
Scaling VLSI Design Debugging with Interpolation
Brian Keng1, Andreas Veneris1,2

1Department of Electrical and Computer Engineering, University of Toronto
2Department of Computer Science, University of Toronto

{briank, veneris}@eecg.toronto.edu

Abstract—Given an erroneous design, functional verification
returns an error trace exhibiting a mismatch between the
specification and the implementation of a design. Automated
design debugging uses these error traces to identify potentially
erroneous modules causing the error. With the increasing size
and complexity of modern VLSI designs, error traces have
become longer and harder to analyze. At the same time, design
debugging has become one of the most resource-intensive steps
in the chip design cycle. This work proposes a scalable SAT-
based design debugging algorithm that uses interpolants to
over-approximate sets of constraints that model the erroneous
behavior. The algorithm partitions the original problem into
a sequence of smaller subproblems by using subsections of
the error trace that are examined iteratively. This is made
possible by using interpolants to properly constrain the erroneous
behavior for each subproblem, significantly reducing the number
of simultaneous time-frames examined in the error trace. The
described method is shown to be complete and an additional
technique is presented to improve the quality of the debugging
results using multiple interpolants. Experiments on real designs
show a 57% reduction in memory and 23% decrease in run-time
compared to previous work.

I. I NTRODUCTION

The aim of functional verification is to determine whether
the implementation of a design conforms to its specification.
If the design is found to be buggy, anerror trace is returned
which exposes the erroneous behavior. Due to the increasing
size and complexity of modern designs, error traces generated
from functional verification tools [1]–[5] can be thousands
of clock cycles long [6]. This places a large burden on the
engineer to examine the error trace and identify potential
design bugs causing the erroneous behavior.

The task of identifying these potential error suspects in the
design is calleddesign debugging. This process begins after
verification fails and an error trace is produced. An engineer
then has to analyze this error trace, typically through a wave-
form viewer or some other graphical representation, a process
today that is predominantly manual. This task can consume
months of the verification effort and as much as 30% of the
total time to design a Very Large Scale Integration (VLSI)
chip [7]. Due to this fact, automated debugging methodologies
remain of great interest to both the research and industrial
communities.

Many automated debugging techniques have been devel-
oped to aid the engineer in this task. Simulation-based tech-
niques [8], [9] have been extensively studied in the past
and can be effective in certain situations. More recently,
formal frameworks [10]–[15], such as those based on Boolean
Satisfiability (SAT), have achieved significant advancements
in design debugging.

Given a sequential design, SAT-based debugging techniques
require a time-frame expansion of the circuit. This involves

replicating the combinational component of the circuit such
that the next-state variables of time-framei are connected to
the current-state variables of time-framei + 1 for the length
of the error trace. For large designs and long error traces, this
approach produces SAT instances which may not be practically
viable because of the large memory footprint. Reducing the
requirements for these techniques without sacrificing perfor-
mance becomes an urgent necessity towards the development
of scalable automated debugging tools.

In this work, we propose a novel scalable SAT-based design
debugging algorithm which leverages interpolants to over-
approximate sets of constraints that model the erroneous
behavior, significantly reducing the memory-intensive circuit
replication at any given time. This is accomplished by dividing
the error trace into several parts, orwindows, and analyzing
each window of time-frames separately. To allow for each win-
dow to be properly constrained with the erroneous behavior,
interpolants are used to over-approximate sets of constraints
that model time-frames within close proximity to the observed
error. The analysis begins with a window at the end of the
error trace. If the analysis does not yield complete results, it
proceeds by moving the window backwards iteratively. The
interpolant is calculated from the unsatisfiable (UNSAT) core
resulting from previously analyzed windows. The net resultof
this iterative methodology is a significant reduction in memory
requirements and improvements in run-time.

The described method is shown to find all error locations
whose functions can be modified to correct the erroneous
behavior for a given error trace and number of errors. Ad-
ditionally, a technique to generate multiple interpolantsis
introduced to reduce the number of error locations returned,
thus improving the quality of the debugging results.

An extensive set of experiments on large hardware designs
and long error traces illustrates the benefits of this work. It is
shown that a conservative partitioning of the error trace yields
an average 34% reduction in memory and 24% reduction in
run-time compared to traditional SAT-based debugging, while
the number of returned error locations is only increased on
average by 1% of the total number of suspects. For a more
aggressive partitioning scheme, averages of 57% reduction
in memory and 23% reduction in run-time are achieved at
the cost of increasing the relative number of error locations
returned by 2%. This favorable trade-off between resolution
and performance allows for scaling of existing SAT-based
debugging methodologies to handle modern VLSI designs.

