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Abstract—Silicon debug poses a unique challenge to the en-
gineer because of the limited access to internal signals of the
chip. Embedded hardware such as trace buffers helps overcome
this challenge by acquiring data in real time. However, trace
buffers only provide access to a limited subset of pre-selected
signals. In order to effectively debug, it is essential to configure
the trace-buffer to trace the relevant signals selected from the
pre-defined set. This can be a labor-intensive and time-consuming
process. This paper introduces a set of techniques to automate the
configuring process for trace buffer-based hardware. First, the
proposed approach utilizes UNSAT cores to identify signalsthat
can provide valuable information for localizing the error. Next, it
finds alternatives for signals not part of the traceable set so that
it can imply the corresponding values. Integrating the proposed
techniques with a debugging methodology, experiments showthat
the methodology can reduce 30% of potential suspects with as
low as 8% of registers traced, demonstrating the effectiveness of
the proposed procedures.

Index Terms—Silicon debug, post-silicon diagnosis, data acqui-
sition setup

I. I NTRODUCTION

Modern integrated circuit development cycles require sev-
eral different synthesis and verification stages before a silicon
prototype is manufactured. Each verification stage ensuresthat
its corresponding synthesis step did not introduce any errors
(e.g. timing, functional, power). At the Register TransferLevel
(RTL), formal methods [1], [2] and simulation [3] approaches
are used to verify that the RTL model complies with its func-
tional specification. However with the growing size of modern
designs along with the prevalent use of intellectual property
(IP), it is infeasible to achieve 100% functional verification
coverage. In addition, time-to-market constraints only allow a
finite amount of engineering resources to be dedicated towards
functional verification. This limits the verification engineer’s
ability to ensure functional correctness. As a result, functional
bugs are introduced into silicon prototypes. In fact, more than
60% of design tape-outs require a re-spin with more than half
of these containing a bug due to logic or functional errors [4].
Each re-spin dramatically increases the cost of a project and
eats away the time-to-market.

The main challenge of silicon debug is the limited ob-
servability of the internal signals in the chip. Unlike pre-
silicon verification, only nets that are connected directlyto
output pins can be observed which is generally insufficient

for debugging. To overcome this issue, two types ofDesign-
for-Debug (DfD) techniques,scan-basedand trace buffer-
basedtechniques, have been introduced. Scan chains provide
the value of all scanned states for one cycle, while trace
buffers allow the engineer to trace a small number of states
in consecutive cycles. Although these two techniques greatly
enhance the observability of the chip, the proportion of nets
that can be observed is still small compared to pre-silicon
verification.

Once a silicon chip fails during test, an iterative post-
silicon validation process is launched to locate the root-cause
as shown in Figure 1. Engineers start with setting up the
environment to capture appropriate data from the chip under
test while it is run in real-time. Then, this sparse amount of
acquired data is analyzed by the engineer to prune the error
candidates and also setup the next debug session. This time-
consuming and labor-intensive cycle continues until the root
cause of the failure is determined.

Several techniques have been proposed to automate the data
analysis process [5]–[7]. They analyze the acquired data to
determine the root cause of the error. Clearly, the quality of
those analysis is affected by the acquired data and it can be
more effective if the data contains useful information regarding
the error location. Hence, one question software solutions
to silicon debug need to address is which set of signals is
important for tracing. This includes which signals and cycles
during the execution run to trace. Note that acquiring the data
at run time can be time-consuming to setup and the data is
read out at slower speed. Therefore, it is desired to minimize
the iterations of the data acquisition and have a concise setof
signals for tracing. Furthermore, since only a small proportion
of the entire design can be accessed by DfD hardware, it is
important for any software solutions to be able to handle this
constraint.

