
On the Latency, Energy and Area of Checkpointed,
Superscalar Register Alias Tables

Elham Safi, Patrick Akl, Andreas Moshovos,

Andreas Veneris
Aggeliki Arapoyianni

Department of Electrical and Computer Engineering Department of Informatics
University of Toronto University of Athens

{e

lham, pakl, moshovos, veneris}@eecg.utoronto.ca arapoyianni@di.uoa.gr

ABSTRACT
We present two full-custom implementations of the Register Alias
Table (RAT) for a 4-way superscalar dynamically-scheduled
processor in a commercial 130nm CMOS technology. The
implementations differ in the way they organize the embedded
global checkpoints (GCs) which support speculative execution. In
the first implementation, representative of early designs, the GCs
are organized as shift registers. In the second implementation,
representative of more recent proposals, the GCs are organized as
random access buffers. We measure the impact of increasing the
number of GCs on the latency, energy, and area of the RAT. The
results support the importance of recent techniques that reduce the
number of GCs while maintaining performance.

Categories and Subject Descriptors
B.7.1 Integrated Circuits , C.1 Processor Architecture.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords

Checkpointing, register renaming, energy, latency.

1. INTRODUCTION
In modern processors, register renaming eliminates false data
dependencies and hence increases instruction level parallelism
(ILP). The Register Alias Table (RAT) implements register
renaming by maintaining mappings between the register names
utilized by the program (architectural registers) and the physical
storage in which the corresponding values reside at any given
point in time (physical registers). Register renaming is
complicated by control flow speculation, another performance
enhancing technique. In control flow speculation, the processor
speculates on the direction of a branch and speculatively executes
instructions down that path. In case of mispeculation, the
processor must recover by reversing the effects of all

mispeculated instructions including all changes to the RAT.
Modern processors implement two such recovery methods. The
first is the re-order buffer (ROB), which keeps a log of all
changes and allows recovery at any instruction, including
branches. Using the ROB, recovery time is proportional to the
number of mispeculated instructions. As mispeculations are
relatively frequent, processors incorporate another mechanism
with fixed latency recovery time that uses global checkpoints
(GCs). A GC takes a complete snapshot of all relevant processor
state, including the RAT, taken upon renaming a branch.

Ideally, it would be possible to allocate a GC to every speculated
branch as earlier implementations did [11]. This policy appears to
be impractical and inefficient for modern processors that attempt
to extract ILP over larger portions of code. Previous work has
demonstrated that for modern processors more than 24-48 GCs
would be required to avoid a degradation in performance [1][7].
As current checkpointed RAT implementations embed GCs in the
RAT, increasing the number of GCs increases RAT latency,
energy and power. Motivated by this observation, recent works
have proposed methods for reducing the number of GCs while
maintaining performance. However, to the best of our knowledge,
no previous work quantified the magnitude of RAT latency and
energy as a function of the number of GCs. An understanding of
the underlying trends is essential in determining the true benefits
of previous proposals and justifying the development of further
optimizations. Accordingly, this work makes the following
contributions: (i) It presents two full-custom implementations of a
superscalar RAT with embedded GCs in a commercial 130nm
CMOS technology. The first implementation, representative of
early RAT designs, organizes the GCs as small bi-directional shift
registers next to each RAT bit. The second implementation,
representative of recent proposals, organizes the GCs as small
random access buffers beside each RAT bit. (ii) It quantifies the
magnitude of the latency, energy and area of the RAT as a
function of the number of GCs.

Our results quantitatively validate that increasing the number of
GCs significantly impacts RAT latency and energy. Moreover,
our results serve as motivation for trying to reduce the number of
GCs even further.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’07, August 27–29, 2007, Portland, Oregon.
Copyright 2007 ACM 978-1-59593-709-4/07/0008...$5.00.

The rest of this paper is organized as follows. Section 2 reviews
RAT checkpointing. Section 3 discusses the two checkpointing
implementations and their transistor-level design. Section 4
reviews related work. Section 5 discusses the physical level
simulation results. Section 6 concludes this work.

http://www.acm.org/class/1998/B.7.html

2. CHECKPOINTED RAT
In this work, we restrict our attention to the SRAM-based
implementation of a RAT where the RAT is a table which is
indexed by an architectural register name and each entry contains
the corresponding physical register name [11]. Given a MIPS-like
load/store instruction set architecture with up to two source
operands and one destination, to rename N instructions per cycle,
a RAT must have 3xN read and N write ports. 2xN read ports are
needed to rename the two source operands, and another N read
ports are required to read the current mappings for the destination
operands for ROB recovery[7]. Finally, N write ports are needed
to write the new mappings of the destination registers.

