
On the Minimization of Potential Transient Errors
and SER in Logic Circuits using SPFD

Sobeeh Almukhaizim
CE Department

Kuwait University
Kuwait

Yiorgos Makris
CS & EE Departments

Yale University
USA

Yu-Shen Yang & Andreas Veneris
ECE Department

University of Toronto
Canada

Abstract

Sets of Pairs of Functions to be Distinguished (SPFD) is a
functional flexibility representation method that was recently
introduced in the logic synthesis domain, and promises supe-
riority in exploring the flexibility offered by a design over all
previous representation methods. In this work, we illustrate
how the SPFD of a particular wire reveals information re-
garding the number of potential transient errors that may oc-
cur on that wire and may affect the output of the circuit. Us-
ing an SPFD-based rewiring method, we then demonstrate
how to evolve a logic circuit in order to minimize the to-
tal number of potential transient errors in the circuit and,
consequently, reduce its Soft Error Rate (SER) while control-
ling the effect on the rest of the design parameters, such as
area, power, delay, and testability. Experimental results on
ISCAS’89 and ITC’99 benchmark circuits indicate that the
SER can be reduced at no additional overhead to any of the
design parameters.

1 Introduction

As the CMOS technology scales toward the 32nm pro-
cess and beyond, logic circuits are becoming ever more sus-
ceptible to transient errors produced by noise and radiation
effects. These single random errors in the circuit may prop-
agate to its output, thereby threatening the reliable operation
of the circuit in the field. In order to cope with these errors,
various mitigation and tolerance techniques have been devel-
oped by the testing community [1, 2, 3, 4, 5]. Yet, all of
these solutions treat the logic design as a black box, wherein
the circuit implementation is unaltered in order to preserve
the design parameters and optimization efforts of logic syn-
thesis tools. Such synthesis and optimization methods have
proven successful in transforming a logic design to minimize
area [6, 7, 8], improve testability [9], reduce power consump-
tion [10] and satisfy timing requirements [11, 12]. Moreover,
the recent work in [13, 14, 15] has shown that logic synthesis
and optimization methods can also be used to reduce the Soft
Error Rate (SER) of a circuit. Specifically, it has been ob-

served that functionally-equivalent yet structurally-different
implementations of a circuit exhibit different levels of im-
munity to potential transient errors, paving the way for the
development of logic optimization methods that explore the
full design flexibility in order to minimize the SER of the
produced logic implementation.

The underlying concept in all logic optimization meth-
ods is to change the functionality of nodes in the network
within the functional flexibility of the design. Such flexibility
has been explored through Incompletely Specified Functions
(ISFs), Compatible Observability Don’t Cares (CODCs), and
Compatible Sets of Permissible Functions (CSPFs). At IC-
CAD’96, Yamashita et. al. [16] pioneered the use of a
new concept, termed Sets of Pairs of Functions to be Dis-
tinguished (SPFD), to represent the flexibility of nodes in
Field-Programmable Logic Arrays (FPGAs). Their observa-
tions have been followed by a body of work in FPGA and
logic synthesis [17, 18, 19, 20, 21, 22, 23, 24], establishing
the superiority of SPFD in exploring the flexibility offered by
a design [20, 24]. Very recently, SPFD have been proven to
provide more optimization power than other functional flexi-
bility representation methods [25].

In this paper, we propose a logic optimization method to
minimize the number of potential transient errors and, there-
fore, the SER in logic circuits through the use of SPFD. In
addition to the typical design objectives optimized by syn-
thesis tools, we demonstrate how SPFD-based rewiring can
also be used to minimize the number of potential transient
errors that may occur in a design. We start, in Section 2,
by describing an SPFD-based rewiring method which we use
to generate functionally-equivalent yet structurally-different
gate-level circuit implementations. We then demonstrate, in
Section 3, how the number of potential transient errors ap-
pearing at the output of a circuit depends on the number of
distinct minterms in the SPFD sets of the wires in the cir-
cuit. Then, in Section 4, we propose an algorithm which
evolves a design through iterative selection of rewiring oper-
ations, in order to optimize a cost function reflecting both the
number of potential transient errors and the rest of the design
parameters of a circuit. Finally, in Section 5, we evaluate the
SER reduction of the proposed method using ISCAS’89 and
ITC’99 benchmark circuits.