The remaining sections of the paper are organized as
follows. Section II defines notation as well as background
on debugging, UNSAT cores and interpolants. Section III
illustrates the use of interpolants in partitioning the debug-
ging problem. Section IV presents experimental results and



Section V concludes this work.

II. PRELIMINARIES

A. Notation and Design Debugging

This section provides notation used throughout this paper
and background information on design debugging.

The lettersx, y and s refer to the primary inputs, primary
outputs and state elements of a sequential circuit.xi, yi andsi

denote Boolean vectors in theith clock-cycle, ortime-frame,
of a sequential operation of a circuit. Similarly,xi

j , yi
j andsi

j

refer to thejth indexed bit in theith Boolean vector. Finally,
Xi, Y i andSi denote a predicate for theith clock cycle.

The behavior of a sequential circuitC can be described
formally by a transition relation,T (si, si+1, xi, yi), which is
true if and only if given the current-statesi, applying primary
inputsxi to C will generate primary outputsyi and the next-
statesi+1.

Design debugging aims to find all error locations, orsus-
pects, which could potentially explain the erroneous behavior
demonstrated in a given error trace [9]. In this work, we
define a design debugging method to becompletefor a given
error trace and number of errors, if and only if it returns all
suspects whose functions can be modified separately to fix
the erroneous behavior in the error trace. Theresolution of
a debugging method refers to the total number of suspects
returned, where fewer suspects correspond to better resolution.

Formally, we defineVk
0 of length k+1, as an error trace for

clock-cycles0 to k to consist of an initial state predicate, a
vector of primary input predicates and a vector ofcorrect or
expectedprimary output predicates from0 to k, which can be
written as follows:

Vk
0 = 〈S0, 〈X0, . . . ,Xk〉, 〈Y 0, . . . , Y k〉〉 (1)

A window of an error trace from clock-cyclesp to q, is
defined as a consecutive subsequence of an error trace,Vq

p =
〈Sp, 〈Xp, . . . ,Xq〉, 〈Y p, . . . , Y q〉〉, whereSp is calculated by
applying the initial state predicate and the firstp primary
input predicates to the transition relation, i.e. simulating the
erroneous circuit forp cycles. Using this notation, aprefix
windowof lengthp for this trace can be written asVp−1

0 and
a suffix windowof length k − p + 1 can be written asVk

p .
We will occasionally omit the term window and use the term
suffix or prefix in place of suffix window or prefix window
respectively.

For this work, we assume that the error is first observed in
the last clock cycle of the error trace. If this is not the case,
a shorter error trace can be trivially generated by taking the
shortest prefix that exhibits the erroneous behavior.

B. SAT-based Design Debugging

This section briefly describes background and notation for
SAT-based design debugging that is relevant to our con-
tribution. SAT-based design debugging [10] is a complete
method that encodes the design debugging problem into a
SAT instance for a given error trace and number of errors.
The satisfying assignments of the SAT instance correspond
to suspects which can be replaced with non-deterministic
functions to correct the erroneous behavior in the error trace.
The SAT instance is created in several steps. First, the tran-
sition relation is enhanced by introducing a set ofsuspect

variables, E = {e0, . . . , en}, where eachei corresponds to
theith potential error location (gate, module etc.). The suspect
variables are then added to the transition relation such that if
ei = 1 then theith potential error location is disconnected
from its fan-in and become free variables. This can be achieved
either through a hardware construction using multiplexors, or
directly in conjunctive normal form (CNF). Note that eachei

can correspond to multiple gates depending on the type of the
error location. The enhanced transition relation is denoted by
Ten(si, si+1, xi, yi, E).

Next, Ten is unrolled as a time-frame expanded model for
the length of the error trace, such that the next-state of time-
frame i is connected to the current-state of time-framei + 1.
Note that the suspect variables are not replicated since they
represent the same location regardless of the time-frame. The
error trace predicates are then applied to the initial state,
input and output variables of the replicated enhanced transition
relation.

Finally, the number of simultaneous active suspect variables,
denoted as theerror cardinality, is constrained to a given
constantN using cardinality constraintsΦN (E) which can
be generated from a network of adders [10]. Given an error
traceVk

0 or a window of an error traceVq
p , design debugging

can encoded by the following SAT problems respectively:

Debugk
0 = S0(s0) ∧ ΦN (E)∧

(

k
∧

i=0

Xi(xi) ∧ Y i(yi) ∧ Ten(si, si+1, xi, yi, E)
)

Debugq
p = Sp(sp) ∧ ΦN (E)∧
(

q
∧

i=p

Xi(xi) ∧ Y i(yi) ∧ Ten(si, si+1, xi, yi, E)
)

(2)

Note that for N = 0, Debugk
0 is UNSAT, since the error

trace applied to the erroneous design without any active error
suspect variables cannot produce the corrects outputs defined
in the error trace.

