Scaling VLSI Design Debugging with Interpolation

Brian Kend, Andreas Veneris’
I'Department of Electrical and Computer Engineering, Ursiigrof Toronto
2Department of Computer Science, University of Toronto
{briank, veneris@eecg.toronto.edu

Abstract—Given an erroneous design, functional verification replicating the combinational component of the circuitrsuc
returns an error trace exhibiting a mismatch between the that the next-state variables of time-frarhare connected to
specification and the implementation of a design. Automated tna cyrrent-state variables of time-frame- 1 for the length

design debugging uses these error traces to identify potentially . .
erroneous modules causing the error. With the increasing size Of the error trace. For large designs and long error trabes, t

and complexity of modern VLS| designs, error traces have approach produces SAT instances which may not be pragticall
become longer and harder to analyze. At the same time, design viable because of the large memory footprint. Reducing the
debugging has become one of the most resource-intensive stepgequirements for these techniques without sacrificingqerf

L”astzg %h;gigdnesé%%ucggﬁé Tarl](ijjsor\ilrl‘cl):l!](?t:gfojse:sainst(é?;)%?;t?ﬁg mance becomes an urgent necessity towards the development
over-approximate sets of constraints that model the erroneaal of Scal_able automated debugging tools. .
behavior. The algorithm partitions the original problem into In this work, we propose a novel scalable SAT-based design

a sequence of smaller subproblems by using subsections ofdebugging algorithm which leverages interpolants to over-
the error trace that are examined iteratively. This is made approximate sets of constraints that model the erroneous
possible by using interpolants to properly constrain the erroneous behavior, significantly reducing the memory-intensivecuit

behavior for each subproblem, significantly reducing the number o . - . . L
of simultaneous time-frames examined in the error trace. The '€plication atany given time. This is accomplished by divgl

described method is shown to be complete and an additional the error trace into several parts, windows and analyzing
technique is presented to improve the quality of the debugging each window of time-frames separately. To allow for each-win
results using multiple interpolants. Experiments on real designs dow to be properly constrained with the erroneous behavior,
show a 579% reduction in memory and 23% decrease in run-ime jntarpolants are used to over-approximate sets of congdrai
compared to previous work. that model time-frames within close proximity to the obsetv
error. The analysis begins with a window at the end of the
error trace. If the analysis does not yield complete regsitlts
The aim of functional verification is to determine whetheproceeds by moving the window backwards iteratively. The
the implementation of a design conforms to its specificatiomterpolant is calculated from the unsatisfiable (UNSAT)eco
If the design is found to be buggy, amror traceis returned resulting from previously analyzed windows. The net resfilt
which exposes the erroneous behavior. Due to the increasing iterative methodology is a significant reduction in noeymn
size and complexity of modern designs, error traces gegeratequirements and improvements in run-time.
from functional verification tools [1]-[5] can be thousands The described method is shown to find all error locations
of clock cycles long [6]. This places a large burden on thghose functions can be modified to correct the erroneous
engineer to examine the error trace and identify potentiséhavior for a given error trace and number of errors. Ad-
design bugs causing the erroneous behavior. ditionally, a technique to generate multiple interpolaigs
The task of identifying these potential error suspects & tlintroduced to reduce the number of error locations retyrned
design is calleddesign debuggingThis process begins afterthus improving the quality of the debugging results.
verification fails and an error trace is produced. An enginee An extensive set of experiments on large hardware designs
then has to analyze this error trace, typically through aewavand long error traces illustrates the benefits of this wdrks |
form viewer or some other graphical representation, a Ec&hown that a conservative partitioning of the error tracddg
today that is predominantly manual. This task can consurag average 34% reduction in memory and 24% reduction in
months of the verification effort and as much as 30% of than-time compared to traditional SAT-based debuggingJavhi
total time to design a Very Large Scale Integration (VLSkhe number of returned error locations is only increased on
chip [7]. Due to this fact, automated debugging method@sgiaverage by 1% of the total number of suspects. For a more
remain of great interest to both the research and industréigjgressive partitioning scheme, averages of 57% reduction
communities. in memory and 23% reduction in run-time are achieved at
Many automated debugging techniques have been dewéle cost of increasing the relative number of error location
oped to aid the engineer in this task. Simulation-based-teckturned by 2%. This favorable trade-off between resatutio
niques [8], [9] have been extensively studied in the paahd performance allows for scaling of existing SAT-based
and can be effective in certain situations. More recentlgiebugging methodologies to handle modern VLSI designs.
formal frameworks [10]-[15], such as those based on BooleanThe remaining sections of the paper are organized as
Satisfiability (SAT), have achieved significant advancetsierfollows. Section Il defines notation as well as background
in design debugging. on debugging, UNSAT cores and interpolants. Section Il
Given a sequential design, SAT-based debugging techniqilesstrates the use of interpolants in partitioning the upb
require a time-frame expansion of the circuit. This invelveging problem. Section IV presents experimental results and

I. INTRODUCTION

Section V concludes this work. variables E = {eo,...,e,}, where eache; corresponds to
thei*" potential error location (gate, module etc.). The suspect

