
Fault Equivalence and Diagnostic Test Generation Using ATPG

Abstract
Fault equivalence is an essential concept in digital design with signif-
icance in fault diagnosis, diagnostic test generation, testability anal-
ysis and logic synthesis. In this paper, an efficient algorithm to check
whether two faults are equivalent is presented. If they are not equiv-
alent, the algorithm returns a test vector that distinguishes them. The
proposed approach is complete since for every pair of faults it ei-
ther proves equivalence or it returns a distinguishing vector. This is
performed with a simple hardware construction and a sequence of
simulation/ATPG-based steps. Experiments on benchmark circuits
demonstrate the competitiveness of the proposed method.

Andreas Veneris, Robert Chang Magdy S. Abadir Mandana Amiri

University of Toronto Motorola University of British Columbia

Dept ECE 7700 W. Parmer Dept ECE

Toronto, ON M5S 3G4 Austin, TX 78729 Vancouver, BC V6T 1Z4

{veneris, rchang} @eecg.toronto.edu m.abadir@motorola.com mandana@ece.ubc.ca

1 Introduction
Computing the complete set of fault equivalence classes in a com-
binational circuit is a classic problem in digital circuit design. Two
faults are functionally equivalent (or indistinguishable) if no input
test vector can distinguish them at primary outputs. Functional fault
equivalence is a relation that allows faults in a circuit to be collapsed
into disjoint sets of equivalent fault classes. Fault equivalence is es-
sential in digital VLSI because it has significance in fault diagnosis
[7], diagnostic test generation [5], testability analysis [7] nd logic
synthesis [3] [7] [8] [9].

Methods to compute fault equivalence are classified as structural
and functional [7]. Structural methods operate on the circuit graph to
identify fault equivalence. These methods are fast but they have pes-
simistic results since they operate on fan-out free circuit regions only.
Functional fault equivalence methods are more expensive but they
typically identify more classes [1] [2]. These methods use logic im-
plications and/or dominator information to prove equivalence. Since
identifying logic implications is NP-hard [8], these methods do not
utilize the complete set of logic implications and they may not return
the complete set of fault equivalence classes.

In this paper, we present an efficient method that proves the equiv-
alence of a pair of stuck-at faults. The method also returns a dis-
tinguishing vector if the faults are proven not to be equivalent. To
simplify the discussion, we use the term “fault” to indicate a single
stuck-at fault hereafter. To prove fault equivalence or perform Di-
agnostic Automated Test Pattern Generation (DATPG), the method
performs a sequence of simulation- and ATPG-based steps. It should
be noted, ATPG is not exclusive to the method and other test gener-
ation and redundancy checking techniques (BDDs, SAT solvers etc)

can be utilized.
The proposed methodology has a number of characteristics that

make it attractive and practical. Unlike methods that alter existing
ATPG tools [5], it uses conventional ATPG [4] [8] and a novel hard-
ware construction to either prove equivalence of the fault pair or
return a distinguishing vector. Therefore, it automatically benefits
from advances in ATPG and remains straightforward to implement.
It is also complete in the sense that for every fault pair it guarantees
to prove equivalence or return a distinguishing vector, provided suf-
ficient backtracking level in the ATPG engine. To the best of our
knowledge, this is the first published results on the exact number of
stuck-at fault equivalence classes for ISCAS’85 circuits.

The paper is organized as follows. Section 2 presents the two steps
of the proposed functional fault collapsing and DATPG algorithm in
terms of single stuck-at faults. Section 3 presents experiments and
Section 4 concludes this work.

2 Fault Equivalence and DATPG
In this Section we present the two steps of the fault equiva-
lence/DATPG method. The first step computes an approximation
of fault equivalence classes using structural fault collapsing and in-
put test vector simulation. Faults in the same class may or may not
be equivalent, but faults in different classes are guaranteed to be not
equivalent. The second step uses conventional ATPG and a novel
hardware construction on pairs of faults in the same class as com-
puted in Step 1 to either formally prove the faults are equivalent or
perform DATPG. Therefore, more equivalent fault classes may be
identified in this step.

