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ABSTRACT 
We present two full-custom implementations of the Register Alias 
Table (RAT) for a 4-way superscalar dynamically-scheduled 
processor in a commercial 130nm CMOS technology. The 
implementations differ in the way they organize the embedded 
global checkpoints (GCs) which support speculative execution. In 
the first implementation, representative of early designs, the GCs 
are organized as shift registers. In the second implementation, 
representative of more recent proposals, the GCs are organized as 
random access buffers. We measure the impact of increasing the 
number of GCs on the latency, energy, and area of the RAT. The 
results support the importance of recent techniques that reduce the 
number of GCs while maintaining performance. 

Categories and Subject Descriptors 
B.7.1 Integrated Circuits , C.1 Processor Architecture. 

General Terms 
Measurement, Performance, Design, Experimentation.  

Keywords 

Checkpointing, register renaming, energy, latency. 

1. INTRODUCTION 
In modern processors, register renaming eliminates false data 
dependencies and hence increases instruction level parallelism 
(ILP). The Register Alias Table (RAT) implements register 
renaming by maintaining mappings between the register names 
utilized by the program (architectural registers) and the physical 
storage in which the corresponding values reside at any given 
point in time (physical registers). Register renaming is 
complicated by control flow speculation, another performance 
enhancing technique. In control flow speculation, the processor 
speculates on the direction of a branch and speculatively executes 
instructions down that path. In case of mispeculation, the 
processor must recover by reversing the effects of all 

mispeculated instructions including all changes to the RAT. 
Modern processors implement two such recovery methods. The 
first is the re-order buffer (ROB), which keeps a log of all 
changes and allows recovery at any instruction, including 
branches. Using the ROB, recovery time is proportional to the 
number of mispeculated instructions. As mispeculations are 
relatively frequent, processors incorporate another mechanism 
with fixed latency recovery time that uses global checkpoints 
(GCs). A GC takes a complete snapshot of all relevant processor 
state, including the RAT, taken upon renaming a branch.  

Ideally, it would be possible to allocate a GC to every speculated 
branch as earlier implementations did [11]. This policy appears to 
be impractical and inefficient for modern processors that attempt 
to extract ILP over larger portions of code. Previous work has 
demonstrated that for modern processors more than 24-48 GCs 
would be required to avoid a degradation in performance [1][7]. 
As current checkpointed RAT implementations embed GCs in the 
RAT, increasing the number of GCs increases RAT latency, 
energy and power. Motivated by this observation, recent works 
have proposed methods for reducing the number of GCs while 
maintaining performance. However, to the best of our knowledge, 
no previous work quantified the magnitude of RAT latency and 
energy as a function of the number of GCs. An understanding of 
the underlying trends is essential in determining the true benefits 
of previous proposals and justifying the development of further 
optimizations. Accordingly, this work makes the following 
contributions: (i) It presents two full-custom implementations of a 
superscalar RAT with embedded GCs in a commercial 130nm 
CMOS technology. The first implementation, representative of 
early RAT designs, organizes the GCs as small bi-directional shift 
registers next to each RAT bit. The second implementation, 
representative of recent proposals, organizes the GCs as small 
random access buffers beside each RAT bit. (ii) It quantifies the 
magnitude of the latency, energy and area of the RAT as a 
function of the number of GCs.  

Our results quantitatively validate that increasing the number of 
GCs significantly impacts RAT latency and energy. Moreover, 
our results serve as motivation for trying to reduce the number of 
GCs even further.  
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The rest of this paper is organized as follows. Section 2 reviews 
RAT checkpointing. Section 3 discusses the two checkpointing 
implementations and their transistor-level design. Section 4 
reviews related work. Section 5 discusses the physical level 
simulation results. Section 6 concludes this work. 
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2. CHECKPOINTED RAT  
In this work, we restrict our attention to the SRAM-based 
implementation of a RAT where the RAT is a table which is 
indexed by an architectural register name and each entry contains 
the corresponding physical register name [11]. Given a MIPS-like 
load/store instruction set architecture with up to two source 
operands and one destination, to rename N instructions per cycle, 
a RAT must have 3xN read and N write ports. 2xN read ports are 
needed to rename the two source operands, and another N read 
ports are required to read the current mappings for the destination 
operands for ROB recovery[7]. Finally, N write ports are needed 
to write the new mappings of the destination registers.  