Il. PRELIMINARIES variables are then added to the transition relation suchiftha

A. Notation and Design Debugging e; = 1 then thei®" potential error location is disconnected
This section provides notation used throughout this papem its fan-in and become free variables. This can be aeliev
and background information on design debugging. either through a hardware construction using multiplexors

The lettersz, y and s refer to the primary inputs, primary directly in conjunctive normal form (CNF). Note that eagh
outputs and state elements of a sequential ciretijty’ ands’® can correspond to multiple gates depending on the type of the
denote Boolean vectors in th& clock-cycle, ortime-frame error location. The enhanced transition relation is deshdte
of a sequential operation of a circuit. Similarly;, ¢ ands’ Ten(s', s, 2%,y E). _
refer to thej!" indexed bit in thei” Boolean vector. Finaily, ~ Next, T¢, is unrolled as a time-frame expanded model for
X't YiandS* denote a predicate for th&" clock cycle. the length of the error trace, such that the next-state of-tim

The behavior of a sequential circuit can be described frame: is connected to the current-state of time-frame 1.
formally by a transition relation]'(s’, si+*, 2%, '), which is Note that the suspect variables are not replicated singe the
true if and only if given the current-stat€, applying primary represent the same location regardles; of the tlmt'a—fr'amma. T
inputsz* to C' will generate primary outputg’ and the next- €rror trace predicates are then applied to the initial state
statesi ™!, input and output variables of the replicated enhanceditians

Design debugging aims to find all error locations,sms- relation. _ _ _
pects which could potentially explain the erroneous behavior Finally, the number of simultaneous active suspect vazgbl
demonstrated in a given error trace [9]. In this work, wgenoted as theerror cardinality, is constrained to a given
define a design debugging method todwenpletefor a given constantN using cardinality constraint® (E) W_hlch can
error trace and number of errors, if and only if it returns affé generated from a network of adders [10]. Given an error
suspects whose functions can be modified separately to figce Vg or a window of an error trac¥y, design debugging
the erroneous behavior in the error trace. Tasolutionof can encoded by the following SAT problems respectively:

a debugging method refers to the total humber of §uspectsDebug§ = 8°(s%) A D (E)A
returned, where fewer skuspects correspond to better tesolu f

Formally, we define/j of length k+1, as an error trace for i i il
clock-cycleso to k to consist of an initial state predicate, a (/\ X @) AYHY) A Ten(s', s 2y ’E))
vector of primary input predicates and a vectorcofrect or =0
expectecprimary output predicates frofto &, which can be Debugy = SP(s”) A @n(E)A

written as follows: - o o o
(A X AV A Tn(s', 570,y)
i=p

Vo = (80, (X0, X), (YO Y) €
A window of an error trace from clock-cycleg to ¢, is)
defined as a consecutive subsequence of an error ¥Wjce, Note that for N = 0, Debugh is UNSAT, since the error
(SP(XP,..., X% (YP,..., V1)), whereSP is calculated by trace applied to the erroneous design without any activer err

applying the initial state predicate and the figstprimary gyspect variables cannot produce the corrects outputsedefin
input predicates to the transition relation, i.e. simuatthe i, the error trace.
erroneous circuit forp cycles. Using this notation, arefix | g satisfying assignment of Equation 2, each active stispec
window of lengthp for this trace can be written a8/~ and variable corresponds to a possible component (gate, module
a suffix windowof length & — p + 1 can be written a8’} etc.) whose function can be changed to correct the erroneous
We will occasionally omit the term window and use the termdehavior. To find all such suspects, for each satisfyingyassi
suffix or prefix in place of suffix window or prefix window ment, ablocking clausds added to the debugging instance to
respectively. o block the active suspect variables from appearing again as a
For this work, we assume that the error is first observed #atisfying assignment. This instance is then sent agaiheto t

the last clock cycle of the error trace. If this is not the casgolver. When the solver eventually returns UNSAT, all pdssib
a shorter error trace can be trivially generated by takirgy thyspects have been found.

shortest prefix that exhibits the erroneous behavior. . . N
Example 1 Figure 1 shows a two time-frame expanded circuit

B. SAT-based Design Debugging of an erroneous two gate design with one state element. The
This section briefly describes background and notation féHspect variablege;, ez} are denoted as enables on the side

SAT-based design debugging that is relevant to our co@feach gate. The incorrect gategs which should be a buffer

tribution. SAT-based design debugging [10] is a completgstead of an inverter. The error trace:

method that encodes the design debugging problem into a 1 /70 /0.0 1, 1 1,01

SAT instance for a given error trace and number of errors. Vo = (50, (@1 A2z, 21 A), (11 A i)

The satisfying assignments of the SAT instance correspodemonstrates an erroneous behavior of the circuit. Foe 1,

to suspects which can be replaced with non-deterministicsatisfying assignment for the suspect variables, es} is

functions to correct the erroneous behavior in the erraretraey A e;. Adding the blocking clause; to the problem causes

The SAT instance is created in several steps. First, the tréinto be UNSAT. This implies that, is potentially the only

sition relation is enhanced by introducing a setsofspect gate that can be modified to correct the erroneous behavior.

io :161 an error trace. Using these two ideas, a complete scalable al
v v gorithm for debugging is described in Section 11I-C which-pa
?62 ?62 titions the original problem into smaller debugging instes
Finally, Section 1lI-D shows how to improve resolution by
using multiple interpolants.

o 7 Fer A. Suffix Window Debugging

Debugging a suffix of an error trace can be achieved by
applying the original SAT-based debugging scheme given in
Equation 2. By using a suffix, only errors that are both exkite
0 9 Yy 3 within this window and propagate to primary outputs can be

1 1 found. The following lemma describes a useful characterist
of suspects found in a suffix debugging instance.