Conceptually, a checkpointed RAT comprises multiple copies of
the RAT (Figure 1(a)). A GC is taken by copying the main RAT
content into one of the copies. Recovery is done by copying one
of GCs to the main RAT. In existing implementations, the GCs
are physically next to each main RAT bit (Figure 1(b)) [8][11].

Figure 12: RAT Checkpointing. (a) Conceptual organization.

(b) Actual implementation.

3. RAT IMPLEMENTATIONS
Previous work on RAT checkpointing assumes GCs are either
organized as a bi-directional shift register or as a random access
buffer next to each RAT bit. We will refer to the former as SAB
(serial access buffer) and to the latter as RAB (random access
buffer). Figures 2(a) and 2(b) depict the RAT cells for SAB and
RAB, respectively. The RAT bit (M) has 3xN read and N write
ports which are not depicted. The designs differ in the way they
implement GC allocation and restoration. GC allocation takes a
snapshot of the current RAT contents, while GC restoration
restores the RAT from one of the GCs. The GC cells shown in
Figure 2 are marked as Ci. In SAB, GC allocation is done by
shifting the Ci bits to the right, copying the RAT bit value to its
adjacent vacant position. Restoring from a GC may require
multiple steps. For example, restoring from C3 requires three left
shifts. In RAB, the GCs are organized as random access buffers;
hence, disregarding interconnect delay, GC allocation and
restoration latency is the same for all GCs. Both designs require
an external controller to keep track of the number of available
GCs and to coordinate the GC operations. For SAB, we only need
to keep track of the number of allocated GCs. For RAB, we need
to track the validity of individual GCs.

3.1 Transistor Level Design
The RAT is a multi-ported register file with embedded GCs. It
consists of the precharge and equalization circuitry, sense
amplifiers, write drivers, control circuitry, decoders, along with
an array of RAT cells connected by bitlines and wordlines.
Figure 3(a) depicts the main RAT cell comprising two back-to-
back inverters and several read and write ports. Figure 3(b) shows
a complete RAT cell with 16 GCs. Each GC requires an SRAM
cell. The GC cells are shown in Figures 3(c) and 3(d) for SAB and
RAB, respectively. The multi-ported RAT cell uses one wordline

and two bit lines per write or read port. As multiple reads may
access the same RAT entry, and because all GCs are connected
via pass gates to the main cell, the main cell should be capable of
driving a capacitance proportional to the number of ports and
GCs. To protect the data stored in the main cell during multiple
accesses, a decoupling buffers isolate the RAT main cell and the
read ports [4][12]. The buffers also isolate the GCs. Because of
these buffers, separate write bitlines are required. We use
differential read and write operations because of their better
energy, latency, and robust noise margins. To reduce power, we
utilize several techniques: pulse operation for the wordlines, the
periphery circuits, and the sense amplifiers; multi-stage static
CMOS decoding; and current-mode read and write operations.

C
C

C
C

1

C
C

2

C
C

3

C
C

n

Figure 2: Checkpointed RAT bit. (a) Sequential-Access-

Buffer (SAB). (b) Random-Access Buffer (RAB).

W
-w

l-0 W
-B

l-0

W
-B

lB
-0.

...

R
-w

l-0

R
-w

l-0

R
-Bl-0

R
-B

lB-0

...
.

Restore-0

D DB

DB

DB1 D1

Allocation-0

D

R
estore

...
.

C : A GC cell for RAB

Write port

Main Cell

Read Port

D1DB1

1

2

2

Qj

DFFMUX

C: A GC cell for SAB

M: RAT Data Cell

2

M

C

C

C

C

C

C

C

C

Arrangement of M and
C cells in a RAT cell

C

C

C

C

C

C

C

C

Dotted lines : Control lines

QBj

A
llocate

R
estore

(a) (b)

(c)
(d)

Qj-1

Qj+1

clk

Figure 31: (a) RAT cell with no GC, (b) the layout of the main
RAT bit (M) and the GCs (C), (c) RAB GC, and (d) SAB GC.