Conceptually, a checkpointed RAT comprises multiple copies of 
the RAT (Figure 1(a)). A GC is taken by copying the main RAT 
content into one of the copies. Recovery is done by copying one 
of GCs to the main RAT. In existing implementations, the GCs 
are physically next to each main RAT bit (Figure 1(b)) [8][11].  

  
Figure 12:  RAT Checkpointing. (a) Conceptual organization. 

(b) Actual implementation. 

3. RAT IMPLEMENTATIONS 
Previous work on RAT checkpointing assumes GCs are either 
organized as a bi-directional shift register or as a random access 
buffer next to each RAT bit. We will refer to the former as SAB 
(serial access buffer) and to the latter as RAB (random access 
buffer). Figures 2(a) and 2(b) depict the RAT cells for SAB and 
RAB, respectively. The RAT bit (M) has 3xN read and N write 
ports which are not depicted. The designs differ in the way they 
implement GC allocation and restoration. GC allocation takes a 
snapshot of the current RAT contents, while GC restoration 
restores the RAT from one of the GCs. The GC cells shown in 
Figure 2 are marked as Ci. In SAB, GC allocation is done by 
shifting the Ci bits to the right, copying the RAT bit value to its 
adjacent vacant position. Restoring from a GC may require 
multiple steps. For example, restoring from C3 requires three left 
shifts. In RAB, the GCs are organized as random access buffers; 
hence, disregarding interconnect delay, GC allocation and 
restoration latency is the same for all GCs.  Both designs require 
an external controller to keep track of the number of available 
GCs and to coordinate the GC operations. For SAB, we only need 
to keep track of the number of allocated GCs. For RAB, we need 
to track the validity of individual GCs.  

3.1 Transistor Level Design 
The RAT is a multi-ported register file with embedded GCs. It 
consists of the precharge and equalization circuitry, sense 
amplifiers, write drivers, control circuitry, decoders, along with 
an array of RAT cells connected by bitlines and wordlines.  
Figure 3(a) depicts the main RAT cell comprising two back-to-
back inverters and several read and write ports. Figure 3(b) shows 
a complete RAT cell with 16 GCs.  Each GC requires an SRAM 
cell. The GC cells are shown in Figures 3(c) and 3(d) for SAB and 
RAB, respectively. The multi-ported RAT cell uses one wordline 

and two bit lines per write or read port. As multiple reads may 
access the same RAT entry, and because all GCs are connected 
via pass gates to the main cell, the main cell should be capable of 
driving a capacitance proportional to the number of ports and 
GCs. To protect the data stored in the main cell during multiple 
accesses, a decoupling buffers isolate the RAT main cell and the 
read ports [4][12]. The buffers also isolate the GCs. Because of 
these buffers, separate write bitlines are required. We use 
differential read and write operations because of their better 
energy, latency, and robust noise margins. To reduce power, we 
utilize several techniques: pulse operation for the wordlines, the 
periphery circuits, and the sense amplifiers; multi-stage static 
CMOS decoding; and current-mode read and write operations. 
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Figure 2: Checkpointed RAT bit. (a) Sequential-Access-

Buffer (SAB). (b) Random-Access Buffer (RAB). 
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Figure 31: (a) RAT cell with no GC, (b) the layout of the main 
RAT bit (M) and the GCs (C), (c) RAB GC, and (d) SAB GC. 

Figure 3(c) and (d) show the RAB and SAB GC cells, 
respectively. In SAB, GCs are organized as bi-directional shift 
registers with connections between adjacent cells. Only one of the 
GCs is connected to the main RAT bit through pass gates. A GC 
cell consists of a register and a multiplexer that controls the 
direction of the shift. The shift register uses two non-overlapping 
clocks. SAB requires two external control signals irrespective of 
the number of GCs.  In RAB, every GC cell is connected to the 
RAT bit cell via pass transistors. Two pairs of pass transistors are 
used to copy the value from the RAT bit into the GC and vise 
versa.  Each RAB GC cell requires two external control signals. 

4. RELATED WORK 
Previous works investigated the latency and/or the energy of 
specific RAT implementations. Bishop et al., present an 
implementation of a RAT in a 350nm technology for single-issue 
processors and measure its worst case delay [2]. De Gloria et al., 



present a 4-way superscalar RAT with four GC and embedded 
cross-bundle dependence detection logic in a 350nm technology 
and reports its latency [3]. Several works proposed to reduce the 
number of RAT accesses and the number of RAT ports 
requirement in order to reduce RAT energy and delay [6][9]. This 
work complements these studies as it quantitatively investigates 
RAT energy, delay and area as a function of the number of GCs.  

