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 Functional verification of hardware 
designs is the major bottleneck in the design cycle 
today, accounting for up to 70% of the total time [1]. 
The majority of this effort is taken by debugging, 
a process that identifies errors once verification 
demonstrates a failure. As debug remains a sem-
iautomated task, new tools and methodologies 
are needed to contain the pain and improve the 
modern verification cycle. 

Traditionally, given a set of counterexamples 
where the design fails, debug returns suspect lines 
that may contain the error source(s). In the mod-
ern verification cycle, these counterexamples are 
generated by simulation and formal tools that exer-
cise different parts of the design’s functional behav-
ior. Failures are usually recorded by monitors, 

checkers, scoreboards, 
or assertions. When a 
failure is exposed, the 
counterexample(s) are 
used by the engineer to 
manually trace through 
the design with the help 
of waveform viewers to 

discover the error, or by debugging tools that auto-
matically return suspect locations. These debug 
tools predominantly use a combination of simu-
lation and formal techniques, such as path-trace, 
Boolean satisfiability (SAT) and binary decision 
diagrams, to prune the solution space and look for 
suspects [2]–[4]. 

Waveform-based debug tools allow users to back-
trace through the circuit using information obtained 
from the counterexamples. They can also perform 
what-if analysis and resimulation on the fly, allow-
ing users to inspect how changes to the circuit will 
propagate forward. This aids the debug process, but 
still requires a significant amount of manual effort to 
decide where changes should be made. Simulation-
based automated debug tools researched in the 
90s  [2] perform this what-if analysis exhaustively, 
simplifying decision making in root cause error anal-
ysis. BDD-based [4] automated debug, on the other 
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hand, is accomplished by modeling the failing cir-
cuit as a binary decision diagram. These techniques 
make tradeoffs between resolution and memory uti-
lization which may limit their applicability. 

More recent research in SAT-based debug  [3] 
provides a scalable and extensible platform when 
compared with previous techniques. The original 
design is enhanced with hardware and then mod-
eled as a SAT problem which is constrained by sim-
ulation input–output values and passed to a SAT 
solver. Given the specific constraints, the SAT solver 
will attempt to find a set of locations that must be 
changed to correct the circuit. Based on the origi-
nal SAT-based debug formulation, various enhance-
ments have been proposed to improve runtime and 
memory requirements, most notably abstraction and 
refinement in the space and time domains [5]. 

Evidently, research in debug automation for 
the past 20 years has been design-centric. In other 
words, it focuses on an analysis of the design func-
tionality over a finite set of input stimuli to detect 
and locate the root cause of the failure. An impor-
tant aspect of the design cycle that has been over-
looked during debug is the wealth of information 
during its development history. This is usually 
contained in version control systems (VCSs) and 
issue tracking systems (ITSs), collectively known 
as software configuration management (SCM). 
These systems have become a necessity in today’s 
geographically decentralized design world that 
integrates new components with legacy and the 
third-party intellectual property ones to build cir-
cuits comprised of hundreds of millions of gates. 
In other words, the human insight and past engi-
neering effort recorded in historical revisions and 
associated metadata is largely ignored by existing 
automated debug methodologies. 

This paper describes recent developments in 
debug automation that factors in this significant 
information with the use of statistical techniques 
to expedite the task. The novel methodologies pro-
posed here complement existing design-centric 
debug tools with results from human-centric histor-
ical data that is automatically parsed by machine 
learning algorithms. Empirical results presented 
here confirm that when traditional debug is collec-
tively enhanced with practical knowledge contained 
in SCM, the overall task is simplified in the continu-
ous effort to further alleviate the burden behind the 
verification/debug task. 

Software Configuration Management
The two facets of SCM that contain both pertinent 

and easy-to-parse information are VCSs and ITSs. 
The former provides a record of all changes made 
to a design in the form of revisions, while the latter 
enhances revision metadata. 

VCSs, such as Git or Subversion, are widely used 
as they enable multiple designers from potentially dis-
tant locations to work on a single project in tandem 
with ease. Each time a change is made to the design, a 
revision records the change and associated metadata. 
As exampled in Figure 1, a sample revision metadata 
usually contains a unique revision id (line 1), the 
time the change was committed (line 3), the user 
that made the commit (line 2), and a user-specified 
message describing the change (lines 5–7). Changes 
are usually in diff form, which show differing lines 
before and after the change is made, for each file 
changed (lines 9–13). 