f

1

f

2

f
3

c

a

b

G
2

G
3

G
4

G
5

G
6

G
1

f

1

f

2

f
3

c

a

b

G
2

G
3

G
4

G
5

G
6

G
1

(a) Original Circuit (b) Circuit After Rewiring

Figure 1. Example of SPFD-based Rewiring to Reduce the Number of Potential Transient Errors

0

1

1

x

x

1

1

x

0
 1

00

01

11

10

ab

c

b
 G
5

0

x

x

1

x

x

x

x

0
 1

00

01

11

10

ab

c

0

x

x

x

1

x

x

x

0
 1

00

01

11

10

c

G

3

 G

5

G
2
 G
5

000

001

010

011

100

101

110

111

000

001

100

100

010

011

100

100

abc
 bG
2
G
3

0

1

1

1

1

1

1

1

f
2

0

1

1

1

1

1

1

1

0
 1

00

01

11

10

ab

c
ab

G
5

0

1

1

x

x

x

x

x

0
 1

00

01

11

10

ab

c

b
 G
5

0

x

x

1

x

x

x

x

0
 1

00

01

11

10

ab

c

0

x

x

x

1

x

x

x

0
 1

00

01

11

10

c

c
 G

5

G
2
 G
5

000

001

010

011

100

101

110

111

000

001

100

101

010

011

100

101

abc
 bG
2
c

0

1

1

1

1

1

1

1

f
2

0

1

1

1

1

1

1

1

0
 1

00

01

11

10

ab

c
ab

G
5

(a) Original Circuit (b) Circuit After Rewiring

Figure 2. Karnaugh Map Representation of the SPFD sets of the Inputs/Output of G5 and the Truth Table of f2

2 SPFD and SPFD-based Rewiring

SPFD have been introduced in [16] to represent the func-
tional flexibility of a node in a logic network. The minimum
SPFD (SPFDmin) of a target wire represents the care on-
set minterms that must be distinguished from the care offset
minterms by that wire. Moreover, a wire that satisfies the
SPFDmin of the target wire, i.e., one that distinguishes all
the care onset minterms from the care offset minterms for the
target wire, is a valid replacement. Therefore, SPFD-based
rewiring proceeds by computing the SPFD of all the wires in
the circuit. Subsequently, candidate wires are identified by
checking whether their functionality satisfies the minimum
SPFD of the target wire.
Example 1: Consider the example circuit in Fig. 1.a and the
truth table of the inputs/output of G5 in Fig. 2.a. For this ex-
ample, the output of G5, i.e., f2, has to distinguish the care
onset minterms (i.e., m0) from the care offset minterms (i.e.,
m1, m2, m3, m3, m4, m5, m6, m7). Therefore, the mini-
mum SPFD of f2 is the set {(m0,m1), (m0, m2), (m0,m3),
(m0,m4), (m0,m5), (m0,m6), (m0,m7)}. Now, consider
the wire G3 → G5 as the target wire for logic rewiring.
The truth table in Fig. 2.a indicates that G3 must produce
0 for the input minterm m0, and 1 for the input minterm m1;
otherwise, the output response at f2 will be incorrect. Fur-
thermore, the functionality of G3 is considered “don’t care”
for all of the other minterms, as a value of 0 or 1 for these
minterms would not change the response value at f2. Thus,

G3 must distinguish m0 from m1 only, which corresponds to
the minimum SPFD set of {(m0,m1)}; any wire that distin-
guishes the minterms is a candidate replacement of G3

1.
The computation of the SPFD of a wire necessitates logic

simulation of all of the possible input patterns to the cir-
cuit, which is computationally infeasible for large circuits.
In order to avoid the memory/time explosion problem, ap-
proximate SPFD (aSPFD) have been proposed and utilized
to perform SPFD-based rewiring [24]. An aSPFD represents
a subset of the minterms in the care set of the original SPFD.
Hence, aSPFD-rewiring first computes the aSPFD of a tar-
get wire. Subsequently, all candidate replacement wires that
distinguish the minterms in the aSPFD of the target wire
are identified. Finally, the candidate wires are verified us-
ing a SAT-based algorithm. Verification, similar to the one
in ATPG-based rewiring [13], is necessary since the aSPFD
ensures the validity of the modified design using a subset of
the complete input vector space and, therefore, the candidate
replacements returned are only valid for this particular sub-
set of vectors. Details regarding the implementation of the
SAT-based verification step can be found in [24].