Fig. 1. SAT-based Debugging]]]
Lemma 1 Any suspect found in a debugging instance,

Debugy, for a suffix of an error trace)’, will be found as

a suspect to the debugging instandesbugf, for the entire
An UNSAT coreU is a subset of clauses that is unsatisfiabkrror trace, V.

in an UNSAT propositional Boolean formula written in CNF.) .

Modern DPLL [16] solvers can generate a proof of unsatisfia- . Proof: Let M(E) be ar}C assignment to the suspect

bility along with a corresponding resolution graph thatwho variables inE such thatDebug, A M(E) is satisfiable. We

that a SAT instance is unsatisfiable [17]. The resolutiorn)lgra\’vISh to prove the lemma which can be written as:

demonstrates how clauses in the original SAT instance can Debug;f A M(E) is SAT — Debug§ A M(E) is SAT

be combined to generate the empty clause. The root nodes

of the graph are the original clauses, the intermediate siodgom Equation 2, we know thaDebug ' A Debug® and

correspond to the learned clauses and the leaf node is hebugl A SP(sP) generate the same cIauseBabug{j’1 is

empty clause. SAT regardless of the error trace because the error has not
An interpolant [18] is a Boolean formula that can bebeen observed yet, so there is no mismatch in primary outputs

generated from an UNSAT core. For a given unsatisfiab[e,)ebugg”1 A SP(sP) is SAT when no suspect variables are

formula whose clauses can be partitioned into two subsedstive because the instané&bug? " amounts to simulating

A and B, an interpolant is a formulaf’, with the following the circuit for the firspp cycles of the error trace generating the

C. Unsatisfiable Cores and Interpolants

properties: same values aS”(s?). Finally, Debugh ™" A SP(sP) A M (E)

(@ A—P is SAT because each active suspect variable allows the-corre
(b) B A P is unsatisfiable. sponding component to become an arbitrary non-deternuinist
(C) P Only contains common variables df and B. funCUOn, which will not Change the Sa.t|sf|a.b|||ty of an iaste

. . . _if it was already satisfiable.
There exists an algorithm [19] that can generate an 'nter'Therefore, ifDebugIIj' A M(E) is SAT thenDebugg_l A

polant as a Boolean circuit whose gates correspond to the, = . : .
vertices in the resolution graph and whose inputs corraspaf <?%Jp M(E) is SAT, since the only common varligbles
aresP and E which are fully assigned. As a resuldebugg A

to the common variables. This algorithm takegl” + L) time, ol k 4 . P X
whereV is the number of vertices in the resolution graph and’ (57) A M (E) is SAT implying thatDebugg A M (E) is SAI

L is the total number of literals in the proof. However, in th&S required.

worst case, the size of the resolution graph can be expamenti L€mma 1 guarantees that suspects found in the suffix are
in the size of the problem. suspects that will be found in the entire error trace. Howeve

if the error is excited before the current suffix, then thesre i
no guarantee that the error will be found Jhebugz’,f. Even
though analyzing a suffix of an error trace may not result in

This section proposes a scalable SAT-based debuggfgomplete algorithm, valuable information can be extecte
algorithm that uses interpolants to reduce the number @M the resulting UNSAT core as stated in the following
simultaneous time-frames that need to be stored in memdRgorem.

The algorithm analyzes windows of time-frames along theheorem 1 Let U be an UNSAT core generated after block-
length of the error trace beginning with a suffix windowng all satisfying assignments to suspects ebugk. If
and iteratively moving the window backwards until a prefix; - SP(sP) = § then the suspects found Bebugk will be

p

window of the error trace is analyzed. The intlerpolants aactly the suspects found in the entire debugging instance
used to over-approximate constraints for a suffix of thererr@ebugg_

trace that is not modelled in the current window, ensurirgg th

Ill. SCALABLE DEBUGGING WITH INTERPOLANTS

the erroneous behavior is properly constrained. Additigna Proof: From Lemma 1, any suspect foundﬂebug}’; is
this method is shown to be complete and a technique usiaguspect found in the entire debugging instareehugh.
multiple interpolants is presented to improve its resoluti Now we prove by contradiction that any suspect found in

In Section IlI-A and Section I1I-B, we show how to generatéDebugl will be found in Debug’;. Assume towards a contra-
debugging instances for a suffix window and prefix window dafiction that, M/ (E) is an assignment to the suspect variables