In a satisfying assignment of Equation 2, each active suspect
variable corresponds to a possible component (gate, module
etc.) whose function can be changed to correct the erroneous
behavior. To find all such suspects, for each satisfying assign-
ment, ablocking clauseis added to the debugging instance to
block the active suspect variables from appearing again as a
satisfying assignment. This instance is then sent again to the
solver. When the solver eventually returns UNSAT, all possible
suspects have been found.

Example 1 Figure 1 shows a two time-frame expanded circuit
of an erroneous two gate design with one state element. The
suspect variables{e1, e2} are denoted as enables on the side
of each gate. The incorrect gate isg2 which should be a buffer
instead of an inverter. The error trace:

V1
0 = 〈s0

0, 〈x
0
1 ∧ x0

2, x
1
1 ∧ x1

2〉, 〈y
1
1 ∧ y1

2〉〉

demonstrates an erroneous behavior of the circuit. ForN = 1,
a satisfying assignment for the suspect variables{e1, e2} is
e1 ∧ e2. Adding the blocking clausee2 to the problem causes
it to be UNSAT. This implies thatg2 is potentially the only
gate that can be modified to correct the erroneous behavior.
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Fig. 1. SAT-based Debugging

C. Unsatisfiable Cores and Interpolants

An UNSAT coreU is a subset of clauses that is unsatisfiable
in an UNSAT propositional Boolean formula written in CNF.
Modern DPLL [16] solvers can generate a proof of unsatisfia-
bility along with a corresponding resolution graph that shows
that a SAT instance is unsatisfiable [17]. The resolution graph
demonstrates how clauses in the original SAT instance can
be combined to generate the empty clause. The root nodes
of the graph are the original clauses, the intermediate nodes
correspond to the learned clauses and the leaf node is the
empty clause.

An interpolant [18] is a Boolean formula that can be
generated from an UNSAT core. For a given unsatisfiable
formula whose clauses can be partitioned into two subsets,
A and B, an interpolant is a formula,P , with the following
properties:

(a) A→ P
(b) B ∧ P is unsatisfiable.
(c) P only contains common variables ofA andB.

There exists an algorithm [19] that can generate an inter-
polant as a Boolean circuit whose gates correspond to the
vertices in the resolution graph and whose inputs correspond
to the common variables. This algorithm takesO(V +L) time,
whereV is the number of vertices in the resolution graph and
L is the total number of literals in the proof. However, in the
worst case, the size of the resolution graph can be exponential
in the size of the problem.

III. SCALABLE DEBUGGING WITH INTERPOLANTS

This section proposes a scalable SAT-based debugging
algorithm that uses interpolants to reduce the number of
simultaneous time-frames that need to be stored in memory.
The algorithm analyzes windows of time-frames along the
length of the error trace beginning with a suffix window
and iteratively moving the window backwards until a prefix
window of the error trace is analyzed. The interpolants are
used to over-approximate constraints for a suffix of the error
trace that is not modelled in the current window, ensuring that
the erroneous behavior is properly constrained. Additionally,
this method is shown to be complete and a technique using
multiple interpolants is presented to improve its resolution.

In Section III-A and Section III-B, we show how to generate
debugging instances for a suffix window and prefix window of

an error trace. Using these two ideas, a complete scalable al-
gorithm for debugging is described in Section III-C which par-
titions the original problem into smaller debugging instances.
Finally, Section III-D shows how to improve resolution by
using multiple interpolants.

A. Suffix Window Debugging

Debugging a suffix of an error trace can be achieved by
applying the original SAT-based debugging scheme given in
Equation 2. By using a suffix, only errors that are both excited
within this window and propagate to primary outputs can be
found. The following lemma describes a useful characteristic
of suspects found in a suffix debugging instance.

Lemma 1 Any suspect found in a debugging instance,
Debugk

p , for a suffix of an error trace,Vk
p , will be found as

a suspect to the debugging instance,Debugk
0 , for the entire

error trace,Vk
0 .

Proof: Let M(E) be an assignment to the suspect
variables inE such thatDebugk

p ∧M(E) is satisfiable. We
wish to prove the lemma which can be written as:

Debugk
p ∧M(E) is SAT→ Debugk

0 ∧M(E) is SAT

From Equation 2, we know thatDebugp−1

0 ∧ Debugk
p and

Debugk
0 ∧ Sp(sp) generate the same clauses.Debugp−1

0 is
SAT regardless of the error trace because the error has not
been observed yet, so there is no mismatch in primary outputs.
Debugp−1

0 ∧ Sp(sp) is SAT when no suspect variables are
active because the instanceDebugp−1

0 amounts to simulating
the circuit for the firstp cycles of the error trace generating the
same values asSp(sp). Finally, Debugp−1

0 ∧ Sp(sp) ∧M(E)
is SAT because each active suspect variable allows the corre-
sponding component to become an arbitrary non-deterministic
function, which will not change the satisfiability of an instance
if it was already satisfiable.

Therefore, ifDebugk
p ∧ M(E) is SAT thenDebugp−1

0 ∧
Debugk

p ∧ M(E) is SAT, since the only common variables
aresp andE which are fully assigned. As a result,Debugk

0 ∧
Sp(sp)∧M(E) is SAT implying thatDebugk

0 ∧M(E) is SAT
as required.

Lemma 1 guarantees that suspects found in the suffix are
suspects that will be found in the entire error trace. However,
if the error is excited before the current suffix, then there is
no guarantee that the error will be found inDebugk

p . Even
though analyzing a suffix of an error trace may not result in
a complete algorithm, valuable information can be extracted
from the resulting UNSAT core as stated in the following
theorem.

Theorem 1 Let U be an UNSAT core generated after block-
ing all satisfying assignments to suspects forDebugk

p . If
U ∩ Sp(sp) = ∅ then the suspects found inDebugk

p will be
exactly the suspects found in the entire debugging instance,
Debugk

0 .

Proof: From Lemma 1, any suspect found inDebugk
p is

a suspect found in the entire debugging instance,Debugk
0 .

Now we prove by contradiction that any suspect found in
Debugk

0 will be found in Debugk
p . Assume towards a contra-

diction that,M(E) is an assignment to the suspect variables
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Fig. 2. Suffix Window Debugging

such thatDebugk
0 ∧ M(E) is SAT and Debugk

p ∧ M(E)
is UNSAT. And let U be the UNSAT core derived after
blocking all satisfying assignments to suspects forDebugk

p ,
which contains no clauses inSp(sp).

SinceDebugk
p ∧M(E) is UNSAT, M(E) is not blocked

by any of the blocking clauses toDebugk
p , which we de-

note by blocking clausesk
p. This means thatDebugk

0 ∧
blocking clausesk

p is satisfiable. However we know that in
terms of clauses,U ⊆ (Debugk

p ∧ blocking clausesk
p −

Sp(sp)) ⊆ Debugk
0 ∧ blocking clausesk

p, since U does
not contain any clauses fromSp(sp). However, Debugk

0 ∧
blocking clausesk

p ∧M(E) is satisfiable, soU ∧M(E) is
satisfiable. ButU is an UNSAT core, which is a contradiction.
So it must be the case thatDebugk

p ∧M(E) is SAT.
Theorem 1 gives a condition to omit a prefix debugging

analysis with very little additional computation beyond ex-
tracting the UNSAT core from the suffix debugging instance.
Notice that the proof does not depend on the error cardinality
since the same UNSAT core will exist in the suffix instance
as well as the entire debugging instance. However, in the case
where Theorem 1 is not valid, the prefix of the error trace must
be analyzed to get a complete set of suspects. The following
example illustrates a case where Theorem 1 can not be applied
because there are clauses in the UNSAT core from the initial
state predicate.

Example 2 A suffix debugging instance derived from Exam-
ple 1 is shown in Figure 2. The suffix,V1

1 , is used to produce
a suffix debugging instanceDebug1

1 with N = 1. The clauses
for the suffix debugging instance are shown to the right of the
circuit diagram. This instance is unsatisfiable. The following
is an UNSAT core from the instance:

(x1
2)(y

1
1)(y1

2)(s1
0)(e1 + e2)(x1

2 + y1
2 + e2)(s

1
0 + y1

1 + e1)

Using Theorem 1, we know thatDebug1
1 does not result in the

complete set of suspects toDebug1
0 because the UNSAT core

contains the clauses1
0 ⊆ S1(s1), so the prefix of the error

trace still needs to be analyzed.

B. Prefix Window Debugging

Debugging a prefix of an error trace can be formulated
in two parts. The first part uses the conventional SAT-based
formulation (Equation 2) using a prefix of the error trace. The
second part is an interpolant approximating time-frames for
the corresponding suffix of the error trace.

Recall that the erroneous behavior is only observed in the
last time-frame. If only a prefix of the error trace is modelled
then the instance will not be properly constrained with the
erroneous behavior. To avoid this situation, the interpolant
is used as an over-approximation for the constraints that
model the corresponding suffix. This ensures that the prefix
debugging instance is properly constrained.

The interpolant can be generated by using an UNSAT
core of the solved suffix debugging instance. To generate
the interpolant, a partition ofDebugk

p ∧ blocking clauses is
defined by partitioning the clauses into two setsA andB. Set
A represents the clauses modelling the enhanced transition
function fromp to k along with the primary input and output
predicates from the error trace. SetB represents the initial state
predicate, the error cardinality constraints and the blocking
clauses. The clauses formingDebugk

p ∧blocking clauses can
be separated intoA andB as follows:

A =

k
∧

i=p

Xi(xi) ∧ Y i(yi) ∧ T (si, si+1, xi, yi, E)

B =Sp(sp) ∧ ΦN (E) ∧ blocking clauses (3)

The common variables ofA and B are the state variables
sp and the suspect variablesE. Using this partition, an
interpolant for the suffix, denotedP k

p , can be generated from
the resolution graph using the algorithm from [19].

P k
p can be interpreted as anover-approximationof the suffix

debugging instance.P k
p will involve a subset of state and

suspect variables that are directly related to the erroneous
behavior observed at the primary outputs. The benefit ofP k

p

is that it retains only the useful information that causes the
erroneous behavior instead of modelling all the time-frames
for the suffix of the error trace. In cases where the interpolant
gets too large, the original clauses can be used in place of
the interpolant, bounding the size of the constraints used to
model the erroneous behavior. However experimental results
show that in most cases, the interpolant is much smaller than
the instance it was generated from, confirming the efficacy of
using interpolants for debugging.

Example 3 Figure 3 shows the resulting resolution graph on
the left and interpolant on the right from the UNSAT core in
Example 2. Notice how many of the root nodes of the resolution
graph generate constants values in the interpolant. This isa
common occurrence and generally leads to a small interpolant
relative to the UNSAT core that it was derived from.

0

1

1

(e2)

()

(x1
2) (x1

2 + y
1
2 + e2)

(y1
2 + e2) (y1

2)

(e1 + e2)

(e1) (s1
0 + y

1
1 + e1)

(y1
1) (s1

0 + y
1
1)

(s1
0) (s1

0)

0

0

e1

e2

1 s
1

0

Fig. 3. Resolution graph and Interpolant



Using P k
p , Debugp−1

0 can be constrained with the cause
for the erroneous behavior. The interpolant ensures that any
suspect found in the prefix debugging instance resolves the
erroneous behavior from the UNSAT core. The debugging
instance for a prefix of an error trace with an interpolant, which
we denote asDebugItpp−1

0 , can be written as follows:

DebugItpp−1

0 = Debugp−1

0 ∧ P k
p (4)

DebugItpp−1

0 will be UNSAT when no suspect variables are
active becauseDebugp−1

0 will be equivalent to simulating the
design for clock cycles0 to p− 1 and will implicitly generate
the initial state predicateSp which is known to be UNSAT
with P k

p . The next example builds from previous ones to show
how a prefix debugging instance can be created.

Example 4 Figure 4 shows how the interpolant generated in
Example 3 can be used to debug a prefix of an error trace.
Notice that the interpolant is significantly smaller once the
constants have been propagated through the gates. In Figure4,
activating suspect variable,e2, leads to the only satisfying
assignment. This is consistent with the solution found in
Example 1.

The interpolant constrains the prefix debugging instance but
it is an over-approximation. In other words, it will not miss
suspects, as stated in the next theorem.

Theorem 2 Any suspect found inDebugk
0 will be found in

DebugItpp−1

0 .