2.1 Parallel Vector Simulation
The implementation starts with structural fault collapsing [7] to
prove faults that are structurally proximal as equivalent so that only
one representative fault from each such set needs be considered in
later steps of the algorithm. Let set F be the complete set of rep-
resentative faults. The faults in F are examined for equivalence by
Parallel Vector Simulation (PVS).

PVS is a simulation-based procedure that classifies these faults
into potentially equivalence classes F1, F2, . . . , Fn with respect to
an input test vector set T . PVS identifies (maps) two faults fA and
fB as potentially equivalent if and only if fA and fB give the exact
same primary output responses for each test vector from the set T .
If faults fA and fB are potentially equivalent, they are placed into
the same class Fi. Faults in different classes are guaranteed not to

Parallel_Vector_Simulation(C, F, T)

(1) Simulate test vectors in T and create
indexed bit-lists at every circuit line

(2) For every fault f s-a-v on line l do
(3) fault_signature=0
(4) set bit-list of l to value v
(5) simulate at fan-out cone of l
(6) update fault_signature
(7) restore bit-lists at l fan-out cone
(8) Group faults with same signatures in

same class F_i, i=1 ... n

Figure 1: Pseudocode for PVS (Step 1)

be equivalent since they already have different responses for some
vector(s) in T . In fact, this vector(s) is also a distinguished vector
for the faults in these classes.

Pseudocode for PVS is given in Fig. 1. The input to PVS is a
circuit C, the collapsed set of faults F and a set of input test vectors
T . In experiments, T is a relatively small set of 100-1000 test vectors
with high stuck-at fault coverage [6]. The output of PVS is a set of
fault classes F1, F2, . . . , Fn such that two faults fa and fb are in the
same class Fi if and only if they have the exact same responses for
all vectors in T .

At first, PVS simulates in parallel [7] all test vectors in T and
stores the logic value of each line in an indexed bit-list [9] (Fig. 1,
line (1)). Next, for every stuck-at v fault f ∈ F on line l, value v
is injected on l and simulated at the fan-out cone of l. The primary
output bit-lists are treated as integer signatures for fault f and test
set T (lines 2-6) before values are restored in line 7. This process is
repeated for every fault in F and faults with the same signature are
grouped together in line 8.

2.2 Fault Equivalence and DATPG
Given a pair of faults (fA, fB) from the same class Fi, Step 2 per-
forms a hardware construction and employs conventional ATPG to
formally prove their equivalence or return a test vector to distin-
guishe them (DATPG). It should be noted, formal fault equivalence
or DATPG is performed in an atomic step for each pair of faults. We
now outline the theory and implementation of this step in detail.

Assume, without loss of generality, faults fA s-a-0 and fB s-a-
1 on lines lA and lB of the circuit. To examine their equivalence,
the algorithm attaches two multiplexers, MUXA and MUXB , with
common select line S. The 1-input of MUXA is line lA while the
0-input of the multiplexer is a constant logic value 0. Intuitively,
a constant 0 indicates a s-a-0 fault on lA. Similarly, the 0-input of
MUXB is the original line lB and the 1-input is a constant 1.

This construction allows us to simulate the original circuit under
presence of fault fA when S = 0 and the original circuit under
presence of fB when S = 1. Therefore, if ATPG for select line S s-
a-0 (ATPG for select line S s-a-1 produces similar results) exhausts
the solution space to return no test vector and reports that the fault on
S is redundant, then (fA, fB) is an equivalent fault pair [9]. In other
words, the original circuit under the presense of each of the (fA, fB)
faults behaves identically. Otherwise, the input test vector returned
is a vector that distinguishes the two faults.