Figure 3(c) and (d) show the RAB and SAB GC cells,
respectively. In SAB, GCs are organized as bi-directional shift
registers with connections between adjacent cells. Only one of the
GCs is connected to the main RAT bit through pass gates. A GC
cell consists of a register and a multiplexer that controls the
direction of the shift. The shift register uses two non-overlapping
clocks. SAB requires two external control signals irrespective of
the number of GCs. In RAB, every GC cell is connected to the
RAT bit cell via pass transistors. Two pairs of pass transistors are
used to copy the value from the RAT bit into the GC and vise
versa. Each RAB GC cell requires two external control signals.

4. RELATED WORK
Previous works investigated the latency and/or the energy of
specific RAT implementations. Bishop et al., present an
implementation of a RAT in a 350nm technology for single-issue
processors and measure its worst case delay [2]. De Gloria et al.,

present a 4-way superscalar RAT with four GC and embedded
cross-bundle dependence detection logic in a 350nm technology
and reports its latency [3]. Several works proposed to reduce the
number of RAT accesses and the number of RAT ports
requirement in order to reduce RAT energy and delay [6][9]. This
work complements these studies as it quantitatively investigates
RAT energy, delay and area as a function of the number of GCs.

5. EVALUATION
We implemented full-custom layouts for both designs using the
Cadence® tool set in a commercial 130nm fabrication technology
with a 1.3V supply voltage. We started with minimum size
transistors and then increased dimensions to achieve worst case
delay that was less than an estimated delay of 600ps for a RAT
with no GCs. We arrived at this upper bound by first estimating
the delay of a 64-bit, 64-entry SRAM with 12 read and four write
ports using CACTI 4.2 [10]. We further corroborated this estimate
by using linear technology scaling on previously published
estimations for multi-ported register files [5][9]. Speed can be
improved further at the expense of energy. We used the
SpectreTM simulator for circuit simulation and we report worst
case delay and energy. Due to lack of space, we limit our
attention to the RAT of a 4-way dynamically scheduled
superscalar processor. We assume 64 and 512 architectural and
physical registers, respectively. The base RAT has 12 read ports,
four write ports, no GCs, and 64 entries of nine bits.

5.1 Delay
Figure 4(a) shows the read latency as a function of the number of
GCs. A read progresses through the address latch, the decoder, the
wordline driver, the bitlines and the sense amplifier. Increasing
the number of GCs elongates the wordlines and the bitlines as we
attempt to keep the geometry of each RAT cell as square as
possible. The read latency of RAB is higher than that of SAB as
the main RAT bit is connected via pass transistors to each of the
GC bits. Resizing the RAT bit cell, the pass transistors and the
bitline drivers avoids a significant increase in latency. However,
this further elongates the wordlines and bitlines and hence after a
point it becomes ineffective. The read delay with RAB increases
from 597ps with four GCs to 646ps with 16 GCs, an 8.3%
increase. With SAB, the delay increases from 595ps to 621ps as
going from four to 16 GCs, a 4.4% increase.
Figure 4(b) shows the write latency as a function of the number of
GCs. For SAB, increasing the GCs from four to 16 increases the
latency from 546ps to 608ps, a 11.4 % increase. For RAB, write
latency is more sensitive than read latency. RAB has additional
pass transistors per GC bit and hence requires a larger RAT cell.
For RAB, latency increases from 551ps to 672ps, a 22% increase,
going from four GCs to 16.
Figure 5 shows the latency for GC allocation and restoration.
While these latencies increase with the number of GCs, in
absolute terms the latencies are much less than those of reads and
writes. Although GC allocation and restoration latencies for SAB
are less than those of RAB, completely restoring the RAT under
SAB may require multiple shifts as addressed in Section 3. For
SAB, the reported GC allocation delay and GC restoration delay
are respectively the delay of copying the nearest GC to the RAT
and the delay of copying the RAT bit to the nearest GC.
During each cycle, instructions need to first read from the RAT
and then write the new mappings to it. In the simplest

implementation, the read and write phases are serialized within a
single cycle. Figure 6 shows the maximum operating frequency
for the RAT under this assumption. We ignore pipelining
overheads and the possibility of pipelining the RAT itself.
Nevertheless, this models a realistic implementation. For SAB,
the operating frequency drops by 1.1%, 3% and 8.2% with four,
eight and 16 GCs, respectively. The reference is the RAT with no
GCs. For RAB, corresponding measurements are 1.7%, 5% and
14.4%. The performance of RAB deteriorates more rapidly than
that of SAB. With eight and 16 GCs, SAB is 2.1% and 7.3%
faster than RAB.