This work proposes two novel approaches and a ranking
system to enhance the data analysis while considering the
data acquisition hardware constraints. It first utilizes UNSAT
cores to identify registers that may contain useful information
to help the diagnosis process. Since the UNSAT core relates
directly to the error, it can provide greater precision. Secondly,
a searching procedure is proposed to find alternatives for
untraceable states. The algorithm takes the hardware con-
straints into account and finds alternative states among the
pre-selected registers such that values of those registerscan
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Fig. 1. A typical silicon debug flow

imply the untraceable ones. The proposed searching algorithm
is memory efficient because only a small window of the
complete silicon trace is analyzed. Finally, since in practice
only one register group can be traced at a time, a simple
ranking system is suggested to prioritize the traceable register
groups according to the result from the proposed analysis.

Experimental results show that when the available hardware
is complemented with the new techniques, the data analysis
methodology can reduce, on average, 30% of the number of
suspects that the engineer needs to investigate. This reduction
is achieved with only 8% to 20% of registers traced.

The remaining paper is organized as follows. Section II
summarizes prior work on hardware and software solutions
for silicon debug. Section III and Section IV illustrate thenew
approaches for selecting signals to be traced in runtime. Then,
a simple ranking system to determine the pre-selected group
for tracing is presented in Section V. Experimental results
are presented in Section VI, followed by the conclusion in
Section VII.

II. BACKGROUND

Silicon debug involves hardware and software components.
The hardware components consist of DfD hardware that im-
proves signal observability. The software components include
the automated debugging tools and the test environment setup
to collect and analyze the data from the tester. In the following
subsections, we briefly introduce notation and review some of
this background material.

A. Notation

In this work, we consider a sequential circuit with primary
input setX = (x1, · · · ,xm), register setS = (s1, · · · ,sp), and
primary output setO = (o1, · · · ,on). Sequential circuits are
modelled inIterative Logic Array(ILA) representation. The
design is unfolded over time to maintain the state transition
information. Throughout this paper, the superscript of a sym-
bol refers to the cycle of the unfolded circuit. For example,
X 2 represents the set of the primary input in the second cycle.
x2

1 refers to the primary inputx1 in the second cycle. We also
let symbolTi denote thei-th simulated cycle.

B. Design for Debug Hardware Solutions

To increase observability of internal signals in the silicon
prototype, there are two main DfD techniques adopted in
practice: scan chains and trace buffers.

Scan chainsallow engineers to capture and off-load the
value of scanned registers at a specific cycle. However, scan-
out operation interrupts the execution of the chip because the
values stored in the registers are destroyed. In order to resume
the execution from the same point, the environment must be
reset and restarted from the beginning of the test vector [8].

Trace buffers[9], [10] are another DfD technique that uses
an on-chip memory to record internal signals. As shown in
Figure 2, a trace buffer contains control logic, called trigger
logic (e.g., embedded hardware assertions), employed for on-
line monitoring of circuit behavior. Once the trigger condition
is asserted the on-chip memory can start/stop recording the
logic values of the selected signals into buffers, which typically
range from 8K to 256K. Subsequently, the recorded data can
be read via a low-bandwidth interface, such as boundary scan.
Due to the limited size of this on-chip memory, only a set of
pre-selected signals can be traced. Those pre-selected signals
are divided into groups and connected to the on-chip memory
through a multiplexer. During execution, only one group can
be selected and traced at a time. The traceable signals are
typically manually selected by the designer. Recently, several
algorithms have been developed to automate the selection
process [11]–[13]. In those works, authors try to select a
small set of signals such that their values can restore a
significant amount of untraceable states. For example,State
signal selectionproposed in [11] conducts structural analysis
on the circuit. Then, it calculates the restorability of signals
to determine the signals to be traced.

C. Automated Data Analysis

Although DfD hardware enhancement increases the observ-
ability of internal signals, there is a lack of techniques to
automate the data analysis process on the acquired data, e.g.
thedata analysisstep in Figure 1. Recently, there has been an
effort to develop methodologies to aid the engineer in other
parts of the silicon debug process besides data acquisition.