Recall that the erroneous behavior is only observed in the
last time-frame. If only a prefix of the error trace is modelle

1
a}
7 e, TV (1) (1) (1) (0 then the instance will not be properly constrained with the
(s0) (1) (22) (Y1) (92)
o lst (524 T+ en) (@ + 5T + e1) erroneous behavior. To avoid this situation, the intenpola
: Gl+ 21 + 4l +er) is used as an over-approximation for the constraints that
(;l +y§ +'6:)(;+?+62) model the corresponding suffix. This ensures that the prefix
g e (62+62)(?+;) : debugging instance is properly constrained.
PR The interpolant can be generated by using an UNSAT
core of the solved suffix debugging instance. To generate
") the interpolant, a partition oDebug§ A blocking_clauses is
1 2

Y i defined by partitioning the clauses into two sdtgnd B. Set
A represents the clauses modelling the enhanced transition
Fig. 2. function fromp to k along with the primary input and output
) predicates from the error trace. Setepresents the initial state

such thatDebugi A M(E) is SAT and Debugy A M(E) predicate, the error cardinality constraints and the biagk
is UNSAT. And let U be the UNSAT core derived after cjauses. The clauses formitiebugl Ablocking_clauses can
blocking all satisfying assignments to suspects forbugt, pe separated intel and B as follows:
which contains no clauses it (s?).

Since Debugk A M(E) is UNSAT, M(E) is not blocked
by any of the blocking clauses tﬁ)ebug’;, which we de-
note by blocking_clauses’;. This means thatDebugh A
blocking_clauses), is satisfiable. However we know that in
terms of clausesl/ C (Debugy A blocking_clausesf — The common variables oft and B are the state variables
SP(sP)) C Debugf A blocking_clausesf, since U does sP and the suspect variableE. Using this partition, an
not contain any clauses frorfi”(s?). However, Debugf A interpolant for the suffix, denote®”, can be generated from
blocking_clauses® N M(F) is satisfiable, sd/ A M(E) is the resolution graph using the algorithm from [19].
satisfiable. ButJ is an UNSAT core, which is a contradiction. sz can be interpreted as awer-approximatiorof the suffix
So it must be the case thﬁtebug;f AN M(E) is SAT. B debugging instancesz’ will involve a subset of state and

Theorem 1 gives a condition to omit a prefix debugginguspect variables that are directly related to the erra;meou
analysis with very little additional computation beyond- exbehavior observed at the primary outputs. The benefin)f
tracting the UNSAT core from the suffix debugging instancés that it retains only the useful information that causes th
Notice that the proof does not depend on the error cardynalgrroneous behavior instead of modelling all the time-frame
since the same UNSAT core will exist in the suffix instancor the suffix of the error trace. In cases where the intergola
as well as the entire debugging instance. However, in the cagts too large, the original clauses can be used in place of
where Theorem 1 is not valid, the prefix of the error trace mutste interpolant, bounding the size of the constraints used t
be analyzed to get a complete set of suspects. The followimgpdel the erroneous behavior. However experimental esult
example illustrates a case where Theorem 1 can not be appB&dw that in most cases, the interpolant is much smaller than
because there are clauses in the UNSAT core from the initthe instance it was generated from, confirming the efficacy of
state predicate. using interpolants for debugging.

Example 2 A suffix debugging instance derived from ExanfExample 3 Figure 3 shows the resulting resolution graph on
ple 1 is shown in Figure 2. The suffik;, is used to produce the left and interpolant on the right from the UNSAT core in
a suffix debugging instand®ebug} with N = 1. The clauses Example 2. Notice how many of the root nodes of the resolution
for the suffix debugging instance are shown to the right of tigaph generate constants values in the interpolant. Thia is

circuit diagram. This instance is unsatisfiable. The foilogy common occurrence and generally leads to a small intergolan
is an UNSAT core from the instance: relative to the UNSAT core that it was derived from.

Suffix Window Debugging

k
A= N\ X' (z) NY (y) NT(s', s 2ty B)
1=p

B =SP(s”) AN Dy (E) A blocking_clauses 3

(@3 (D) () (s0) (& + &) (@) + yg + e2)(sh + 9l +e1)

Using Theorem 1, we know thatebug; does not result in the
complete set of suspects febug) because the UNSAT core
contains the clause} C S'(s'), so the prefix of the error
trace still needs to be analyzed.

B. Prefix Window Debugging

Debugging a prefix of an error trace can be formulated
in two parts. The first part uses the conventional SAT-based
formulation (Equation 2) using a prefix of the error traceeTh
second part is an interpolant approximating time-frames fo
the corresponding suffix of the error trace.