5.2 Energy
Figures 7(a) and 7(b) depicts the worst case energy for RAT reads
and writes. We measure energy assuming that all 12 read and all
four write ports are active. Both read and write energy increase
with the number of GCs. RAB requires more energy than SAB.
Read energy for RAB increases by 4.6% when the number of GCs
increases from four to eight, and by another 13.2% going to 16.
The corresponding measurements for SAB are 2.1% and 7.4%.
Write energy with RAB increases by 15.6% as the number of GCs
increases from four to eight, and by another 48.8% when the
number of GCs increases to 16. The corresponding measurements
for SAB are 5.9% and 19.4%, respectively. However, write
energy is at most about one third of RAT read energy.
Figures 8(a) and 8(b) show the worst case energy for GC
allocation and restoration operations as a function of the number
of GCs. For both operations, energy increases linearly with the
number of GCs for SAB; these operations are implemented as
shifts in the GC queue and all GC cells participate. GC allocation
energy for SAB increases by 81% going from four GCs to eight,
and by another 93% going from eight to 16 GCs. RAB behaves
differently. GC allocation is implemented as a random access
write to a single GC cell. Accordingly, we expect write energy to
increase only slightly with the number of GCs. GC allocation
energy for RAB increases by 10% going from four GCs to eight,
and by another 32.1% going from eight to 16 GCs. GC restoration
exhibits similar behavior but in absolute terms it requires more
energy than GC allocation. The RAT bit cell includes additional
drivers for the read and write ports. Hence, it has a much higher
capacitive load and changing its value requires much more energy
compared to changing the value of a GC bit. GC restoration
energy for RAB increases by 4.2% going from four to eight, and
by another 18.3% going from eight to 16. For SAB, these
measurements are 101% and 105%, respectively.

5.3 Area
Figure 9 reports RAT area as a function of the number of GCs.
SAB is smaller than RAB since it uses fewer control signals and
more localized connections. Increasing the number of GCs from
four to eight increases RAT area by 10.6% and 10.2% for RAB
and SAB, respectively. Area increases by 13.1% and 12.5% going
from eight to 16 for RAB and SAB, respectively.

5.4 Summary
The results demonstrate that having more than four GCs impacts
RAT latency considerably for both RAT implementations, more
so for RAB. With 16 GCs, SAB and RAB are 8.2% and 14.4%
slower than the base RAT with no GCs, respectively. GC
allocation and restoration are much faster than RAT reads and
writes. Embedding 16 GCs increases energy per operation by

22.3% and 11.3% for RAT read, and by 91.3% and 31.4% for
RAT write for RAB and SAB, respectively. GC allocation and
restoration energy increases with the number of GCs almost
linearly for SAB. With 16 GCs, RAB and SAB require 40% and
31.4% more area the base RAT with no GCs, respectively.
The results highlight the importance of previous work that aimed
at reducing the number of GCs to four or fewer. They also
demonstrate that focusing exclusively on instructions per cycle
(IPC) can be misleading. RAB increases overall RAT latency
compared to SAB. If this increase impacts the critical path, then it
would lead to a proportionate decrease in performance which will
offset some of the IPC benefits of methods that rely on RAB.

6. CONCLUSIONS
In this work, we have investigated the latency, energy and area of
a superscalar RAT as a function of the number of embedded GCs.
We studied two full-custom implementations for a checkpointed
RAT in a 130nm technology. Our results demonstrate
quantitatively that increasing the number of GCs drastically
increases latency, energy, and area of the RAT. The results justify
GC optimizations that reduce the number of GCs. Moreover, this
work serves as motivation for developing checkpoint/restore
techniques requiring very few (four or less) GCs.

7. ACKNOWLEDGMENTS
This work was supported by an NSERC Discovery grant and
funds from the University of Toronto. This work was also
supported by the European Union - European Social Fund &
National Resources - EPEAEK II.