Caty et. al. [5] and Yen et. al. [14] both perform silicon
debug by analyzing the data collected from scan chains. The
former uses the data to determine the failing registers at each
timeframe and then conducts back-tracing and forward-tracing
from those registers to narrow down the potential root cause
candidates. The latter proposes a similar approach. They use
the scan chain data to identify the portion of the trace where
the error is sensitized. Then, the suspect list is pruned using
both the path-tracing method [15] and simulating the faulty
value of the suspect in the golden model.

Yang et. al. [7] propose a software solution to silicon debug
that utilizes trace buffers. It analyzes the acquired data to
discovering the root-cause of chip failure in both spatial and
temporal domains. At the end of each debug session, if the
root-cause is inconclusive, the methodology provides sugges-
tions on the data acquisition setup of the sub-sequent debug
session. However, it assumes that all registers can be traced by
the trace buffer which is impractical. In practice, the number
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of registers that are traceable are limited. Consequently,this
constraint can greatly affect the performance of [7].

Formal methods are used in [6] to restore the state informa-
tion when a chip fails the test. It starts from the crash stateand
computes the states backward in time. Signatures are captured
during the chip execution and used to determine a unique or a
small set of possible predecessor states that leads to the crash
state. It requires additional hardware structures to compute
signatures before they are stored in the trace buffer.

D. UNSAT Cores

This work utilizes the use of UNSAT cores to find sug-
gestions for the data acquisition setup. A brief overview of
UNSAT cores is give in this section.

Given a set of Boolean variables, aliteral is an instance of
the variable or its negation. An SAT instance inConjunctive
Normal Form (CNF) is a conjunction ofclauseswhere each
clause is a disjunction of literals. An SAT instance issatisfied
if there exists an assignment over variables such that all clauses
are evaluated to be true. That is, at least one literal in each
clause is evaluated to be 1.

If such an assignment cannot be found, the SAT instance is
unsatisfied. In this case, any subset of clauses in the instance
that is also unsatisfiable is referred to as anUNSAT core.
Modern SAT solvers [16]–[18] can produce UNSAT cores as a
result of finding an instance to be unsatisfiable. The following
is an example of an unsatisfied CNF formulaΦ and its UNSAT
core.

Φ = (a+b) · (a+c) · (b+c) · (a) · (c)

UNSAT core= {(a+c),(a),(c)}

An unsatisfied SAT instance can have multiple UNSAT
cores. Each represents a situation where the CNF formula
is unsatisfied. Additional UNSAT cores can be obtained by
performing relaxation on the current UNSAT core clauses [19].
In summary, each relaxible clause in the UNSAT core is aug-
mented with a distinct relaxation variable. Additional clauses
are added to the CNF to ensure assignments to relaxation
variables complied with one-hot property, i.e. one and only
one relaxation variable is assigned to 1.

III. D ATA ACQUISITION SETUP

Due to the insufficient observability of internal signals,
selecting which set of signals to observe is a key step in
the silicon debug process. Trace buffer-based DfD hardware
provides the engineer great flexibility in the choice of traced
signals. However, they can only trace a limited subset of
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signals. To make the most efficient use of this hardware, the
engineer uses two major criteria for selecting signals to acquire
using trace buffers:

1) Signals that are related to the error source or provide
valuable information to aid in pruning suspects.

2) Signal selection needs to comply with the hardware
constraints. As discussed in Section II-B, in most real-
word designs, only a small set of hard-wired signals can
be traced during the execution.

In the next subsection, an algorithm that utilizes the proof
trace generated by SAT solvers to identify registers that may
contain useful information to aid debugging is presented.

A. Registers Identification with UNSAT Cores

As discussed in Section II-D, an UNSAT core of an un-
satisfiable SAT problem is a subset of clauses that is also
unsatisfiable. Assume that there is a golden model, such as
a high-level behavioral model, available during the debug to
provide correct responses of the design. Note, although in this
behavioral model we do not have access to the data on every
single net in the implementation, the important information on
the data/address buses, as well as the essential control signals
that steer the data through the data-path, can be monitored.
Then, given an erroneous circuitC , the input traceX and
the correct output responseO, the CNF formulaC ·X ·O is
unsatisfiable due to the contradiction between the erroneous
output response and the correct output response. Intuitively,
the contradiction can occur at any signals along the paths
from the actual fault location to the output where discrepancies
are observed. Therefore, signals associated with clauses in the
UNSAT cores have to be one of the followings:
• Nodes that excite the error
• Nodes along the error propagation paths
• Side inputs to the error propagation paths
Clearly, those signals can be potential locations for tracing

and provide information about the erroneous behavior of the
design.