1The minimum SPFD of a wire indicates which minterms must be dis-
tinguished from each other, but not the polarity of the logic values that
must be produced for these minterms. This is attributed to the flexibility
offered by the initial application that introduced the concept of SPFD, i.e.,
FPGAs. Specifically, FPGAs utilize Look-Up Tables (LUTs) that can be
programmed to produce the required polarity of the logic value by inher-
ently inverting the signal. In logic circuits, however, the addition of an in-
verter may be necessary to ensure that the correct polarity is being produced.

3 Transient Errors in Logic Circuits

In this section, we first derive the relationship between the
minimum SPFD set of a particular wire and the number of
potential transient errors that may appear on this wire. Then,
we demonstrate how SPFD-based rewiring can be employed
to minimize the total number of potential transient errors in
the circuit. Finally, we discuss several special cases for the
minimum SPFD set of a wire, which pinpoint our ongoing
research direction on the optimal synthesis of logic circuits
with the minimal number of potential transient errors.

3.1 Relating SPFD to Transient Errors

A transient error is a pair of an error location, such as a
wire wi where the error might appear, and an input pattern,
such as input pattern mj that sensitizes the error to the out-
put of the logic circuit. Given a possible error location wi,
our objective is to determine the number of potential tran-
sient errors at wi by examining its SPFD set. Clearly, the
number of potential transient errors at wi is the number of
input patterns mj that sensitize the error to the output, where
a change in the value of wi from the onset to the offset, or
vice versa, would affect the correctness of the output. Or, in
other words, the correct functionality of the circuit depends
on the ability of wi to distinguish its onset from its offset for
these input patterns. This is essentially the definition used to
compute the minimum SPFD set of wi, i.e., that the output
of the circuit depends on wi distinguishing between its onset
and offset for these particular input patterns.

Let wi be a wire in the logic circuit and f be the function
implemented by that wire. Assume that the SPFDmin(wi)
contains r pairs of minterms, and that S(wi) is the care set of
minterms in the SPFDmin(wi). Given the SPFDmin(wi),
our objective is to find the number of potential transient er-
rors at wi, TEs(wi). A transient error at wi will affect the
correctness of the output function for every minterm in the
care set of the SPFDmin(wi), i.e., for each minterm in
S(wi). Thus, the number of transient errors is equal to the
number of minterms in S(wi). More formally:

TEs(wi) = |S(wi)| = ti (1)

where ti is the number of distinct minterms in the care set of
the SPFDmin(wi). Thus, the number of potential transient
errors at a wire is determined by examining the number of
distinct minterms in the minimum SPFD set of that wire. The
total number of potential transient errors in a logic circuit N
is equal to the sum of the distinct minterms in the minimum
SPFD sets of the wires in the circuit, i.e.,:

TEs(N) =
of wires∑

i=1

TEs(wi) (2)

Example 2: Consider again the example circuit in Fig. 1.a
and the associated Karnaugh map representation of the
minimum SPFD sets in Fig. 2.a of the inputs/output of
G5. The Karnaugh map representation of the SPFD
sets is provided here for readability purposes. For this
example, the SPFDmin(G5) = {(m0, m1), (m0,m2),
(m0, m3), (m0,m4), (m0,m5), (m0, m6), (m0,m7)}, the
SPFDmin(b → G5) = {(m0,m2), (m0,m3), (m0,m6),
(m0, m7)}, the SPFDmin(G2 → G5) = {(m0,m4)}, and
the SPFDmin(G3 → G5) = {(m0,m1)}. Therefore, S(G5)
= {m0,m1,m2,m3,m4,m5,m6,m7} with TEs(G5) = 8,
S(b → G5) = {m0,m2,m3,m6,m7} with TEs(b → G5) =
5, S(G2 → G5) = {m0,m4} with TEs(G2 → G5) = 2, and
S(G3 → G5) = {m0,m1} with TEs(G3 → G5) = 2. In this
circuit, 9 potential transient errors affecting the inputs of G5,
shown in boldface in their Karnaugh map, will propagate to
f2. Similar analysis can be performed for the other gates.