In their simplest form, revisions are ordered as 
a linear list, i.e., the changes for each revision are 
applied in succession. Modern VCSs also support 
branching schemes, allowing for isolation of the 
development of a single feature or bugfix, as shown 
in Figure 2. This branching structure can be explored 
as a Directed Acyclic Graph (DAG). The mainline, or 
master branch, here comprised of revisions R0, R1, 
R2, and R7, is analogous to the linear list of revisions, 
with merge revisions (R7) applying the cumulative 
diff of a branch onto the mainline. 

Figure 1. Sample revision metadata.

Figure 2. Revision history as directed 
acyclic graph. 
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ITSs, which come in a much wider variety of fla-
vors than widely adopted VCSs, allow for additional 
complementary information to be recorded about 
revisions and their relationships. Issues can be asso-
ciated with revisions and branches. For example, the 
revision in Figure 1 is linked to issue #128 (line 5). 
Likewise, issues can be tagged as being bugfixes or 
features. Additional relationships between branches 
and/or revisions can also be represented: for exam-
ple, one branch might fix a bug introduced in the 
previous branch. Different ITSs can provide numer-
ous other features, but the aforementioned features 
are the most directly relevant to the debug problem 
described here. 

Statistical Automated Debug 
Revision debug ranks revisions based on their 

probability of having introduced an error into the 
design. Formal- and simulation-based debug tech-
niques provide no ranking information for the sus-
pects to the engineer. Being able to rank revisions 
allows the engineer a starting point to prioritize anal-
ysis and provides a starting context to the process, 
ultimately reducing the expected number of sus-
pects that must be examined and speeding up the 
debug process. This is accomplished by enhancing 
results from a formal debug tool using information 
available in the SCM system. A variety of techniques 
using machine learning have been proposed to give 
meaning out of this human-centric information. 
Clustering-based revision debug  [6] accomplishes 
this by matching revision changes with approximate 
error sources. Perceptron-based revision debug [7] 
ranks revisions using a trained classifier. 

The key motivator behind these techniques is 
making use of the previously untouched human-us-
able information in the form of revisions and issues. 
Engineers separate their coding into commits, write 
detailed commit messages, and manually create 
and close issues, all in an effort to provide context 
to their work to other engineers. This information 
can be used by properly tuned machine learning 
techniques, a task which is impossible for traditional 
formal techniques. 

Clustering
Performing revision debug using clustering can 

provide revision ranking immediately without the 
need of a large training set, making it more effective 
for designs with a short history. This technique is 

separated into three distinct steps: suspect cluster-
ing, revision classification, and weighted revision 
ranking. It can also optionally be extended to rank 
branches in addition to revisions [8]. 

Affinity propagation clustering  [9] is a cluster-
ing algorithm that can automatically partition into 
groups a set of data points. Contrary to some simpler 
clustering algorithms, it can determine the number 
and location of exemplars (cluster centers) without 
user input. This is important because clustering is 
used to estimate the number of errors in the design 
that caused the observed failures, which is unknown 
and cannot be reliably estimated by the user. 

Given a set of failures F = {f1,  ...,  f|F |}, for 
each failure fi, a formal debug tool returns sus-
pects ​​S​ i​​ = ​{​s​ 1​ i ​ , … , ​ s​ ​|​S​ i ​​|​​ 

i ​ }​​. Each suspect is a set of RTL 
lines that, if changed appropriately, will fix the erro-
neous behavior. Suspect clustering is used to group 
these suspects. Each suspect ​​s​ j​ i​​ is mapped to a space 
based on its location (i.e., file and line number). 
This is illustrated in Figure 3, where the suspect sets 
of five failures across two Verilog files are mapped 
to a two-dimensional space. The axes correspond to 
line numbers for each file. Affinity propagation clus-
tering  [9] is then used on these mapped suspects 
to automatically locate exemplars. Each exemplar 
represents an error source, therefore, the number 
of exemplars corresponds to an estimation of the 

Figure 3. Clustering-based revision debug: 
clustering step.
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number of errors in the design. The Euclidean dis-
tance ​​D​ j​ i​​ between each suspect ​​s​ j​ i​​ and its exemplar 
is calculated, as it will be used during weighted revi-
sion ranking. Intuitively, this distance corresponds to 
the proximity between a suspect and an error source. 