Example 1 Consider the circuit shown in Figure 3(a). As-
sume the error is atd’, which should bed’=AND(a,b). The
test vector and the correct/erroneous response are shown in
Figure 3(b). Since the circuit is erroneous, the CNF formula, Φ
= C ·X ·Ocorr, is unsatisfiable. An UNSAT core of the problem
is
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{(b2+d′2) · (d′2+d3) · (d3 +e′3)·

(c4 +e4+g4) · (e′3+e4) · (b2) · (c4) · (g4)} (1)

Therefore, signals that should be traced ared at frame 3
(from the clause(d′2+d3) ) ande at frame 4 (from the clause
(e′3 +e4) ).

Algorithm 1 shows the overall algorithm. It starts with
obtaining the initial UNSAT core (Uinit in line 6). Then, the
algorithm tries to obtain more UNSAT cores by relaxation as
summarized in Section II-D. First, it relaxes unit clauses in
Uinit that represent input vectors (line 9) until the problem is
SAT. Next, it repeats for unit clauses inUinit that represent
output responses (line 14). Since each UNSAT core can
represent different error propagation paths, different signals
can be included. To ensure all paths are considered, the union
of all UNSAT cores is taken as shown in line 11 and line 15
in the algorithm. Finally, registers associated with variables in
the UNSAT cores are the potential locations for tracing.

Example 2 Continue from Example 1, another UNSAT core
can be obtained by relaxing o4

1. Let r1 be the relaxation
variable, the relaxed clause of (g4) is (g4 + r 1) and an
additional clause (r1) is added to the originalΦ. The new
UNSAT core is

{(a1+d′1) · (d′1+d2) · (d2 +e′2) · (e′2 +e3)·

(b2 +d′2) · (d′2+d3) · (d3 +e′3) · (e3+e′3+ f ′3)·

(c4 +h4+ f 4) · ( f ′3 + f 4) · (a1) · (b2) · (c4) · (h4)} (2)

The new list of register-to-be-traced containsd at frame 2, 3,
e at frame 3, 4 andf at frame 4.

IV. A LTERNATIVE SIGNAL SEARCHING

The algorithm IDENTIFYTRACEDSIGNALS from the previ-
ous section selects a list of registers that may contain useful
information about the behavior of the faulty chip. However,as
mentioned in Section II-B not all registers can be traced with
the trace buffer. In this case, one can try to obtain the value
of non-traceable registers indirectly by implication using other
traceable registers.

Consider a circuit modelled in the ILA representation shown
in Figure 4. The goal is to find registers that can imply
the non-traceable register, ortarget register, denotedsk

g (sg

at timeframeTk). Since sk
g cannot be traced directly, we

want to restore its value with traceable registers within a

Algorithm 1 Identifying registers for tracing using UNSAT
cores

1: C := The erroneous design
2: X := Input vectors
3: O := Output vectors
4: Φ := C ·X ·O
5: procedure IDENTIFYTRACEDSIGNALS(Φ)
6: Uinit := SolveΦ and extract the UNSAT core
7: U←Uinit
8: while Φ is unsatisfiabledo
9: relax on clauses{c|c ∈ Uinit and c is an input

vector unit clause}
10: Unew← solveΦ and extract the UNSAT core
11: U←U∪ Unew
12: end while
13: while Φ is unsatisfiabledo
14: relax on clauses{c|c ∈ Uinit and c is an output

response unit clause}
15: Unew← solveΦ and extract the UNSAT core
16: U←U∪ Unew
17: end while
18: R ← extract registers inU
19: return R

20: end procedure

certain window of timeframes{Tk−w · · · Tk+w}, where w is
the window size. Those traceable registers are referred to as
candidate registers. As shown in Figure 4, the value ofsk

g
can be restored in three ways: (1) forward implication, (2)
backward justification or (3) combination of (1) and (2).

To solve this problem, we formulate a SAT instance that will
search for assigned values to candidate registers that, together
with the input/output trace, imply to the target register. The
alternative for the target register consists of those selected
candidate registers. The detail of the formulation is givenin
the following subsections.

A. Problem Formulation

The basic problem formulation is presented in this section.
In order to indicate whether a candidate register is selected
for generating an implication, new variables are added for
every candidate register. We use the notationL = {l1, l2, · · ·}
to label those variables. The formula contains two components
as expressed as:

Φ =
k+w

∏
j=k−w

Φ j
c(L

j ,X j ,O
j
obv,S

j
known) ·EN(

k+w
[

j=k−w

L j) (3)

The first component models the design from timeframe
Tk−w to Tk+w. Intuitively, eachΦ j

c represents a copy of the
erroneous design at timeframej with the vectorX j andO j

obv
enforced. Previous traced register values (S

j
known) are also

used to constrain the problem, since they may be helpful
in generating implications. As will be explained in the next
subsection, special CNF models are required for the target
register and candidate registers.

The valuew is user-defined, but also depends on the size of
the trace buffer. We can setw such that 2w+1 = buffer depth
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1: if l then

2: (s = a) is TRUE
3: else

4: cond1 := (s 6= X) OR (a 6= X)
5: cond2 := (s = a) OR (s = X) OR (a = X)
6: cond1 AND cond2 is TRUE
7: end if

(b) Model Syntax

Fig. 6. The model of candidate register

to fully utilize the memory space of the trace buffer. How-
ever, largerw’s can increase the computation complexity and
memory consumption, since there are more candidate registers
for selection and a larger portion of trace is analyzed. The
flexibility of w allows the user to adjust it according to the
available resources.

The second componentEN(
Sk+w

j=k−wL
j ) constrains the num-

ber of selected candidate registers. The detail of the construc-
tion can be found in [20]. To find the minimum number
of candidate registers required for implications, it starts the
constraint from one active select variable and increments the
value up to the total number of the select variables, until a
solution is found.

At the end, each solution of the problem is one implication
for the target register. Candidate registers of which the select
variable (l ) is active are the necessary registers to generate
the implication. Note that the algorithm identifies not onlythe
registers, but also the timeframe where those registers areat
to generate the implication.

In the next subsection, the models for target registers and
candidate registers are described.

B. Register Modelling

Target registerandcandidate registersneed to be encoded
specially in the CNF formula in order to solve the problem.
In this section, models applied to these two types of registers
are discussed.

Target Register: The goal of the target registersk
g is to have

a non-unknown value. The implication can come from two
directions: forward propagation from assignments in the earlier
timeframe, or the backward justification from assignments in
a later timeframe. Hence, the target register is modelled as
shown in Figure 5. A extra signal is introduced to disconnect
sk
g from its fanin. The syntax of the model is shown in

Figure 5(b).cond1 (line 1) ensures that a non-unknown impli-
cation is generated by either forward implication or backward
justification. cond2 gives the flexibility that the implication
only needs to be satisfied from one direction. Furthermore, if
there are implications from both directions, the implied value
have to be the same.

Candidate Register: Candidate registers are traceable regis-
ters that the SAT solver can assign 1/0 when they are selected.
For each candidate register, two variables, are introducedas
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shown in Figure 6(a). The variablel , referred to asselect vari-
able, determines whether the register connects to its fanout.
When l equals 0, the network remains the same (line 1-2 in
Figure 6(b)). Whenl equals 1, the register is disconnected
from its fanout and allow the SAT-solver to assign 0/1 to the
either end of the break. This enables the possibility to identify
forward/backward implications. Similar to the model for target
registers, at least one of the two variables at the disconnected
ends must have a non-unknown value. If both ends have non-
unknown values, the values must be the same.

Example 3 Figure 7 shows a portion of the ILA of the
example circuit in Figure 3(a). Assume that traceable registers
are d and f , and the target register is e6. Let the value of
the input/output trace as shown in the brackets next to the
variables. The candidate registers are{d5, f5, d6, f6, d7, f7},
which are modeled as shown in Figure 6 with six additional
select variables,{l1 · · · l6}. One can verify that the value of e6

can be restored if the value of d5 is known.

C. Formulation Improvements

As shown in Figure 2, typically, traceable registers are
divided into groups. When configuring the trace buffer, one
group of the traceable registers is selected and traced for
several timeframes. With this observation, we can reduce the
number of select variables for the candidate registers. Instead
of introducing one distinct select variable for each candidate
register, all registers in the same group can share the same
select variable. Furthermore, the same register in different
timeframes can share one select variable as well. In Example3,
assumingd and f are in different groups, the number ofl ’s
can reduce to two, e.g.d5,d6,d7 share onel , while f 5, f 6, f 7

share another one.
The second optimization is to find implications for a group

of target registers. As mentioned in Section III-A, target
registers identified by the proposed method are correlated to
each other. Hence, if there exists an implication for one of
the target registers, the same implication may as well imply
the value of other target registers. By grouping several target
register together, the number of executions of the searching
algorithm can be reduced. As a result, the overall runtime is
reduced. However, it is a trade-off between the runtime and the
precision of solutions, because more traceable registers may
need to be selected when multiple registers are targeted.



TABLE I
TRACEABLE REGISTER GROUP INFORMATION

Circ. Total reg. # of groups # of reg./group Perc.
spi 160 8 8 40%

hpdmc 453 16 8 28%
usb 2054 32 16 25%

s1423 74 6 6 49%
s5378 179 7 8 31%
s9234 211 8 8 30%

V. GROUP RANKING

The algorithms described in previous sections identify reg-
isters that should be traced to provide more information on the
error. Since registers are selected by groups at the end when
configuring the trace buffer, we describe a simple ranking
system to prioritize the traceable register groups according to
the result from the proposed algorithms.

• Rule 1: The group that contains the most registers re-
turned by the algorithm IDENTIFYTRACEDSIGNALS has
higher priority. This is because those registers are directly
related to the error source. Their values may contain most
useful and direct information.

• Rule 2: When searching alternatives for non-traceable
registers, different target registers may require different
traceable groups. If a group is being selected at higher
frequency than others, it gets a higher rank. Intuitively,
this group contains registers that have a higher chance to
provide implications to non-traceable registers.

• Rule 3: A higher rank is assigned to the group that
needs to be traced for more timeframes. This is simply to
efficiently utilize the memory space of the trace buffer.

VI. EXPERIMENTS

In this section, experiments on OpenCores.org designs and
ISCAS’89 benchmarks are presented. Minisat [18] is used as
the underlying SAT-solver. Experiments are conducted on a
Core 2 Duo 2.4GHz process with 4GB Memory.

To emulate the real trace buffer hardware structure, a subset
of registers of each design is selected randomly, or byState
signal selection[11], as traceable by the trace buffer and
they are divided into groups. The grouping configuration is
summarized in Table I. The first column lists the benchmark
used in the experiments. The second column of the table shows
the total number of registers in each design. Columns three and
four have the number of the register groups and the number of
registers in each group, respectively. Column five shows the
percentage of total registers that can be traced.

In addition, as mentioned in Section IV-C, several target
registers can be combined into one search execution to reduce
the runtime. In our experimental setup, the target registers in
every four timeframes are targeted together. For designs from
OpenCores.org, test vectors are extracted from the testbench
provided by OpenCores.org. Test vectors for ISCAS’89 are
generated randomly. In both cases, the trace length is between
100 to 300 timeframes. In the experiment, we setwindow size
(w) to be six timeframes.