In the above example, notice that the pair (m0,m5) ap-
pears in the SPFDmin(G5) only but not in the minimum
SPFD sets of its inputs. This is further illustrated in the truth
table of f2, where m5 is distinguished using G2 → G5 and
G3 → G5. Hence, since (m0,m5) is distinguished by both
wires, it does not appear in either of their minimum SPFD
sets. This is the key idea explored in this work in order to
minimize the number of potential transient errors in the cir-
cuit, as will be demonstrated next.

3.2 Minimization of Transient Errors

The analysis in the previous section reveals that the out-
put of a circuit is highly susceptible to a wire, wsusc → Gi,
if the cardinality of S(wsusc → Gi) is large. SPFD-based
rewiring provides the ability to reduce the number of pairs
in the SPFDmin(wsusc → Gi) and, possibly, the num-
ber of minterms in S(wsusc → Gi). As demonstrated in
the example in Section 3.1, a pair of minterms in the min-
imum SPFD set of a gate is eliminated from the minimum
SPFD sets of its inputs if the pair is distinguished by at least
two inputs to that gate. Therefore, the number of minterms
in S(wsusc → Gi) can be reduced if another input to Gi,
wt → Gi, is replaced with wnew → Gi, where wnew → Gi

distinguishes more pairs in the SPFDmin(wsusc → Gi)
than wt → Gi. The candidate replacement wire wnew for
the target wire wt → Gi is identified by performing SPFD-
based rewiring with wt → Gi set as the target wire.
Example 3: Consider the minimum SPFD sets of the inputs
to gate G5 in Fig. 1.a. The wire b → G5 has the high-
est number of potential transient errors, where TEs(b →
G5) = 5. Thus, G3 → G5, is selected as the target wire
for rewiring, as illustrated using the dashed line in Fig. 1.a.
SPFD-based rewiring reveals that c → G5 can be used to
replace G3 → G5, as illustrated in the circuit implementa-
tion in Fig. 1.b. The Karnaugh maps representation of the
SPFD of the inputs/output of G5 and the truth table of f2 in

the circuit after rewiring are illustrated in Fig. 2.b. The truth
table of f2 in Fig. 2.b indicates that c → G5 distinguishes
two additional minterms, m3 and m7, over the ones distin-
guished by G3 → G5 in Fig. 2.a. Thus, the pairs in the
minimum SPFD set of b → G5 that contain these minterms,
(m0,m3) and (m0,m7), are eliminated from the set. There-
fore, TEs(b → G5) is reduced from 5 to 3 and, overall, the
number of potential transient errors at the inputs of G5 is re-
duced from 9 to 7. Such a single rewiring operation translates
into a 1.65% reduction to the SER of the circuit.

3.3 Discussion

Based on the above analysis, the relationship between the
SPFDmin(wi) and the number of potential transient errors
for certain special cases can be characterized as follows:

• S(wi) is empty: This implies that wi is redundant and
that potential transient errors affecting wi will never
propagate to the output. A stuck-at fault at wi is
untestable by off-line test methods.

• |S(wi)| is very small: This implies that the output de-
pends on the value of wi for few input vectors and, thus,
the output has a low susceptibility to errors affecting wi.
A stuck-at fault at wi is considered to be hard-to-test or
random-pattern resilient by off-line test methods.

• |S(wi)| is very large: This implies that the output de-
pends on the value of wi for many input vectors and,
thus, the output has a high susceptibility to errors af-
fecting wi. A stuck-at fault at wi is considered to be
easy-to-test by off-line test methods.

The minimum SPFD sets of the inputs to a particular gate
are reduced if they share many of the pairs that appear in the
minimum SPFD set of the output of the gate. Intuitively, this
observation implies that the functionality of the inputs to a
particular gate should be highly similar. On one extreme, all
of the inputs would implement identical functions, namely,
the exact functionality of the output of the gate. Clearly, such
a scenario creates logic redundancy in the circuit, which is
undesirable due to the created offline test challenges. On the
other extreme, no two inputs share a pair in the their mini-
mum SPFD sets. This scenario produces an implementation
with the highest number of potential transient errors.