5. EVALUATION 
We implemented full-custom layouts for both designs using the 
Cadence® tool set in a commercial 130nm fabrication technology 
with a 1.3V supply voltage. We started with minimum size 
transistors and then increased dimensions to achieve worst case 
delay that was less than an estimated delay of 600ps for a RAT 
with no GCs. We arrived at this upper bound by first estimating 
the delay of a 64-bit, 64-entry SRAM with 12 read and four write 
ports using CACTI 4.2 [10]. We further corroborated this estimate 
by using linear technology scaling on previously published 
estimations for multi-ported register files [5][9]. Speed can be 
improved further at the expense of energy. We used the  
SpectreTM simulator for circuit simulation and we report worst 
case delay and energy.  Due to lack of space, we limit our 
attention to the RAT of a 4-way dynamically scheduled 
superscalar processor. We assume 64 and 512 architectural and 
physical registers, respectively.  The base RAT has 12 read ports, 
four write ports, no GCs, and 64 entries of nine bits.  

5.1 Delay 
Figure 4(a) shows the read latency as a function of the number of 
GCs. A read progresses through the address latch, the decoder, the 
wordline driver, the bitlines and the sense amplifier. Increasing 
the number of GCs elongates the wordlines and the bitlines as we 
attempt to keep the geometry of each RAT cell as square as 
possible. The read latency of RAB is higher than that of SAB as 
the main RAT bit is connected via pass transistors to each of the 
GC bits. Resizing the RAT bit cell, the pass transistors and the 
bitline drivers avoids a significant increase in latency. However, 
this further elongates the wordlines and bitlines and hence after a 
point it becomes ineffective. The read delay with RAB increases 
from 597ps with four GCs to 646ps with 16 GCs, an 8.3% 
increase. With SAB, the delay increases from 595ps to 621ps as 
going from four to 16 GCs, a 4.4% increase.  
Figure 4(b) shows the write latency as a function of the number of 
GCs. For SAB, increasing the GCs from four to 16 increases the 
latency from 546ps to 608ps, a 11.4 % increase. For RAB, write 
latency is more sensitive than read latency. RAB has additional 
pass transistors per GC bit and hence requires a larger RAT cell. 
For RAB, latency increases from 551ps to 672ps, a 22% increase, 
going from four GCs to 16.  
Figure 5 shows the latency for GC allocation and restoration. 
While these latencies increase with the number of GCs, in 
absolute terms the latencies are much less than those of reads and 
writes. Although GC allocation and restoration latencies for SAB 
are less than those of RAB, completely restoring the RAT under 
SAB may require multiple shifts as addressed in Section 3. For 
SAB, the reported GC allocation delay and GC restoration delay 
are respectively the delay of copying the nearest GC to the RAT 
and the delay of copying the RAT bit to the nearest GC. 
During each cycle, instructions need to first read from the RAT 
and then write the new mappings to it. In the simplest 

implementation, the read and write phases are serialized within a 
single cycle. Figure 6 shows the maximum operating frequency 
for the RAT under this assumption. We ignore pipelining 
overheads and the possibility of pipelining the RAT itself. 
Nevertheless, this models a realistic implementation. For SAB, 
the operating frequency drops by 1.1%, 3% and 8.2% with four, 
eight and 16 GCs, respectively. The reference is the RAT with no 
GCs. For RAB, corresponding measurements are 1.7%, 5% and 
14.4%. The performance of RAB deteriorates more rapidly than 
that of SAB. With eight and 16 GCs, SAB is 2.1% and 7.3% 
faster than RAB. 

5.2 Energy 
Figures 7(a) and 7(b) depicts the worst case energy for RAT reads 
and writes. We measure energy assuming that all 12 read and all 
four write ports are active. Both read and write energy increase 
with the number of GCs. RAB requires more energy than SAB. 
Read energy for RAB increases by 4.6% when the number of GCs 
increases from four to eight, and by another 13.2% going to 16. 
The corresponding measurements for SAB are 2.1% and 7.4%. 
Write energy with RAB increases by 15.6% as the number of GCs 
increases from four to eight, and by another 48.8% when the 
number of GCs increases to 16. The corresponding measurements 
for SAB are 5.9% and 19.4%, respectively. However, write 
energy is at most about one third of RAT read energy. 
Figures 8(a) and 8(b) show the worst case energy for GC 
allocation and restoration operations as a function of the number 
of GCs.  For both operations, energy increases linearly with the 
number of GCs for SAB; these operations are implemented as 
shifts in the GC queue and all GC cells participate.  GC allocation 
energy for SAB increases by 81% going from four GCs to eight, 
and by another 93% going from eight to 16 GCs. RAB behaves 
differently. GC allocation is implemented as a random access 
write to a single GC cell. Accordingly, we expect write energy to 
increase only slightly with the number of GCs. GC allocation 
energy for RAB increases by 10% going from four GCs to eight, 
and by another 32.1% going from eight to 16 GCs. GC restoration 
exhibits similar behavior but in absolute terms it requires more 
energy than GC allocation. The RAT bit cell includes additional 
drivers for the read and write ports. Hence, it has a much higher 
capacitive load and changing its value requires much more energy 
compared to changing the value of a GC bit. GC restoration 
energy for RAB increases by 4.2% going from four to eight, and 
by another 18.3% going from eight to 16. For SAB, these 
measurements are 101% and 105%, respectively. 

5.3 Area 
Figure 9 reports RAT area as a function of the number of GCs. 
SAB is smaller than RAB since it uses fewer control signals and 
more localized connections. Increasing the number of GCs from 
four to eight increases RAT area by 10.6% and 10.2% for RAB 
and SAB, respectively. Area increases by 13.1% and 12.5% going 
from eight to 16 for RAB and SAB, respectively. 

5.4 Summary  
The results demonstrate that having more than four GCs impacts 
RAT latency considerably for both RAT implementations, more 
so for RAB. With 16 GCs, SAB and RAB are 8.2% and 14.4% 
slower than the base RAT with no GCs, respectively. GC 
allocation and restoration are much faster than RAT reads and 
writes. Embedding 16 GCs increases energy per operation by 



22.3% and 11.3% for RAT read, and by 91.3% and 31.4% for 
RAT write for RAB and SAB, respectively. GC allocation and 
restoration energy increases with the number of GCs almost 
linearly for SAB. With 16 GCs, RAB and SAB require 40% and 
31.4% more area the base RAT with no GCs, respectively.  
The results highlight the importance of previous work that aimed 
at reducing the number of GCs to four or fewer. They also 
demonstrate that focusing exclusively on instructions per cycle 
(IPC) can be misleading. RAB increases overall RAT latency 
compared to SAB. If this increase impacts the critical path, then it 
would lead to a proportionate decrease in performance which will 
offset some of the IPC benefits of methods that rely on RAB. 

6. CONCLUSIONS  
In this work, we have investigated the latency, energy and area of 
a superscalar RAT as a function of the number of embedded GCs. 
We studied two full-custom implementations for a checkpointed 
RAT in a 130nm technology. Our results demonstrate 
quantitatively that increasing the number of GCs drastically 
increases latency, energy, and area of the RAT. The results justify 
GC optimizations that reduce the number of GCs.  Moreover, this 
work serves as motivation for developing checkpoint/restore 
techniques requiring very few (four or less) GCs. 
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Figure 4: RAT read and write delay. 
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Figure 5: GC allocation and restoration delay. 
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Figure 6: Maximum RAT operating frequency.  
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Figure 7 : RAT energy per read and write operation.  
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Figure 8 : RAT energy for GC allocation and restoration. 
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Figure 9 : RAT area. 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(bishop%20%20b.%3cIN%3eau)&valnm=Bishop%2C+B.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6127
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6127
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7344
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(heald%20%20r.%3cIN%3eau)&valnm=Heald%2C+R.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(rama%20sangireddy%3cIN%3eau)&valnm=Rama+Sangireddy&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34169&isYear=2006

	1. INTRODUCTION
	CHECKPOINTED RAT 
	3. RAT IMPLEMENTATIONS
	3.1 Transistor Level Design

	4. RELATED WORK
	5. EVALUATION
	5.1 Delay
	5.2 Energy
	5.3 Area
	5.4 Summary 

	6. CONCLUSIONS 
	7. ACKNOWLEDGMENTS
	8. REFRENCES