8. REFRENCES
[1] H. Akkary, et al., “An Analysis of Resource Efficient Checkpoint

Architecture”, ACM Transaction on Architecture and Code
Optimization, 1(4): 418-444, Dec. 2004.

[2] B. Bishop, et al., “The Design of a Register Renaming unit”, Great
Lakes Symposium on VLSI, Mar. 1999

[3] A. De Gloria, et al. , “An Application Specific Multi-Port RAM Cell
Circuit for Register Renaming Units in High Speed
Microprocessors”, IEEE International Symposium on Circuits and
Systems, 4:934 - 937, May 2001.

[4] R. Heald et al., “A Third-Generation SPARC V9 64-b
Microprocessor”, IEEE Journal of Solid-State Circuits, 35(11) :
1526-1538, Nov. 2000.

[5] R.K. Krishnamurthy, et al., “130-nm 6-GHz 256 × 32 bit Leakage-
Tolerant Register File”, IEEE Journal of Solid-State
Circuits,37(5): 624–632, May 2002

[6] G. Kuçuk, et.al,” Reducing Power Dissipation of Register Alias
Tables in High-Performance Processors, IEE Proceedings on
Computers and Digital Techniques,152(6): 739 - 746 , Nov. 2005.

[7] A. Moshovos, “Checkpointing Alternatives for High Performance,
Power-Aware Processors”, IEEE International Symposium on Low
Power Electronic and Design, 318 -321, Aug. 2003

[8] S. Palacharla, “Complexity-effective Superscalar Processors”, Ph.D.
Thesis, University of Wisconsin-Madison, 1998.

[9] R. Sangireddy, “Reducing Rename Logic Complexity for High-
Speed and Low-Power Front-End Architectures”, IEEE Transactions
of Computers, 55(6):672- 685, Jun. 2006.

[10] D. Tarjan, S. Thoziyoor and N. P. Jouppi, CACTI 4.0, HP Labs
Technical Report HPL-2006-86, 2006.

[11] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor”,
IEEE MICRO, 1996.

[12] V. Zyuban, “Inherently Lower-Power High-Performance Superscalar
Architectures”, PhD Thesis, University of Notre Dame, Jan. 2000.

 (a) RAT read (b) RAT write

500
550
600
650
700

0 4 8 16 0 4 8 16
Number of checkpoints

D
el

ay
(p

s)

RAB SAB

Number of checkpoints

Figure 4: RAT read and write delay.

 (a) GC Allocation (b) GC Restoration

50

100

150

4 8 16 4 8 16
Number of checkpoints

D
el

ay
(p

s)

RAB SAB

Number of checkpoints

Figure 5: GC allocation and restoration delay.

Clock frequency

600

750

900

0 4 8 16
Number of checkpoints

 f
(M

H
z)

RAB SAB

Figure 6: Maximum RAT operating frequency.

 (a) RAT Read (b) RAT Write

10
20
30
40
50
60

0 4 8 16 0 4 8 16
Number of checkpoints

En
er

gy
 p

er

op
er

at
io

n
(p

j)

RAB SAB

Number of checkpoints

Figure 7 : RAT energy per read and write operation.

 (a) GC Allocation (b) GC Restoration

0
11
22
33
44

4 8 16 4 8 16
Number of checkpoints

En
er

gy
 p

er

op
er

at
io

n(
pj

)

RAB SAB

Number of checkpoints

Figure 8 : RAT energy for GC allocation and restoration.

0.2
0.3
0.4
0.5

0 4 8 16
Number of checkpoints

A
re

a
(m

m
2)

RAB SAB

Figure 9 : RAT area.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(bishop%20%20b.%3cIN%3eau)&valnm=Bishop%2C+B.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6127
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6127
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7344
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(heald%20%20r.%3cIN%3eau)&valnm=Heald%2C+R.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://www.ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(rama%20sangireddy%3cIN%3eau)&valnm=Rama+Sangireddy&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34169&isYear=2006

	1. INTRODUCTION
	CHECKPOINTED RAT
	3. RAT IMPLEMENTATIONS
	3.1 Transistor Level Design

	4. RELATED WORK
	5. EVALUATION
	5.1 Delay
	5.2 Energy
	5.3 Area
	5.4 Summary

	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFRENCES

