​, ​ C​ 2​​ = ​

⎛
 ⎜ 

⎝
​ 

​R​ 1​​

​ ​R​ 3​​​ 
​R​ 4​​

​ 

…

​

⎞
 ⎟ 

⎠
​, C′ =  ​

⎛
 ⎜ 

⎝
​ 

​R​ 1​​

​ ​R​ 2​​ , ​R​ 3​​​ 
​R​ 4​​

​ 

…

 ​

⎞
 ⎟ 

⎠
​​� (2)

In cases where a revision has multiple final rank-
ings, the highest one is taken.

Perceptron
Perceptron-based revision debug takes a dif-

ferent approach, using a trained perceptron to
automatically determine how to combine SCM
data with results from formal debug techniques.
Perceptrons [11] are another machine learning tech-
nique that can be used as classifiers. Generally, per-
ceptrons are trained on labeled data, and then the
trained perceptron can be used to predict the class
of new samples. This has the advantage over cluster-
ing of being able to incorporate more of the infor-
mation available, but requires an extensive amount
of training samples to outperform the aforemen-
tioned approach. Perceptrons are akin to single-lay-
ered neural networks, and can be implemented
using techniques such as Logistic Regression and
SVMs [10].

The first step is flattening the revision history.
Since perceptrons are trained on a list of samples,
the branching structure of revisions must be trans-
formed into a linear list with minimal information
loss. To this end, two alternatives are available:
revision-to-revision or revision-to-head. The former
uses the changes of each revision directly, which
is easier to implement but can cause information
loss where branches are merged. The latter option
generates changes by taking the diff between
each revision and the head, the latest revision on
the mainline (or, the revision where the design fail-
ure is observed). To do this, the revision history is
traversed using a depth-first search (DFS) starting
at the head. Whenever a merge is encountered, the
DFS visits the branch first before returning to trav-
erse the parent branch. For each revision visited, the
diff between this revision and the head is calcu-
lated. This is then compared to the diff of previous
revision to remove redundant changes. Intuitively,
revision-to-head diffs represent the effects of a
revision on the head, rather than on the previous
version of the design.

Once the revision history is flattened with either
option, training samples must be generated. The pre-
vious failures and their fixes will be used to train the
perceptron. To start, a set of failing revisions through-
out the design’s history is selected, designated as sec-
ondary heads. Each such head will serve as a base
from which to generate revision-to-head diffs and

51September/October 2017

label previous revisions. It is required to run revision-
to-head flattening for each secondary head since
the generated diffs represent how a revision spe-
cifically affects the head used during flattening. For
each secondary head, a set of previous revisions is
selected and labeled as not having inserted an error
into the design. In addition, the erroneous revision
for that failure is extracted from the ITS and labeled
as having inserted an error.

In order to complete the generation of training
samples, suspects must be incorporated. Since a per-
ceptron requires a fixed number of features as input,
suspect information must be encoded as such. For
each revision Rk, the matching value Vl

k represents
the number of suspects matching changed line l in
the revision. Exact matching is not required, and an
exponentially decaying weighted distance can be
used instead

	​​
​V​ l​ k​  = ​  ∑ 

​s​ j​ i​ ∈ ​S​ i​​
​​​e​​ −​f​ e​​⋅Dist​(l,​s​ j​ i​)​​​

​  
∀ 1 ≤ i ≤ ​|F |​            

​​� (3)

where the distance Dist is the absolute difference
between changed line l and suspect ​​s​ j​ i​​ and fe is an
experimentally tuned matching constant. Intui-
tively, the farther a changed line is from a suspect,
the less they “match” and so the smaller the match-
ing value is. The set of matching values for each
revision can then be trivially encoded as a fixed-
length list. Now that a set of training samples has
been generated, the perceptron can be trained. A
graphical illustration of input features to the percep-
tron is shown in Figure 4. The revision and branch
ID, along with whether the revision is a bugfix or
not, is concatenated to the list of matching values.
The two IDs will provide differentiating power in
cases where a single revision or branch has inserted
multiple errors into the design that manifest as sev-
eral failures throughout the design’s history. When
training, the output of the perceptron is fixed with
the labeled data.

Once the trained perceptron is ready, it can be
used to predict the probability that a given future
revision has introduced an error, or locate a past
revision that has inserted an error but remained
undetected. This has an advantage over the cluster-
ing-based method in that this probability is an abso-
lute one, rather than the relative revision ranking
produced by clustering.

Experimental Results
Three different approaches are compared here:

a manual, brute-force approach, described in [6],
the clustering-based approach [6], and the percep-
tron-based approach [7]. The brute-force approach
involves manually backtracing through the design
until the root cause is located, matching revision
changes to explored RTL locations. Each test is con-
ducted on a workstation with an Intel Core i5-3570K
CPU running at 3.40 GHZ with 16 GB of memory.
Revisions and issues are gathered from each design’s
SCM system. A SAT-based automated debug tool
based on [3] is used to generate the suspects needed
for both revision debug methods. The above data is
parsed and combined with Python scripts. To gener-
ate each test case, a target revision is selected. This
is a revision that had previously introduced an error
into the design. The correction to the error is rolled
back to create a failing design. The goal of each revi-
sion debug approach is the rank this target revision
(i.e., test) as highly as possible.

Table 1 summarizes pertinent design informa-
tion and provides a comparison between the three
approaches. For each design, the second column
shows the number of logic elements, the next two
contain the number of heads and number of features
for the perceptron-based approach, and the fifth col-
umn contains the number of revision in the design’s
VCS. The number of features is directly proportional
to the number of matching values input into the
perceptron, while the number of training samples
is directly proportional to the number of heads. The
sixth and seventh columns show the determined
ranking of the target revision and runtime for the
brute-force approach. The next two columns show
the same for the clustering approach. The last three
columns show the rank of the target revision, the
output value of the perceptron (which can be inter-
preted as the confidence that the target revision
introduced an error), and the runtime for the per-
ceptron-based approach. Evidently, both automated Figure 4. Input/output of the perceptron.

52 IEEE Design&Test

Verification

techniques provide better rankings than the manual
approach, with minimal runtime overhead, demon-
strating their practicality.

While the perceptron-based approach performs,
on average, poorer than the cluster-based approach,
its potential is demonstrated in Figure 5. The learn-
ing curves for the ethernet test case using twofold
cross validation are shown, and it can be seen that
they have not converged within the training samples
used. This means the perceptron-based approach
has the potential to give more accurate predictions
if additional training data is available. In the cases of
large industrial designs with long histories, this data
is readily available. In addition, for industrial work-
flows, it is trivial to use each new bugfix as a new
head to train with, allowing the perceptron-based
approach to integrate seamlessly.

More than half of the modern verification cycle
is spent on debugging. Existing automated debug

techniques are design-centric in the sense that they
examine the design and the failed vectors from ver-
ification. This paper presents novel methodologies
to improve the automated debug process using the
human-centric information of a design’s history. In
those techniques, results from existing formal debug
techniques are combined with SCM data using two
different approaches: clustering and perceptrons.
The net result is a precise ranking of the design’s revi-
sions to help the engineer discover the root cause of
failure faster.

This area of research is new and promising.
For example, the perceptron-based approach can
be extended to include a variety of additional infor-
mation available in the VCS and ITS, including com-
mit time, commit message, individual committing,
branches, commit size, etc. Further, other machine
learning techniques can also potentially be utilized
to generate revision rankings and further improve
the design verification cycle. � 

 References
	 [1]	 H. Foster, “From volume to velocity: The transforming

landscape in function verification,” in Proc. Design

Verification Conf., 2011.

	 [2]	 S.-Y. Huang et al., “Errortracer: A fault simulation-

based approach to design error diagnosis,” in Proc.

Int. Test Conf., 1997, Nov. 1997, pp. 974–981.

	 [3]	 A. Smith et al., “Fault diagnosis and logic debugging

using boolean satisfiability,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst, vol. 24, no. 10,

pp. 1606–1621, Oct. 2005.

	 [4]	 P.-Y. Chung, Y.-M. Wang, and I. N. Hajj, “Logic

design error diagnosis and correction,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 2, no. 3,

pp. 320–332, Sept. 1994.

 
Table 1  Revision ranking performance.

Figure 5. Learning curves for ethernet perceptron.

53September/October 2017

	 [5]	 B. Keng, S. Safarpour, and A. Veneris, “Bounded

model debugging,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 29, no. 11, pp. 1790–1803,

Nov. 2010.

	 [6]	 D. Maksimovic, A. Veneris, and Z. Poulos, “Clustering-

based revision debug in regression verification,” in

Proc. 33rd IEEE Int. Conf. Comput. Design (ICCD),

2015, Oct. 2015.

	 [7]	 J. Adler, R. Berryhill, and A. Veneris, “An extensible

perceptron framework for revision rtl debug

automation,” in Proc. 22nd Asia and South Pacific

Design Autom. Conf., 2017.

	 [8]	 J. Adler, R. Berryhill, and A. Veneris, “Revision

debug with non-linear version history in regression

verification,” in Proc. 1st IEEE Int. Verification and

Security Workshop, July 2016.

	 [9]	 B. J. Frey and D. Dueck, “Clustering by passing

messages between data points,” Science, vol. 315, no.

5814, pp. 972–976, 2007. [Online]. Available: http://

science.sciencemag.org/content/315/5814/972

	[10]	 C.-C. Chang and C.-J. Lin, “Libsvm: A library for

support vector machines,” ACM Trans. Intell. Syst.

Technol., vol. 2, no. 3, pp. 27:1–27:27, May 2011.

[Online]. Available: http://doi.acm.org.myaccess.library.

utoronto.ca/10.1145/1961189.1961199

	[11]	 E. Alpaydin, Multilayer Perceptrons. MIT Press, 2014,

p. 640.

John Adler is currently an MASc student at
the University of Toronto, Toronto, ON, Canada in
Electrical and Computer Engineering. His research
is on CAD for design debug and verification using
formal and statistical methods. He has a BASc. in
engineering science from the University of Toronto.
Contact him at adler@eecg.toronto.edu.

Andreas Veneris is a Professor of Electrical
and Computer Engineering and Computer Science
at the University of Toronto, Toronto, ON, Canada. His
research is in CAD for debug, verification, synthesis,
and test of digital VLSI circuits and systems. He
has a PhD from the University of Illinois at Urbana-
Champaign, Champaign, IL, USA. He is a senior member
of IEEE. Contact him at veneris@eecg.toronto.edu.

 Direct questions and comments about this article
to John Adler, Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON,
Canada; adler@eecg.toronto.edu.