Next, revision classification is performed, with 
the goal of tagging each revision as either a bugfix 
or not. If the SCM includes an issue tracker, where 
revisions are manually pretagged as such, then this 
step can be replaced by using the ITS information 
directly. To perform classification, a support vector 
machine (SVM) [10] is trained on labeled commit 
messages. This type of classifier is used since it can 
predict the probability that an input sample belongs 
to a certain class. Once trained, the SVM classifier is 
used to predict the probability Pk that the kth revi-
sion Rk is a bugfix or not. Intuitively, revisions that 
are bugfixes, are less likely to have introduced an 
error into the design, which in effect can be factored 
into the weighting. 

Finally, weighted revision ranking is performed 
using results from the previous steps. Suspects are 
mapped to revisions by comparing suspect locations 
to revision diffs. For each revision Rk, a weight is 
assigned 

	​​
​w​ k​​  =  mi​n​ i,j​​​(​ 

​D​ j​ i​ ________ 
ma ​x​ i,j​​​(​D​ j​ i​)​

 ​ + ​P​ k​​))​
​  

     ∀ i, j|​s​ j​ i​ ∈ ​R​ k​​

 ​​�  (1)

The minimum sum between the Euclidean distance 
and the bugfix probability is used as the weight. 
Intuitively, the lower the assigned weight, the more 
likely the revision has introduced an error. Revisions 
that have suspects closer to an exemplar, i.e., made 
changes in close proximity to an error, will have a 
smaller weight. Revisions that are bugfixes, are less 
likely to introduce errors, and so will have a large 
probability Pk, increasing the weight. 

This weight can now be used to sort revisions and 
determine a relative ranking. For each cluster Ci, the 
list of revisions with suspects in that cluster is sorted 
by ascending weight. The lists are then merged, with 
revisions in the same position being equally likely 
to have introduced an error. For example, the list of 
revisions for two clusters C1 and C2 are merged into 
unified list C′:
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In cases where a revision has multiple final rank-
ings, the highest one is taken. 

Perceptron
Perceptron-based revision debug takes a dif-

ferent approach, using a trained perceptron to 
automatically determine how to combine SCM 
data with results from formal debug techniques. 
Perceptrons [11] are another machine learning tech-
nique that can be used as classifiers. Generally, per-
ceptrons are trained on labeled data, and then the 
trained perceptron can be used to predict the class 
of new samples. This has the advantage over cluster-
ing of being able to incorporate more of the infor-
mation available, but requires an extensive amount 
of training samples to outperform the aforemen-
tioned approach. Perceptrons are akin to single-lay-
ered neural networks, and can be implemented 
using techniques such as Logistic Regression and 
SVMs [10]. 

The first step is flattening the revision history. 
Since perceptrons are trained on a list of samples, 
the branching structure of revisions must be trans-
formed into a linear list with minimal information 
loss. To this end, two alternatives are available: 
revision-to-revision or revision-to-head. The former 
uses the changes of each revision directly, which 
is easier to implement but can cause information 
loss where branches are merged. The latter option 
generates changes by taking the diff between 
each revision and the head, the latest revision on 
the mainline (or, the revision where the design fail-
ure is observed). To do this, the revision history is 
traversed using a depth-first search (DFS) starting 
at the head. Whenever a merge is encountered, the 
DFS visits the branch first before returning to trav-
erse the parent branch. For each revision visited, the 
diff between this revision and the head is calcu-
lated. This is then compared to the diff of previous 
revision to remove redundant changes. Intuitively, 
revision-to-head diffs represent the effects of a 
revision on the head, rather than on the previous 
version of the design. 

Once the revision history is flattened with either 
option, training samples must be generated. The pre-
vious failures and their fixes will be used to train the 
perceptron. To start, a set of failing revisions through-
out the design’s history is selected, designated as sec-
ondary heads. Each such head will serve as a base 
from which to generate revision-to-head diffs and 
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label previous revisions. It is required to run revision-
to-head flattening for each secondary head since 
the generated diffs represent how a revision spe-
cifically affects the head used during flattening. For 
each secondary head, a set of previous revisions is 
selected and labeled as not having inserted an error 
into the design. In addition, the erroneous revision 
for that failure is extracted from the ITS and labeled 
as having inserted an error. 