To illustrate this process, we can employ pair of values to indicate

f’A
f’B

fA

G40
1

I2

I2

I1

G1

G2

G3

G4 O

(a)

I1

G1

G2

G3

f

0

0

(c)

S

S

1

S
0
1

O

B

S
I1

G1

G2

G3
I2

1
0 G4 O

(b)

1 1
0

Figure 2: Circuits for Examples 1 and 2

simulation of two faulty circuits; one under the presence of fA and
the other under the presence of fB . If the stuck-at fault on select line
S is redundant, it implies that no 0/1 and no 1/0 value propagate(s)
to any primary output. In other words, the two faulty circuits produce
the same response for all input test vectors and the two faults are
indistinguishable.

On the other hand, if a single 0/1 (1/0) difference is propagated
to a primary output, then one of the two faults is guaranteed to be
detected. Which fault is detected depends on the logic simulation
value; if logic simulation gives 0 then fB (fA) is detected at the pri-
mary output since circuit under presence of fA (fB) and logic sim-
ulation have identical values. Both faults are detected if appropriate
0/1 or 1/0 simulation values propagate at different primary outputs.
The examples that follow illustrate the above procedures.

Fault_Equivalence_DATPG(C, F_1, ..., F_n)

(1) flag=0
(2) for i=1 to n do
(3) randomly select f from F_i
(4) for every f’ in Fi do
(5) perform the MUX construction
(6) if f’ not equivalent to f do
(7) flag=1
(8) place f’ in F_n+1
(9) store distinguishing vector
(10) if flag=1
(11) flag=0
(12) n=n+1

Figure 3: Fault Equivalence and DATPG

Table 1: Parallel Vector Simulation (Step 1)

ckt # of faults # ATOM # of fault classes after PVS CPU
name initial after vectors ATOM ATOM and 500 1000 time

faults collaps. vectors 500 random random random (sec)
c432 798 419 110 371 417 413 418 0.11
c499 2434 1314 127 901 1076 1027 1092 0.59
c880 1770 940 133 857 889 853 868 0.17
c1355 2412 1302 192 1046 1088 1010 1079 0.89
c1908 1802 975 210 714 748 684 767 0.50
c2670 3177 1627 242 1141 1178 1160 1184 0.42
c3540 4116 2143 264 1408 1548 1541 1580 10.9
c5315 7042 3743 216 2971 3404 3381 3415 2.06
c6288 14303 7479 64 6397 6597 6593 6597 0.99
c7552 10081 5321 393 4186 4280 4180 4273 5.98

Example 1: Consider the circuit in Fig. 2(a) and assume two faults
from the same class Fi fA = G2 → G4 and fB = I2 → G1

both s-a-1. To test their equivalence, we can place two multiplexers,
shown as boxes in Fig. 2(b), with common select line S. The 0-input
to the first multiplexer is line G2 and the 1-input of that multiplexer
is a logic 1 to represent the presence of a s-a-1 fault. Similarly, the
0-input of the second multiplexer is a logic 1 while I2 feeds the other
input. In both cases, the output of each multiplexer connects to the
original output in the circuit. The reader can verify that when S = 0,
we operate on a circuit equivalent to the one in Fig. 2(a) under the
presence of fA and when S = 1 we operate on a circuit equivalent
to the one in Fig. 2(a) under the presence of fB . ATPG for select
line S s-a-0 returns the fault is redundant. This indicates that the
two circuits are functionally equivalent which, in turn, confirms that
(fA, fB) is an equivalent fault pair.

Example 2: Consider again circuit in Fig. 2(a) and faults f ′

A =
G2 → G4 and f ′

B = I2 → G1 this time both stuck at logic 0. A
similar multiplexer construction as in Fig. 2(b) gives circuit shown
in Fig. 2(c). The difference is that a logic 0 is placed on appropriate
multiplexer inputs to indicate a stuck-at-0 fault. ATPG on common
select line S s-a-0 returns test vector (I1, I2) = (0, 0). This proves
that the fault on S is not redundant and faults f ′

A and f ′

B are not
equivalent. This is true since the test vector returned detects fault
f ′

A but does not even excite fault f ′

B . In this case, the construction
returns a distinguishing vector for fault pair (f ′

A, f ′

B).