Table II summaries the performance of debug analysis under
two situations. Columns 2 – 4 show the performance of the
analysis with no state information available, while columns 5

– 11 show the performance of the analysis with the proposed
techniques. Each row is one individual case that contains a
different bug in the design. A single random functional error
(wrong assignment, incorrect case statement, etc) is inserted
into the RTL code. The final row is the geometric mean of
the data in columns. In the experiment, the analysis performs
the model-free diagnosis for one hierarchical level in each
debug session. The total number of modules returned at the
end of the debug sessions is shown in columns two and five.
This is the sum of the number of modules that the engineer
needs to investigate after each debug session. As shown in the
table, with state information the debugging tool can effectively
eliminate more false candidates in all cases. The percentage
reduction on the number of suspects, e.g. comparing column
five and column two, is listed in column six. The reduction
can be as high as 98% and an average of 31% reduction is
achieved.

Columns three and seven show the number of debug ses-
sions performed. About one third of cases require less debug
sessions to find the root cause of the error, for example,
the second case ofspi, hpdmc and both cases ofubs. The
number of registers traced by the trace buffer is shown in
column eight. Those numbers are small compared to the
total number of registers shown in Table I. The benefit of
the proposed technique is shown when one considers the
reductions in both the number of suspects and the number
of debug sessions.

Finally, the runtime of the debugging is summarized in
column four and columns 9–11. Because of the reduction
of suspects and debug sessions, the runtime for diagnosis
is also reduced in the case of the proposed methodology.
The runtime is 52% less on average (from 1426s down to
684s). The runtime on searching the registers for tracing is
recorded in column 10. This is the additional computation
required by the proposed methodology. As shown in the
table, it can be significant in cases, such ashpdmc. This is
because the algorithm has a higher failing rate on finding the
recommendation for the non-traceable registers in those cases.
The detail on the performance of the searching algorithm will
be discussed later. Overall, the total runtime of the propose
method is about 1.43 times longer than the runtime when
no state information is used. However, since the number
of the final suspects is reduced significantly, this additional
runtime may be acceptable if the time saved from the manual
inspection of less suspects is greater.

Next, we discuss the performance of the alternative search-
ing algorithm. Clearly, the performance of the algorithm de-
pends on the available traceable signals. Some signals may not
be able to restore at all if the necessary registers are not traced.
Hence, in addition to selecting the traceable register randomly,
another approach,State signal selection, is also used.State
signal selectionselects registers that their values have a higher
potential to restore other unknown registers. However, due
to the technical implementation,State signal selectiononly
handles ISCAS benchmarks. The results are summarized in
Table III. The second and fourth columns of Table III show
the percentage of targets that the search algorithm successfully
finds alternative recommendation. The number of traceable
register groups selected in order to generate application is
shown in columns three and five. In the case of the random



TABLE II
PERFORMANCE OF DEBUGGING WITH PROPOSED TECHNIQUES

Circ.
With no state information With proposed methods

# of # of Runtime (s) # of % # of # of Runtime(s)
susp. sessions Diag. susp. reduction sessions traced sig. Diag. Search Total increased

spi 146 11 1990 73 50% 11 24 828 1011 0.92
144 11 179 76 48% 9 32 101 94 1.09

hpdmc 213 17 3817 170 21% 17 40 2323 15734 4.73
167 16 2321 131 22% 15 40 1963 14233 6.98

usb 103 15 3795 38 74% 11 64 1609 9218 2.85
224 14 7091 138 39% 7 128 4245 18519 3.49

s1423 438 6 847 13 98% 6 6 19 28 0.06
506 6 768 148 71% 6 18 452 36 0.64

s5378 103 6 549 92 11% 6 16 456 288 1.36
191 6 1577 164 25% 6 32 1505 634 1.36

s9234 83 6 1042 74 11% 6 16 1011 1553 2.46
average 179 9.5 1426 83 31% 8.4 28 684 1012 1.43

TABLE III
PERFORMANCE OF THE SEARCH ALGORITHM

Circ. Random State signal selection
succ. rate # cand. sel. succ. rate # cand. sel.

spi 100% 6.8 - -
100% 4 - -

hpdmc 25% 11 - -
40% 11 - -

usb 13% 8 - -
6% 8 - -

s1423 100% 1 100% 2
100% 3.5 100% 4

s5387 100% 6.3 100% 7
100% 6.3 100% 7

s9234 50% 1 50% 1
average 49% 4.7

selection, the algorithm is able to find an alternative for almost
half of the targets on average. The performance of usingState
signal selectionis similar to the random selection. This can
be because that the main goal ofState signal selectionis to
restore as many registers as possible over the whole design.It
does not target a specific region of the design.