Fig. 3. Resolution graph and Interpolant

Using P, Debugf~" can be constrained with the causé\gorithm 1 Debugging with Interpolants
for the erroneous behavior. The interpolant ensures that an: step := maximum number of time-frames
suspect found in the prefix debugging instance resolves the procedure DEBUGINTERPOLANT(step)
erroneous behavior from the UNSAT core. The debugging: N := error cardinality
instance for a prefix of an error trace with an interpolantiolvh 4: E = set of potential suspect variables
we denote asDebugItpg’l, can be written as follows: 5: k := length of error trace

6: solutions = suspects found by algorithm

7: solutions — (), P — 1
8: while £ >=0 do

DebugItph™" = Debugt™" A Pk 4)

Debug]tp{)”1 will be UNSAT when no suspect variables are 9:
active becaus®ebug? " will be equivalent to simulating the 10:
design for clock cycle$ to p — 1 and will implicitly generate 11:
the initial state predicaté&® which is known to be UNSAT 12
with sz. The next example builds from previous ones to show3:
how a prefix debugging instance can be created. 14:

15:
Example 4 Figure 4 shows how the interpolant generated irt®:
Example 3 can be used to debug a prefix of an error tracé’:
Notice that the interpolant is significantly smaller oncee th 18:

p — max(k — step,0)
inst «— Debug’;’l(N, E)AP
solutions «— solutions U SOLVEALL (inst)
U «— EXTRACTUNSAT CORE(inst)
if UNSP(s?)=0 then
return solutions
end if
P « GENERATEINTERPOLANT(U)
E — FE - solutions
k «— k - step

constants have been propagated through the gates. In Figurel®: end while .
activating suspect variables,, leads to the only satisfying 20: réturn solutions
assignment. This is consistent with the solution found #- end procedure
Example 1.

The interpolant constrains the prefix debugging instante ki Scalable Debugging Algorithm
it is an over-approximation. In other words, it will not miss

suspects, as stated in the next theorem. By using suffix and prefix debugging instances, it is possible

to further divide the debugging problem into smaller window
that model no more than a user-defined number of time-frames.
Algorithm 1 presents pseudo-code for a scalable debugging
algorithm that divides an error trace of lendithinto [k/step]
windows, wherestep is a user-defined parameter that specifies
he maximum number of simultaneous time-frames to be

Theorem 2 Any suspect found iebugt will be found in
DebugItph ™.

Proof: By definition, Debugh = Debug? ™' A A, where
A is defined in Equation 3. So any satisfying assignment

Pl . 1 % ; odelled.
Debugg wil SitISfy. Debugy ~ and f;l;lBUt A= Py, S0t The aigorithm iteratively analyzes windows of the error
also satisfies”, satisfying Debugltpy . B {race, starting with a suffix (lines 8-19). In each iteration

Theorem 2 guarantees that solving the prefix debugging ifbegins by analyzing the current window of the error trace
stance will result in a complete method where no suspects whd finds all suspects shown on line 11. It then proceeds to
be missed. However, it does not guarantee that spurious sgénerate an UNSAT core from the same instance and checks
pects will not be foundP} is used as an over-approximationyhether it contains any variables corresponding to théainit
for the suffix, so it does not provide as many constraintgate predicate for the current instance. If it does not have
as explicitly modelling time-frameg to k. This results in any, it returns the current set of suspects. This is shown on
Debugltph~" possibly returning suspects that will not bdines 12-15. This condition allows for an early exit from the
found when debugging the entire error trace. Section Ill-Bigorithm which in Theorem 1 was shown to be complete. If
aims to reduce these extra suspects and improve the resolutan early exit is not taken, it proceeds to generate an int@mpo

from the UNSAT core. Finally, it removes any suspects found
1 1 in this iteration for consideration in the next iteration toe
a9 gzo loop, pruning the search space for future iterations.
By iteratively analyzing consecutive windows of an error
—C2 trace, the peak memory usage will be dramatically lowered
with potential improvements in run-time. Even though the
algorithm divides the error trace beyond just a suffix and
prefix, it still guarantees completeness. This can be seen by
analyzing each iteration of the loop. In the first iteratidrihe
loop, if an early exit is taken (line 14), only a suffix debuwmi
instance is run and Theorem 1 can be applied. After the first
iteration of the loop for any giventep, the prefixyy—*t»—!
of the error trace needs to be analyzed. This can be analyzed
by using the debugging instanu‘.bebugltp’g‘Ste’"1 which is
complete from Theorem 2.

€1

91 €1

Fig. 4. Prefix Window Debugging with an Interpolant

However, instead of analyzing it directly, we can analyze sent to the SAT solver again (line 10). This process is reqgkat
suffix of it by treating the interpolant as a constraint onldést until the instance is found to be satisfiable.
time-frame. This is equivalent to another iteration of thed. The size of the subset of initial state predicate clauses
Using induction, this can be extended to the entire erraetraremoved is a parameter to the algorithm. A smaller subsét wil
and we can conclude that the last iteration of the loop will Heave more constraints in the problem having a higher chance
a prefix debugging instanc&ebugltpl , where V¥ is the of generating another UNSAT core but potentially taking enor
window used in the last iteration of the loop. By Theorem 2ime and memory. By limiting the size of the subset and the
this results in a complete algorithm. number of cores found, the user can effectively trade-aff ru