Fig. 3 contains pseudocode for Step 2. For each class Fi (i =
1 . . . n), a representative f is randomly selected. For each other
member f ′

∈ Fi, we perform the multiplexer construction to
check whether f and f ′ are equivalent (lines 4-5). If they are not
equivalent, f ′ (and all other such non-equivalent faults from Fi)
is placed in new class Fn+1 (lines 6-9) which will be examined
later and the distinguishing vector is recorded. Observe, any such
fault f ′ is guaranteed not to be equivalent with faults in any class
F1, . . . , Fi−1, Fi+1, . . . , Fn by PVS. Faults placed in Fn+1 may or
may not be equivalent. Therefore, class Fn+1 may get decomposed
into new classes when it is examined later. The set of classes returned
upon termination of the algorithm are also the exact fault equivalence
classes for circuit C and fault set F .

3 Experiments
We implemented and ran the proposed method on an Ultra 5 SUN

workstation with 128 Mb of memory. The details of the ATPG en-
gine used can be found in [4][8]. We use a relatively low level 1 for
recursive learning to provide a fair comparison with state-of-the-art
diagnostic test generation tool DIATEST [5] and confirm the com-
petitiveness of the approach. We evaluate the proposed techniques
on ISCAS’85 combinational circuits optimized for area. Test vec-
tors with high stuck-at fault coverage (ATOM vectors) are computed
as in [6]. Run-times reported are in seconds.

Table 1 contains information about the first step of the algorithm.
The first column of the table shows the circuit name and the second
column contains the total number of stuck-at faults. This is roughly
twice the number of lines, including branches. The third column
shows the faults after structural fault collapsing [7].

We examine the performance of PVS with a set of random and
stuck-at fault input test vectors. The number of ATOM vectors gen-
erated is shown in column 4. Columns 5–8 of Table 1 show the
number of distinct fault classes upon termination of PVS for four
different cases with respect to the test vector set T used: (i) ATOM
vectors, (ii) ATOM vectors and 500 random vectors, (iii) 500 random
vectors, and (iv) 1000 random vectors.

Intuitively, the more vectors we simulate the more accurate the
results we expect in terms of number of classes, as discussed earlier.
A study of the numbers indicates that a relatively small set of random
vectors (case (iv)) gives sufficient resolution. In most cases, random
simulation gives good resolution and there is little to gain with a
pre-computed set of stuck-at fault test vectors.

This is also illustrated in Fig. 4 that depicts the number n of fault
classes F1, F2, . . . , Fn versus the number of random vectors simu-
lated. It is seen that the number of fault classes converges with a
relatively small number of vectors. We use the classes from case (iv)
as input to Step 2. The last column of the table contains the total
run-time for Step 1.

Table 2 contains information that pertain to Step 2. Given fault
pair (fA, fB), it tests whether the two faults are equivalent and re-
turns a distinguishing vector if they are not. Columns 2-4 of Ta-
ble 2 show values that pertain to the case when the faults are equiva-
lent. The total number of fault pairs checked and the number of final
(complete) fault classes are found in columns 2 and 3.

The relative error for PVS (Step 1), a simulation-based process,
when compared to the formal engine of Step 2 is found in column 4.
It is seen that in many cases the relative error is rather small (less
than 10%). This suggests that simulation of random vectors pro-
vides in most cases sufficient resolution to compute fault equiva-
lence. Therefore, the designer is presented with a relatively small
trade-off between time and accuracy.

of Random Vectors

s5378

s1494

1300

2600

of Random Vectors

c3540

c1908

1600

800

classes # classes

250 1000500 750 250 1000500 750

Figure 4: Performance of PVS

DATPG results are found in columns 5-7. Column 5 contains the
number of distinguishable fault pairs checked. Columns 6 and 7 con-
tain the manner these faults are detected. Recall from subsection 2.2,
DATPG guarantees to detect one fault but it may detect both faults
at different primary outputs. The numbers in these columns indicate
that in as many as half of the cases, DATPG returns a test vector to
distinguish both faults at different primary output (column 7). Col-
umn 8 of the Table 2 contains the average run-time for ATPG when
the faults are equivalent (redundancy checking).