Proof: By definition, Debugk
0 = Debugp−1

0 ∧ A, where
A is defined in Equation 3. So any satisfying assignment to
Debugk

0 will satisfy Debugp−1

0 and A. But A → P k
p , so it

also satisfiesP k
p satisfyingDebugItpp−1

0 .
Theorem 2 guarantees that solving the prefix debugging in-

stance will result in a complete method where no suspects will
be missed. However, it does not guarantee that spurious sus-
pects will not be found.P k

p is used as an over-approximation
for the suffix, so it does not provide as many constraints
as explicitly modelling time-framesp to k. This results in
DebugItpp−1

0 possibly returning suspects that will not be
found when debugging the entire error trace. Section III-D
aims to reduce these extra suspects and improve the resolution.
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Algorithm 1 Debugging with Interpolants
1: step := maximum number of time-frames
2: procedure DEBUGINTERPOLANT(step)
3: N := error cardinality
4: E := set of potential suspect variables
5: k := length of error trace
6: solutions := suspects found by algorithm
7: solutions← ∅, P ← 1

8: while k >= 0 do
9: p← max(k − step, 0)

10: inst← Debugk−1
p (N,E) ∧ P

11: solutions ← solutions ∪ SOLVEALL(inst)
12: U ← EXTRACTUNSATCORE(inst)
13: if U ∩ Sp(sp) = ∅ then
14: return solutions
15: end if
16: P ← GENERATEINTERPOLANT(U)
17: E ← E - solutions
18: k ← k - step
19: end while
20: return solutions
21: end procedure

C. Scalable Debugging Algorithm

By using suffix and prefix debugging instances, it is possible
to further divide the debugging problem into smaller windows
that model no more than a user-defined number of time-frames.
Algorithm 1 presents pseudo-code for a scalable debugging
algorithm that divides an error trace of lengthk into ⌈k/step⌉
windows, wherestep is a user-defined parameter that specifies
the maximum number of simultaneous time-frames to be
modelled.

The algorithm iteratively analyzes windows of the error
trace, starting with a suffix (lines 8-19). In each iteration,
it begins by analyzing the current window of the error trace
and finds all suspects shown on line 11. It then proceeds to
generate an UNSAT core from the same instance and checks
whether it contains any variables corresponding to the initial
state predicate for the current instance. If it does not have
any, it returns the current set of suspects. This is shown on
lines 12-15. This condition allows for an early exit from the
algorithm which in Theorem 1 was shown to be complete. If
an early exit is not taken, it proceeds to generate an interpolant
from the UNSAT core. Finally, it removes any suspects found
in this iteration for consideration in the next iteration ofthe
loop, pruning the search space for future iterations.

By iteratively analyzing consecutive windows of an error
trace, the peak memory usage will be dramatically lowered
with potential improvements in run-time. Even though the
algorithm divides the error trace beyond just a suffix and
prefix, it still guarantees completeness. This can be seen by
analyzing each iteration of the loop. In the first iteration of the
loop, if an early exit is taken (line 14), only a suffix debugging
instance is run and Theorem 1 can be applied. After the first
iteration of the loop for any givenstep, the prefixVk−step−1

0

of the error trace needs to be analyzed. This can be analyzed
by using the debugging instanceDebugItpk−step−1

0 which is
complete from Theorem 2.



However, instead of analyzing it directly, we can analyze a
suffix of it by treating the interpolant as a constraint on thelast
time-frame. This is equivalent to another iteration of the loop.
Using induction, this can be extended to the entire error trace
and we can conclude that the last iteration of the loop will be
a prefix debugging instance,DebugItpk∗

0 , whereV k∗

0 is the
window used in the last iteration of the loop. By Theorem 2,
this results in a complete algorithm.

Although Algorithm 1 is complete, there is a trade-off
between thestep parameter and the final resolution. Each
successive interpolant generated will potentially be a weaker
constraint than the previous one. By settingstep to a small
value, too many suspects can be returned. One way to cope
with this is to provide a ranking of the suspects to the
user so they can concentrate their effort on the most likely
suspect. Algorithm 1 implicitly gives a useful ranking of
suspects. More confidence can be given to suspects found in
earlier iterations because a stronger constraint is used for the
approximation of the suffix. In the case of the first iteration,
all suspects found in the suffix will be found when debugging
the entire error trace, as stated in Lemma 1.

D. Improving Resolution using Multiple Interpolants

The resolution of using this debugging method can be
improved by using multiple UNSAT cores to generate multiple
interpolants. Algorithm 1 guarantees completeness but may
result in too many suspects if parameterstep is too small.
This is due to the interpolant being an approximation to
sets of constraints modelling the erroneous behavior. However
by using multiple interpolants, the approximation will more
closely match the original constraints potentially reducing the
number of suspects that are found.

Using this fact, Algorithm 1 can be improved (line 12)
by extracting multiple UNSAT cores to generate multiple
interpolants. However, extracting multiple UNSAT cores can
be an expensive process in general [20]. Algorithm 2 presents
pseudo-code for a fast procedure for finding multiple UNSAT
cores specifically for use in Algorithm 1.