Although Algorithm 1 is complete, there is a trade-oftime and memory for improved resolution.
between thestep parameter and the final resolution. Each
successive interpolant generated will potentially be akeea IV. EXPERIMENTS
constraint than the previous one. By settifigp to a small
value, too many suspects can be returned. One way to copdhis section presents experimental results for the pro-
with this is to provide a ranking of the suspects to thBosed scalable SAT-based debugging algorithm as well as
user so they can concentrate their effort on the most likelje algorithm to generate multiple interpolants. The tssul
suspect. Algorithm 1 implicitly gives a useful ranking ofare compared to the SAT-based debugging work in [10] for
suspects. More confidence can be given to suspects foundh@ entire error trace which we will denote asg in this
earlier iterations because a stronger constraint is usethéo section. MNISAT-v1.14 [21] with proof logging is used to
approximation of the suffix. In the case of the first iteratiorfolve the SAT instances and as well as generate the UNSAT
all suspects found in the suffix will be found when debuggingores. Experiments were run on a Pentium Core 2, 2.4 GHz
the entire error trace, as stated in Lemma 1. workstation with 8GB of memory with a timeout of 7200

seconds.

D. Improving Resolution using Multiple Interpolants We show the effectiveness of our algorithm on large designs
The resolution of using this debugging method can keom OpenCores.org [22]. Instances are generated by ingert
improved by using multiple UNSAT cores to generate multiple common RTL error such as a wrong assignment, missing
interpolants. Algorithm 1 guarantees completeness but meyse statement or incorrect operator. The error trace fdr ea
result in too many suspects if parametgep is too small. instance is generated by simulating the erroneous circuit
This is due to the interpolant being an approximation through its testbench. Each suspect corresponds to adocati

sets of constraints modelling the erroneous behavior. Mewe in the RTL that can be corrected to satisfy the error trace.

by using multiple interpolants, the approximation will reor Table | presents the results for the proposed debugging
closely match the original constraints potentially redgcthe algorithm with interpolants. Four different sets of expeehts
number of suspects that are found. are shown in this table. The first set of experiments in

Using this fact, Algorithm 1 can be improved (line 12)kolumns 5-7 correspond to running SAT-based debugging on
by extracting multiple UNSAT cores to generate multiplghe entire error trace (orig). The other three sets of erpants
interpolants. However, extracting multiple UNSAT coresicain column 8-16 correspond to debugging with interpolants
be an expensive process in general [20]. Algorithm 2 preseRtrying the number of iterations: (= [k/step]) of the loop
pseudo-code for a fast procedure for finding multiple UNSAR Algorithm 1, ranging from 2 to 4. Each run uses one
cores specifically for use in Algorithm 1. interpolant.

The algorithm begins with an UNSAT instance and finds The first four columns in Table | show the instance name,
an UNSAT core (line 4). If the UNSAT core doesn’t contairthymper of clock cycles in the error trace, the gate count of
any clauses involving the initial state predicate, it eXtsl the design and the total number of potential suspects. Tkte ne
returns all UNSAT cores found so far (line 6-8). Otherwise,> columns show the run-time, peak memory and number of
it randomly removes a subset of clauses from the initiakstadspects returned for the four sets of experiments. For run-
predicate that were involved in the current UNSAT core and ifne and peak memory, the column with the lowest value is
emphasized in bold.

For r = 2, the proposed algorithm shows on average a
24% decrease in run-time and 34% decrease in peak memory
compared to orig, while increasing the number of suspects
returned relative the total number of suspects on average by
only 1%. Withr = 3, the decrease in run-time is 26%, peak
memory 48% and relative increase in suspects is 8%. 4
shows a similar trend by decreasing run-time by 23%, peak
memory by 57%, but the relative increase in suspects is only
2% on average.

Figure 5 plots the run-time results from Table | from two

Algorithm 2 Extracting multiple UNSAT cores

1. procedure EXTRACTMULTIPLECOREYinstance)
2: Cores« ()

3 while instance is UNSAT do

4: U «— EXTRACTCORE(instance)

5: CORES+ CORESU {U}
6:
7
8

IF UNSP(sP) =0 THEN
RETURN CORES
END IF

: P(cP . . .

o t.o—:emove‘_,StELECT—CtLAUSES(S (s/)n0) different views. Figure 5(a) shows performance results of
10: tnstance < insiance — 10_remove debugging with interpolants against orig on a log-log scale
11 END WHILE Most points lie below the 45 degree line indicating fastersru
12: RETURN CORES