The perfect balance between the above two extremes
would be that each pair in the minimum SPFD set of a k-
input gate is distinguished by at least two of its inputs, ex-
cept k pairs that are each distinguished using only one of the
k inputs. In this case, the functionality of the inputs is highly
similar to the functionality of the output, yet not redundant.
Thus, a test pattern is guaranteed to exist for production test-
ing, namely the minterms in the single pair of their minimum
SPFD set. The synthesis of such logic circuits that imple-
ment a desired functionality with the minimum number of
potential transient errors is part of our ongoing research.

Reduce TEs Using SPFD(Design)
Repeat until all wires in Design have been tried

Compute the cost function of Design (CFold);
Compute SPFDmin() of the wires;
Sort wires in descending order of TEs();
CFbest = CFold;
While a wire in the circuit has not been tried

Perform SPFD-based rewiring & generate k different designs;
For each Designi, i < k

Compute CFi;
If CFi > CFbest

CFbest = CFi;
Designbest = Designi;

If CFbest is not equal to CFold

Design = Designbest;
Exit While loop;

Figure 3. Greedy Heuristic for Reducing SER Using
SPFD-Based Rewiring

4 Proposed Optimization Algorithm

In this section, we devise an algorithm that iteratively se-
lects effective rewiring operations and evolves the circuit in
order to optimize a cost function reflecting a given set of de-
sign objectives, including the number of potential transient
errors. The proposed algorithm employs a simple greedy
heuristic, wherein, at each step, rewiring is attempted for
the wire with the highest number of distinct minterms in its
minimum SPFD that has not been tried so far. In order to
identify the most susceptible wire, we employ the aSPFD
method in [24] to compute the SPFDmin for each wire in
the circuit. Then, the list of wires is sorted (SortWires())
in decreasing order of the number of potential transient er-
rors that may occur in the wire, i.e., TEs(), and the first wire
in the list is selected as a target wire (TargetWire). Once
the target wire is selected, we perform SPFD-based rewiring
in order to generate a list of k candidate designs. For each
candidate design i (Designi), we evaluate the cost function
(CFi), and keep the design (Designbest) that has the best
improvement to the cost function (CFbest) over the previous
design (Designold). The process is iteratively repeated until
all the wires have been tried without improvement to the cost
function. The algorithm is summarized in Fig. 3.

5 Experimental Results

We experiment with a set of ISCAS’89 and ITC’99 bench-
mark circuits. In these experiments, we use the TSMC
0.13um process, Synopsys Design Compiler is used to com-
pute the area, delay and power of the circuit, and TetraMax is
used to perform Automatic Test Pattern Generation (ATPG)
and compute any loss in fault coverage during production
testing. The SER is computed using SERA [26], which re-
ports the SER for each output of the circuit. The search

Original Circuit OnlySER
Name PI PO Gates SER Area Delay Power F. C. Loss
b01 7 7 51 17.10% -4.24% -20.00% -2.38% 0.00%
b02 5 5 27 10.79% -4.55% 36.84% -0.30% 3.58%
b03 34 34 153 0.00% 0.00% 0.00% 0.00% 0.00%
b06 11 15 55 15.85% -19.05% 45.16% -12.53% 2.25%
b08 30 25 171 2.40% -0.91% 17.19% 0.13% 0.74%
b10 28 23 180 5.26% -1.90% 21.79% -3.38% 1.49%
s298 17 20 119 17.46% -6.52% 37.50% -7.88% 2.50%
s382 24 27 158 25.09% -11.16% 11.11% -19.01% 2.59%
s344 24 26 160 7.35% -9.90% 10.59% -10.48% 0.12%
s349 26 26 161 7.28% -6.92% 10.59% -11.15% 1.71%
s526 24 27 173 16.69% -5.07% 22.08% -9.12% 5.58%
s444 24 27 181 11.98% -2.66% 20.29% -4.95% 3.17%
s510 25 13 211 16.34% -16.72% 3.51% 6.24% 0.00%

Table 1. Experimental Results Using SPFD-based Rewiring (OnlySER)