The last two columns in Table 2 provide comparison results with
DIATEST [5] for the same list of fault pairs that are not equivalent.
It is seen, that conventional ATPG and the hardware construction
presented here provides an attractive alternative to a DATPG-specific
engine. In fact, larger values of implication learning [8] will speed
the ATPG tool and further improve performance of the method. This
confirms the practicality of the approach that automatically benefits
from advances in ATPG.

4 Conclusions
A method for fault equivalence and diagnostic test generation was
presented. The method is practical since it uses conventional ATPG
and a simple hardware construction to prove equivalence or return
distinguishing test vectors. Experiments demonstrate its robustness,
effectiveness and competitiveness.

Table 2: Fault Equivalence and DATPG (Step 2)

ckt ATPG DATPG CPU (sec) CPU comparison
name # pairs # final % err # pairs faults detected fault DATPG DIATEST

checked classes PVS checked one both equivalence proposed [7]
c432 1 419 0.2 111 70 41 0.03 0.00 0.00
c499 17 1106 1.3 84 28 56 0.14 0.02 0.08
c880 104 892 2.7 128 45 83 0.02 0.01 0.01
c1355 18 1094 1.4 80 25 55 0.22 0.07 0.05
c1908 335 830 7.6 129 39 90 0.06 0.05 0.01
c2670 6203 1443 18.0 127 73 54 0.07 0.05 0.05
c3540 8914 1839 14.1 116 62 54 0.10 0.09 0.09
c5315 184 3480 1.9 129 42 87 0.11 0.09 0.09
c6288 892 6973 5.4 94 77 17 0.42 0.05 0.09
c7552 8768 4737 9.8 130 46 84 0.50 0.16 0.13

Acknowledgments
The authors would like to thank Prof. W. K. Fuchs, Dr. E. Amyeen
and S. Seyedi for their technical comments and support in this work.

References
[1] V. D. Agrawal, D. H. Baik, Y. C. Kim and K. K. Saluja, “Ex-

clusive Test and its Applications to Fault Diagnosis,” in Proc.
of IEEE Int’l Conf. on VLSI Design, 2003.

[2] M. E. Amyeen, W. K. Fuchs, I. Pomeranz and V. Boppana,
“Fault Equivalence identification using redundancy informa-
tion and static and dynamic extraction,” in Proc. of IEEE VLSI
Test Symposium, pp. 124-130, 2001.

[3] S. C. Chang and M. Marek-Sadowska, “Perturb and Simplify:
Multi-Level Boolean Network Optimizer,” in Proc. Int’l Con-
ference on Computer-Aided Design, pp. 2-5, 1994.

[4] H. Fujiwara and T. Shimono, “On the Acceleration of Test Gen-
eration Algorithms,” in IEEE Trans. on Computers, vol. C-32,
no. 12, December 1983.

[5] T. Gruning, U. Mahlstedt, and H. Koopmeiners, “DIATEST:
A fast diagnostic test pattern generator for combinational cir-
cuits,” in Proc. Int’l Conf. on Computer-Aided Design, pp. 194-
197, 1991.

[6] I. Hamzaoglu and J. H. Patel, “New Techniques for Determinis-
tic Test Pattern Generation,” in Proc. of VLSI Test Symposium,
pp. 446-452, 1998.

[7] N. Jha and S. Gupta, Testing of Digital Systems, Cambridge
University Press, 2003.

[8] W. Kunz and D. K. Pradhan, “Recursive Learning: A New Im-
plication Technique for Efficient Solutions to CAD Problems–
Test, Verification, and Optimization,” in IEEE Trans. on
Computer-Aided Design, vol. 13, no. 9, pp. 1143-1158 Septem-
ber 1994.

[9] A. Veneris and M. S. Abadir, “Design Rewiring Using ATPG,”
in Proc. IEEE Trans. on Computer-Aided Design, vol. 21,
no. 12, pp. 1469-1479, December 2002.