on average. However, for several instances orig runs faster

13: END PROCEDURE In addition, f dct 1 and f dct 2 timed-out with orig while

TABLE |
DEBUGGING WITH INTERPOLANTSRESULTS

[Instance Info I Orig [[Interpolant, r=2]| Interpolant, r=3 [Interpolant, r=4 |
instance # # total time | mem # time | mem # time | mem # time | mem #
cycles | gates | suspects|| (s) | (MB) | sols (s) | (MB) | sols (s) | (MB) | sols (s) | (MB) | sols
ac971 675 | 25314| 1,086| 588 | 6,040 | 34 || 357 | 2,842 | 34 || 253 | 2,022 | 34 || 222 | 1,398 | 34
ac972 300 | 25314 1,086 314 | 2,674 | 41| 133 | 1,187 | 41 || 112 | 838 47 95 | 682 | 47
dividerl 40 5,799 1,092 | 10| 180| 32 6| 127 41 6| 110| 41 6 97 | 41
divider2 40 5,799 1,092 5| 188 21 5| 121 21 5| 109 21 6 96 | 38
fdctl 40 | 377,849 4,568 TIMEOUT 592 | 3,633 | 58| 412 | 2,893 | 59 || 470 | 2,437 | 62
fdct2 40 | 377,849 4,568 TIMEOUT 851 | 4819 | 54 | 460 | 2,889 | 54 || 419 | 2,500 | 57
fpu2 312 | 81,303 939 MEMOUT 295 | 6,704 4 || 206 | 4692 4| 149 3,621 | 4
fpus 300 | 81,303 939 MEMOUT 841 | 7,764 | 34 || 168 | 4,448 | 44 || 810 | 4200 | 42
mem_cirl1 100 | 46,425| 2,451 174] 2,901 12 || 150 | 1,655| 12 94 | 1,187 | 12 71| 899 | 12
mem ctrl2 100 | 46,425| 2,451 94 | 3012 6 76 | 1,702 6 57 1,291 6 44 | 944 6
mriscl 42 | 18,034 631 31| 546 | 61 37 [353| 80 38| 305| 86 39| 315| 93
rsdecoder?| 196 | 11,380| 1,623| 20| 393 | 47 28 | 356 | 47 35| 300 47 45 [245 47
spil 576 | 2,103 223 |[270 | 871 | 27 || 175| 596 | 37| 187 | 620 79 84 | 338 | 38
vgal 40 | 154,213 1,337 203 [5150 O || 219 | 2,845 9 || 275 | 2,213 | 35| 307 | 1,832 51
vga2 40 | 154,213 1,337 || 383 | 5,187 | 30 || 447 | 2,913 | 82 || 520 | 2,253 | 128 || 481 | 1,637 | 115
wb1 132 | 3,552 407 6 | 240 8 4 154 8 3| 128 8 5| 122 8
wb2 132 | 3552 407 5| 233 5 4 153 5 3| 124 5 3| 120 5
debugging with interpolants were able to successfully esolv
these instances. a =2 A
. . . . 2 =3 @
Taking a closer look at how run-time varies with the number £ ookl ™ X
of windows, r, Figure 5(b) shows how relative run-times of = i
several designs vary with an increasedThe run-times are & ~
normalized to the orig instance indicated by= 1. While g 100 i
most instances, show a reduction in run-time with larger =] :
. . . Ke) o
vga2 shows an increase. This can be attributed to the fact g
that the run-time of a debugging instance does not necgssari g
scale linearly with the problem size. However, most inséganc g 10 4
show a decrease in run-time ags increased. g
Figure 6 shows the benefit of using interpolants with respect ~
to peak memory. Figure 6(a) shows the memory of using t 10 100 1000
interpolants against orig on a ng—lpg scale. All instanass Orig Debugging Run-time (s)
below the 45 degree line indicating that they consistently (a) Performance Scatter plot
require less memory.
Looking more carefully at the relative memory usage for 2 o7 A ' '
several instances, Figure 6(b) shows that the memory does divider2 —o—
not necessarily decrease inversely withspi 1 has a small s mem_gtpfﬁ —E'—;
relative increase from = 2 to 3 but a much bigger relative o vga2 ——
decrease fromr = 3 to 4. The reason for this is that the %
interpolant, which is not necessarily linear in size witleth 2 1
debugging instance, contributes to the peak memory. Haweve 2
ac972 shows a case where it does follow an inverse relation &
with 7. “ s
One would expect the early exit (line 14 from Algorithm 1) '
to contribute to this inverse relation. However, only the
mem ctrl andwb instances as well a@spu2 used the early o Lo . . .
exit condition. This shows that the decrease in memory is due 1 2 3 4
to the interpolant being significantly smaller than the anse Number of Windows
it was generated from. (b) Relative Performance Comparison

From Table I, we see that the number of suspects found
generally increases as theincreases. This was explained
in Section IlI-C due to potentially weaker interpolantsrzgi
generated in later iterations of Algorithm 1. Howevepi 1 vary a great deal depending on the UNSAT core that was used.
andvga2 show a case where the number of suspects actuallyFigure 7 shows the results from using multiple interpolants
decrease with increasing With » = 3 spi 1 generated 79 with » = 4 to constrain the debugging problem. The instances
suspects while at = 4 it generated 38. Similarlyga2 had shown in this figure are ones where the number of suspects
128 atr = 3 and 115 atr = 4. These results suggest thaincreased by a large amount over orig. Bgi 1, vgal and
although the interpolant is more likely to get weaker witlrga2, using multiple interpolants improved the quality of
increased-, how well it constrains the erroneous behavior catihe debugging results by reducing the number of suspects.