The algorithm begins with an UNSAT instance and finds
an UNSAT core (line 4). If the UNSAT core doesn’t contain
any clauses involving the initial state predicate, it exitsand
returns all UNSAT cores found so far (line 6-8). Otherwise,
it randomly removes a subset of clauses from the initial state
predicate that were involved in the current UNSAT core and is

Algorithm 2 Extracting multiple UNSAT cores
1: procedure EXTRACTMULTIPLECORES(instance)
2: Cores← ∅
3: while instance is UNSAT do
4: U ← EXTRACTCORE(instance)
5: CORES← CORES∪ {U}
6: IF U ∩ Sp(sp) = ∅ THEN
7: RETURN CORES

8: END IF
9: to remove← SELECT CLAUSES(Sp(sp) ∩ U )

10: instance← instance− to remove
11: END WHILE
12: RETURN CORES

13: END PROCEDURE

sent to the SAT solver again (line 10). This process is repeated
until the instance is found to be satisfiable.

The size of the subset of initial state predicate clauses
removed is a parameter to the algorithm. A smaller subset will
leave more constraints in the problem having a higher chance
of generating another UNSAT core but potentially taking more
time and memory. By limiting the size of the subset and the
number of cores found, the user can effectively trade-off run-
time and memory for improved resolution.

IV. EXPERIMENTS

This section presents experimental results for the pro-
posed scalable SAT-based debugging algorithm as well as
the algorithm to generate multiple interpolants. The results
are compared to the SAT-based debugging work in [10] for
the entire error trace which we will denote asorig in this
section. MINI SAT-V1.14 [21] with proof logging is used to
solve the SAT instances and as well as generate the UNSAT
cores. Experiments were run on a Pentium Core 2, 2.4 GHz
workstation with 8GB of memory with a timeout of 7200
seconds.

We show the effectiveness of our algorithm on large designs
from OpenCores.org [22]. Instances are generated by inserting
a common RTL error such as a wrong assignment, missing
case statement or incorrect operator. The error trace for each
instance is generated by simulating the erroneous circuit
through its testbench. Each suspect corresponds to a location
in the RTL that can be corrected to satisfy the error trace.

Table I presents the results for the proposed debugging
algorithm with interpolants. Four different sets of experiments
are shown in this table. The first set of experiments in
columns 5-7 correspond to running SAT-based debugging on
the entire error trace (orig). The other three sets of experiments
in column 8-16 correspond to debugging with interpolants
varying the number of iterations (r = ⌈k/step⌉) of the loop
in Algorithm 1, ranging from 2 to 4. Each run uses one
interpolant.

The first four columns in Table I show the instance name,
number of clock cycles in the error trace, the gate count of
the design and the total number of potential suspects. The next
12 columns show the run-time, peak memory and number of
suspects returned for the four sets of experiments. For run-
time and peak memory, the column with the lowest value is
emphasized in bold.

For r = 2, the proposed algorithm shows on average a
24% decrease in run-time and 34% decrease in peak memory
compared to orig, while increasing the number of suspects
returned relative the total number of suspects on average by
only 1%. With r = 3, the decrease in run-time is 26%, peak
memory 48% and relative increase in suspects is 3%.r = 4
shows a similar trend by decreasing run-time by 23%, peak
memory by 57%, but the relative increase in suspects is only
2% on average.

Figure 5 plots the run-time results from Table I from two
different views. Figure 5(a) shows performance results of
debugging with interpolants against orig on a log-log scale.
Most points lie below the 45 degree line indicating faster runs
on average. However, for several instances orig runs faster.
In addition, fdct1 and fdct2 timed-out with orig while



TABLE I
DEBUGGING WITH INTERPOLANTSRESULTS

Instance Info Orig Interpolant, r=2 Interpolant, r=3 Interpolant, r=4
instance # # total time mem # time mem # time mem # time mem #