In order to complete the generation of training 
samples, suspects must be incorporated. Since a per-
ceptron requires a fixed number of features as input, 
suspect information must be encoded as such. For 
each revision Rk, the matching value Vl

k represents 
the number of suspects matching changed line l in 
the revision. Exact matching is not required, and an 
exponentially decaying weighted distance can be 
used instead 

	​​
​V​ l​ k​  = ​  ∑ 

​s​ j​ i​ ∈ ​S​ i​​
​​​e​​ −​f​ e​​⋅Dist​(l,​s​ j​ i​)​​​

​  
∀ 1 ≤ i ≤ ​|F |​            

​​� (3)

where the distance Dist is the absolute difference 
between changed line l and suspect ​​s​ j​ i​​ and fe is an 
experimentally tuned matching constant. Intui-
tively, the farther a changed line is from a suspect, 
the less they “match” and so the smaller the match-
ing value is. The set of matching values for each 
revision can then be trivially encoded as a fixed-
length list. Now that a set of training samples has 
been generated, the perceptron can be trained. A 
graphical illustration of input features to the percep-
tron is shown in Figure 4. The revision and branch 
ID, along with whether the revision is a bugfix or 
not, is concatenated to the list of matching values. 
The two IDs will provide differentiating power in 
cases where a single revision or branch has inserted 
multiple errors into the design that manifest as sev-
eral failures throughout the design’s history. When 
training, the output of the perceptron is fixed with 
the labeled data. 

Once the trained perceptron is ready, it can be 
used to predict the probability that a given future 
revision has introduced an error, or locate a past 
revision that has inserted an error but remained 
undetected. This has an advantage over the cluster-
ing-based method in that this probability is an abso-
lute one, rather than the relative revision ranking 
produced by clustering. 

Experimental Results 
Three different approaches are compared here: 

a manual, brute-force approach, described in  [6], 
the clustering-based approach [6], and the percep-
tron-based approach [7]. The brute-force approach 
involves manually backtracing through the design 
until the root cause is located, matching revision 
changes to explored RTL locations. Each test is con-
ducted on a workstation with an Intel Core i5-3570K 
CPU running at 3.40 GHZ with 16 GB of memory. 
Revisions and issues are gathered from each design’s 
SCM system. A SAT-based automated debug tool 
based on [3] is used to generate the suspects needed 
for both revision debug methods. The above data is 
parsed and combined with Python scripts. To gener-
ate each test case, a target revision is selected. This 
is a revision that had previously introduced an error 
into the design. The correction to the error is rolled 
back to create a failing design. The goal of each revi-
sion debug approach is the rank this target revision 
(i.e., test) as highly as possible. 

Table 1 summarizes pertinent design informa-
tion and provides a comparison between the three 
approaches. For each design, the second column 
shows the number of logic elements, the next two 
contain the number of heads and number of features 
for the perceptron-based approach, and the fifth col-
umn contains the number of revision in the design’s 
VCS. The number of features is directly proportional 
to the number of matching values input into the 
perceptron, while the number of training samples 
is directly proportional to the number of heads. The 
sixth and seventh columns show the determined 
ranking of the target revision and runtime for the 
brute-force approach. The next two columns show 
the same for the clustering approach. The last three 
columns show the rank of the target revision, the 
output value of the perceptron (which can be inter-
preted as the confidence that the target revision 
introduced an error), and the runtime for the per-
ceptron-based approach. Evidently, both automated Figure 4. Input/output of the perceptron.
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techniques provide better rankings than the manual 
approach, with minimal runtime overhead, demon-
strating their practicality. 

While the perceptron-based approach performs, 
on average, poorer than the cluster-based approach, 
its potential is demonstrated in Figure 5. The learn-
ing curves for the ethernet test case using twofold 
cross validation are shown, and it can be seen that 
they have not converged within the training samples 
used. This means the perceptron-based approach 
has the potential to give more accurate predictions 
if additional training data is available. In the cases of 
large industrial designs with long histories, this data 
is readily available. In addition, for industrial work-
flows, it is trivial to use each new bugfix as a new 
head to train with, allowing the perceptron-based 
approach to integrate seamlessly. 

More than half of the modern verification cycle 
is spent on debugging. Existing automated debug 

techniques are design-centric in the sense that they 
examine the design and the failed vectors from ver-
ification. This paper presents novel methodologies 
to improve the automated debug process using the 
human-centric information of a design’s history. In 
those techniques, results from existing formal debug 
techniques are combined with SCM data using two 
different approaches: clustering and perceptrons. 
The net result is a precise ranking of the design’s revi-
sions to help the engineer discover the root cause of 
failure faster. 

This area of research is new and promising. 
For example, the perceptron-based approach can 
be extended to include a variety of additional infor-
mation available in the VCS and ITS, including com-
mit time, commit message, individual committing, 
branches, commit size, etc. Further, other machine 
learning techniques can also potentially be utilized 
to generate revision rankings and further improve 
the design verification cycle. � 
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