Original Circuit SERandAll
Name PI PO Gates SER Area Delay Power F. C. Loss
b01 7 7 51 0.00% 0.00% 0.00% 0.00% 0.00%
b02 5 5 27 0.00% 0.00% 0.00% 0.00% 0.00%
b03 34 34 153 0.00% 0.00% 0.00% 0.00% 0.00%
b06 11 15 55 6.53% -3.45% 0.00% -5.57% 0.00%
b08 30 25 171 0.00% 0.00% 0.00% 0.00% 0.00%
b10 28 23 180 1.96% -4.19% -1.28% -4.72% 0.00%
s298 17 20 119 20.23% -15.92% -8.23% -16.62% 0.00%
s382 24 27 158 3.34% -1.93% -2.72% -3.64% 0.00%
s344 24 26 160 7.21% -8.87% -2.92% -7.88% 0.00%
s349 26 26 161 3.07% -3.46% 0.00% -3.43% -0.52%
s526 24 27 173 1.06% 0.00% -2.08% -0.35% 0.00%
s444 24 27 181 2.55% -2.39% -2.22% -3.05% -0.85%
s510 25 13 211 0.00% 0.00% 0.00% 0.00% 0.00%

Table 2. Experimental Results Using SPFD-based Rewiring (SERandAll)

algorithm was driven by two cost functions: OnlySER,
which aims at minimizing the soft error rate regardless of
the impact of rewiring on the other design parameters, and
SERandAll, which reduces the SER as long as all the de-
sign parameters of the modified circuit after the rewiring op-
eration are better than or equal to the design parameters of
the initial circuit. While we only present results using the
above cost functions, any other cost function can be used to
drive the search algorithm [13].

The results are presented for the OnlySER and
SERandAll cost functions in Tables 1 and 2, respectively,
illustrating the percentile SER reduction, area overhead, de-
lay overhead, power overhead, and fault coverage loss. The
key points revealed by these results are summarized below:

• Logic rewiring finds peephole optimizations that syn-
thesis tools may not. The results herein are consistent
with other studies, wherein optimizations have proven
successful in transforming a logic design to minimize
area [6, 7, 8], improve testability [9], reduce power con-
sumption [10] and reduce timing requirements [11, 12].

• The results for OnlySER indicate that applying SPFD-
based rewiring can reduce substantially the SER of the
circuit, with an average of 11.82%. For example, the
SER of s298, s526 and s510 is reduced by more than
15%. However, when the search is driven by the sole
objective of reducing SER, the impact of rewiring on
other design parameters such as area, power, delay, and
testability can be significant. For example, the delay of
b02, b06 and s298 increases by more than 30%.

• By monitoring the impact on other design parameters
during the search algorithm, we can eliminate its ef-
fect, as indicated by the results for the SERandAll
cost function. As expected, however, the additional con-
straints placed on the search algorithm diminish the at-
tained SER reduction. Nevertheless, this reduction is
overhead-free and, as such, highly desirable. Moreover,
this constrained design-space exploration often results
in significant reduction in one or more of these design
parameters. For example, the area of s298 is reduced by
more than 15% and its delay by 8%.

6 Conclusion

In addition to the optimization of typical design parame-
ters, such as area, delay, and power consumption, concepts
developed in the logic synthesis domain have also been often
utilized to address challenges in testing, such as the identi-
fication of redundant faults. In this work, we have demon-
strated how the SPFD concept is related to the number of
potential transient errors in a logic circuit, and can, there-
fore, be utilized in order to reduce the SER. Given the large
space of functionally-equivalent yet structurally-different im-
plementations of a function, the SER can be often reduced at
no additional overhead to any of the design parameters.

References

[1] Q. Zhou and K. Mohanram, “Cost-effective radiation harden-
ing technique for logic circuits,” in IEEE/ACM International
Conference on Computer-Aided Design, 2004, pp. 100–106.

[2] S. Mitra, M. Zhang, T.M. Mak, N. Seifert, V. Zia, and K.S.
Kim, “Logic soft errors: A major barrier to robust platform
design,” in International Test Conference, 2005, pp. 687–698.

[3] C. Zhao, X. Bai, and S. Dey, “A scalable soft spot analy-
sis methodology for noise effects in nano-meter circuits,” in
ACM/IEEE Design Automation Conference, 2004, pp. 894–
899.

[4] Y. S. Dhillon, U. Diril, and A. Chatterjee, “Soft-error tol-
erance analysis and optimization of nanometer circuits,” in
Design, Automation and Test in Europe, 2005, pp. 288–293.

[5] N. Miskov-Zivanov and D. Marculescu, “MARS-C: Model-
ing and reduction of soft errors in combinational circuits,” in
ACM/IEEE Design Automation Conference, 2006, pp. 767–
772.