Fig. 5. Performance Results

— r=2 A *
g =3 @
g r=4 x
2
@
% ki
[=2)
£ 1000
=
3 e &
la}
€ A N
g o8
o
5]
8 ¥
100 ‘
100 1000
Orig Debugging Memory (MB)
(a) Memory Scatter plot
2 T T T
ac972 —A—
divider2 —5—
mem_ctrll —H—
15 | spil —&—
> vga2 —x%—
g
2
%) 1r
=
g
[J]
@
05 F
0 A A A A
1 2 3 4
Number of Windows
(b) Relative Memory Comparison
Fig. 6. Memory Results
120 = T T T
single — N
multiple =—3
100 } oriq EEEEm
g] [13]
S 80t
3
[=]
2 el
2 [14]
[
o
E 401
z
20
[16]
divider2 mriscl vgal vga2 [17]
(r=4) (r=4) (r=4) (r=4) (r=4)
Instance
Fig. 7. Solutions using Multiple Interpolants

V. CONCLUSION

In this work, a scalable design debugging algorithm using
interpolants is proposed. It partitions the problem into a
sequence of smaller sub-problems that are easier to solve.
Interpolants are used to reduce the number of simultaneous
time-frames examined in the error trace by replacing sets of
original clauses with a succinct approximation. The method
is proven to be complete and an additional technique is
presented to improve the quality of the debugging results
using multiple interpolants. Experimental results shovargé
reduction in peak memory and improvements to run-time. This
work encourages future research in design debugging using
UNSAT cores and interpolation.

REFERENCES

[1] J. BergeronWriting Testbenches: Functional Verification of HDL Mod-
els, Second Editian Kluwer Academic Publishers, 2003.

[2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zh8ounded
model checking,’Advances in Computersol. 58, pp. 118-149, 2003.

[3] J. Yuan, C. Pixley, A. Aziz, and K. Albin, “A framework foranstrained
functional verification,” inInt'l Conf. on CADQ 2003, pp. 142-145.

[4] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and AeKlmann,
“Scalable automated verification via expert-system guidadsforma-
tions,” in Formal Methods in CAD2004, pp. 159-173.

[5] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient sat-basetbaunded
symbolic model checking using circuit cofactoring,” int'l Conf. on
CAD, 2004, pp. 510-517.

[6] K.-H. Chang, V. Bertacco, and I. L. Markov, “Simulatiom$ed bug
trace minimization with BMC-based refinement,” i@CAD, 2005, pp.
1045-1051.

[7] H. Foster, “Assertion-based verification: Industry ng/tho realities
(invited tutorial),” in Computer Aided Verificatigr2008, pp. 5-10.

[8] M. Abramovici, M. Breuer, and A. FriedmarDigital Systems Testing
and Testable Design Computer Science Press, 1990.

[9] S. Huang and K. Chengrormal Equivalence Checking and Design
Debugging Kluwer Academic Publisher, 1998.

[10] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diawpsis and logic
debugging using Boolean satisfiabilitfyEEE Trans. on CADvol. 24,
no. 10, pp. 1606-1621, 2005.

[11] S.Safarpour, M.Liffton, H.Mangassarian, A.Venergd K.A.Sakallah,
“Improved design debugging using maximum satisfiability,"Hormal
Methods in CAD 2007.

[12] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler, “Using afisfiable

cores to debug multiple design errors,"@meat Lakes Symp. VLS1008.

H. Mangassarian, A.\Veneris, S.Safarpour, M.Benédamttd D.Smith, “A

performance-driven QBF-based on iterative logic array esgntation

with applications to verification, debug and test,"litt'l Conf. on CADQ

2007.

F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yangattkspace:

Formal analysis for post-silicon debug,” Formal Methods in CAD

2008, pp. 1-10.

[15] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. FuijitA, formal

approach for debugging arithmetic circuits,” lBEE Trans. on CAD

vol. 28, no. 5, May 2009, pp. 742-754.

M. Davis, G. Logemann, and D. Loveland, “A machine progrom

theorem proving,'Comm. of the ACMvol. 5, pp. 394-397, 1962.

L. Zhang, “Searching for truth: Techniques for satisiiity of Boolean

formulas,” Ph.D. dissertation, Princeton, 2003.

[18] W. Craig, “Linear reasoning. a new form of the herbraahizen
theorem,”J. Symb. Log.vol. 22, no. 3, pp. 250-268, 1957.

[19] K. McMillan, “Interpolation and SAT-based model cheagi” in Com-

puter Aided Verification2003.

M. H. Liffiton and K. A. Sakallah, “Algorithms for computgminimal

unsatisfiable subsets of constraints,/Autom. Reasoningol. 40, no. 1,

[20]

vgal shows a dramatic improvement in the number suspe $
returned where the interpolants help the suspects conve)

pp. 1-33, 2008.
N. Eén and N. Srensson, “An extensible SAT-solver,” int'| Conf. on
Theory and Applications of Satisfiability Testirzp03, pp. 502-518.

to the same value as orig. However, in some cases such[2as OpenCores.org, “http://www.opencores.org,” 2007.

di vi der2 and nri sc, multiple interpolants did not help
constrain the problem further. These results show that the e
fectiveness of multiple interpolants is highly dependamtize
debugging instance, where in some cases it can dramatically
improve the resolution, while in others it does not help.