cycles gates suspects (s) (MB) sols (s) (MB) sols (s) (MB) sols (s) (MB) sols
ac971 675 25,314 1,086 588 6,040 34 357 2,842 34 253 2,022 34 222 1,398 34
ac972 300 25,314 1,086 314 2,674 41 133 1,187 41 112 838 47 95 682 47
divider1 40 5,799 1,092 10 180 32 6 127 41 6 110 41 6 97 41
divider2 40 5,799 1,092 5 188 21 5 121 21 5 109 21 6 96 38
fdct1 40 377,849 4,568 TIMEOUT 592 3,633 58 412 2,893 59 470 2,437 62
fdct2 40 377,849 4,568 TIMEOUT 851 4,819 54 460 2,889 54 419 2,500 57
fpu2 312 81,303 939 MEMOUT 295 6,704 4 206 4,692 4 149 3,621 4
fpu5 300 81,303 939 MEMOUT 841 7,764 34 168 4,448 44 810 4200 42
mem ctrl1 100 46,425 2,451 174 2,901 12 150 1,655 12 94 1,187 12 71 899 12
mem ctrl2 100 46,425 2,451 94 3,012 6 76 1,702 6 57 1,291 6 44 944 6
mrisc1 42 18,034 631 31 546 61 37 353 80 38 305 86 39 315 93
rsdecoder2 196 11,380 1,623 20 393 47 28 356 47 35 300 47 45 245 47
spi1 576 2,103 223 270 871 27 175 596 37 187 620 79 84 338 38
vga1 40 154,213 1,337 203 5,150 9 219 2,845 9 275 2,213 35 307 1,832 51
vga2 40 154,213 1,337 383 5,187 30 447 2,913 82 520 2,253 128 481 1,637 115
wb1 132 3,552 407 6 240 8 4 154 8 3 128 8 5 122 8
wb2 132 3,552 407 5 233 5 4 153 5 3 124 5 3 120 5

debugging with interpolants were able to successfully solve
these instances.

Taking a closer look at how run-time varies with the number
of windows, r, Figure 5(b) shows how relative run-times of
several designs vary with an increasedr. The run-times are
normalized to the orig instance indicated byr = 1. While
most instances, show a reduction in run-time with largerr,
vga2 shows an increase. This can be attributed to the fact
that the run-time of a debugging instance does not necessarily
scale linearly with the problem size. However, most instances
show a decrease in run-time asr is increased.

Figure 6 shows the benefit of using interpolants with respect
to peak memory. Figure 6(a) shows the memory of using
interpolants against orig on a log-log scale. All instancesare
below the 45 degree line indicating that they consistently
require less memory.

Looking more carefully at the relative memory usage for
several instances, Figure 6(b) shows that the memory does
not necessarily decrease inversely withr. spi1 has a small
relative increase fromr = 2 to 3 but a much bigger relative
decrease fromr = 3 to 4. The reason for this is that the
interpolant, which is not necessarily linear in size with the
debugging instance, contributes to the peak memory. However,
ac972 shows a case where it does follow an inverse relation
with r.

One would expect the early exit (line 14 from Algorithm 1)
to contribute to this inverse relation. However, only the
mem_ctrl andwb instances as well asfpu2 used the early
exit condition. This shows that the decrease in memory is due
to the interpolant being significantly smaller than the instance
it was generated from.

From Table I, we see that the number of suspects found
generally increases as ther increases. This was explained
in Section III-C due to potentially weaker interpolants being
generated in later iterations of Algorithm 1. However,spi1
andvga2 show a case where the number of suspects actually
decrease with increasingr. With r = 3 spi1 generated 79
suspects while atr = 4 it generated 38. Similarlyvga2 had
128 at r = 3 and 115 atr = 4. These results suggest that
although the interpolant is more likely to get weaker with
increasedr, how well it constrains the erroneous behavior can
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vary a great deal depending on the UNSAT core that was used.
Figure 7 shows the results from using multiple interpolants

with r = 4 to constrain the debugging problem. The instances
shown in this figure are ones where the number of suspects
increased by a large amount over orig. Forspi1, vga1 and
vga2, using multiple interpolants improved the quality of
the debugging results by reducing the number of suspects.
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vga1 shows a dramatic improvement in the number suspects
returned where the interpolants help the suspects converge
to the same value as orig. However, in some cases such as
divider2 and mrisc, multiple interpolants did not help
constrain the problem further. These results show that the ef-
fectiveness of multiple interpolants is highly dependent on the
debugging instance, where in some cases it can dramatically
improve the resolution, while in others it does not help.

V. CONCLUSION

In this work, a scalable design debugging algorithm using
interpolants is proposed. It partitions the problem into a
sequence of smaller sub-problems that are easier to solve.
Interpolants are used to reduce the number of simultaneous
time-frames examined in the error trace by replacing sets of
original clauses with a succinct approximation. The method
is proven to be complete and an additional technique is
presented to improve the quality of the debugging results
using multiple interpolants. Experimental results show a large
reduction in peak memory and improvements to run-time. This
work encourages future research in design debugging using
UNSAT cores and interpolation.
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