[6] S. C. Chang, K. T. Cheng, N. S. Woo, and M. Marek-
Sadowska, “Postlayout logic restructuring using alternative
wires,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 16, no. 6, pp. 587–596,
1997.

[7] L. A. Entrena and K. T. Cheng, “Combinational and sequen-
tial logic optimization by redundancy addition and removal,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 7, pp. 909–916, 1995.

[8] W. Kunz, D. Stoffel, and P. R. Menon, “Logic optimization
and equivalence checking by implication analysis,” IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 16, no. 3, pp. 266–281, 1997.

[9] M. Chatterjee, D. Pradhan, and W. Kunz, “LOT: Logic op-
timization with testability - new transformations using recur-
sive learning,” in IEEE/ACM International Conference on
Computer-Aided Design, 1995, pp. 115–118.

[10] B. Rohfleisch, A. Kolbl, and B Wurth, “Reducing power dis-
sipation after technology mapping by structural transforma-
tions,” in ACM/IEEE Design Automation Conference, 1996,
pp. 789–794.

[11] Y. M. Jiang, A. Krstic, K. T. Cheng, and M. Marek-Sadowska,
“Postlayout logic restructuring for performance optimiza-
tion,” in ACM/IEEE Design Automation Conference, 1997,
pp. 662–665.

[12] G. Stenz, B. M. Riess, B. Rohfleisch, and F. M. Johannes,
“Performance optimization by interacting netlist transforma-
tions and placement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 19, no. 3, pp.
350–358, 2000.

[13] S. Almukhaizim, Y. Makris, Y.-S. Yang, and A. Veneris,
“Seamless integration of SER in rewiring-based design space
exploration,” in IEEE International Test Conference, 2006,
pp. 29.3.1–29.3.9.

[14] S. Krishnaswamy, S.M. Plaza, I.L.Markov, and J.P.Hayes,
“Enhancing design robustness with reliability-aware resyn-
thesis and logic simulation,” in IEEE/ACM International
Conference on Computer-Aided Design, 2007, pp. 149–154.

[15] S. Almukhaizim and Y. Makris, “Soft error mitigation
through selective addition of functionally redundant wires,”
IEEE Transactions on Reliability, vol. 57, no. 1, pp. 23–31,
2008.

[16] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to
express functional permissibilities for LUT based FPGAs and
its applications,” in IEEE/ACM International Conference on
Computer-Aided Design, 1996, pp. 254–261.

[17] S. Sinha and R. K. Brayton, “Implementation and use of
SPFDs in optimizing Boolean networks,” in IEEE/ACM In-
ternational Conference on Computer-Aided Design, 1998, pp.
103–110.

[18] S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A new
method to express functional flexibility,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 19, no. 8, pp. 840–849, 2000.

[19] J. Cong, J. Y. Lin, and W. Long, “A new enhanced SPFD
rewiring algorithm,” in IEEE/ACM International Conference
on Computer-Aided Design, 2002, pp. 672–678.

[20] J. Cong, J. Y. Lin, and W. Long, “SPFD-based global
rewiring,” in International Symposium on FPGAs, 2002, pp.
77–84.

[21] S. Sinha, A. Mishchenko, and R. K. Brayton, “Topologi-
cally constrained logic synthesis,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 2002, pp. 679–
686.

[22] S. P. Khatri, S. Sinha, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SPFD-based wire removal in standard-cell and
network-of-PLA circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no.
7, pp. 1020–1030, 2000.

[23] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. K. Bray-
ton, and M. Chrzanowska-Jeske, “Using simulation and satis-
fiability to compute flexibilities in boolean networks,” IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 25, no. 5, pp. 743–755, 2006.

[24] Y.-S. Yang, S. Sinha, A. Veneris, and R. K. Brayton, “Au-
tomating logic rectification by approximate SPFDs,” in
IEEE/ACM Asia South Pacific Design Automation Confer-
ence, 2007, pp. 77–84.

[25] S. Sinha, X. Wang, and R. K. Brayton, “Comparing two
rewiring models,” International workshop on Logic Synthe-
sis, pp. 438–445, 2004.

[26] M. Zhang and N. R. Shanbhag, “A soft error rate analy-
sis (SERA) methodology,” in International Conference on
Computer-Aided Design, 2004, pp. 111–118.