In the next set of experiments, we investigate the perfor-
mance of debugging when various state information is avail-
able. The experimental results are summarized in Table IV. All
numbers are the average of 11 buggy benchmarks discussed
in Table II. The reference case for comparison is the case
where no state information is used (columns 2 – 4 of Table II).
The first column lists the four considered cases. The next two
columns summarize the number of suspects reduced and the
ratio of the number of sessions comparing to the reference
case. The fourth column is the ratio of traced registers to the
total number of registers, followed by the reduction on the
diagnosis runtime.

To demonstrate the advantage of the proposed UNSAT core
approach, we compare it with the X-simulation described
in [7] as shown in the first two cases of the table. In
these two cases, no hardware constraints are considered, i.e.
assuming all registers can be traced. From the table, we
can see that the UNSAT core approach outperforms the X-
simulation approach in all columns, particularly with respect
to the number of traced registers. This demonstrates thatthe
UNSAT core approach can achieve better performance with
less state information. In the second two cases, only debugging

with the UNSAT core approach is considered, as well the
trace buffer hardware constraints. However, in the third case,
the searching algorithm is not carried out to find alternatives
for non-traceable registers. Those registers are simply ignored.
Comparing the result of the case 3 and the case 4, we can see
that with the help of the searching algorithm, the debugging
has better performance. For example, the reduction of suspects
increases from 27% to 31%. This implies the effectiveness of
the searching algorithm.

In the last set of experiments, two variations of the ex-
periment setup are implemented to further investigate the
performance of the searching algorithm, namely, the search
window size (w) and the hardware group structure.

First, the algorithm is executed with four different
window size(w). The performance is summarized in Table V.
The first column lists the fourwindow sizeconsidered. The
second column shows the average number of targets of all
testcases. One can observe that as the window size becomes
larger, the number of targets is decreased. This is because that
more input/output values are applied when a larger window
is used, which provides extra information to imply values to
some targets that are unknown under the smaller window of the
trace. The third and fourth columns show the average number
of targets that are successfully found an alternative and the
success rate, respectively. In general, a higher success rate is
achieved as the window size increases. This is expected since
there are more candidates for selection and a longer trace is
used, which can restore values of more signals.

Next, three trace buffer group structures are tried to see
the performance of the searching algorithm.Config 1 is the
configuration in Table I.Config 2 and Config 3 have the
same number of traceable groups asConfig 1 does, but the
number of registers in each group is only half and quarter of
the size inConfig 1, respectively. For instance,Config 1 of
hpdmc has 32 groups of the size of eight registers;Config 2
has 32 groups of the size of four registers, whileConfig 3
has 32 groups of the size of two registers.

The success rate on finding an alternative is plotted in
Figure 8(a). As expected, since there are less traceable regis-
ters, more non-traceable registers cannot be replaced. Hence,
the success rate drops as the number of candidate becoming
less. Figure 8(b) depicts the average number of selected
traceable groups for generating implications. In general,more
traceable groups are required when each group contains less



TABLE IV
IMPACT OF STATE INFORMATION ON THE DIAGNOSIS

Cases % of % % of % of diag
susp. reduc. sess. traced sig. runtime reduc.

X-sim with 82% 79% 56% 77%no constraint
UNSAT with 85% 74% 16% 89%no constraint
UNSAT with 27% 90% 8% 15%no search
UNSAT with 31% 89% 10% 26%search

TABLE V
IMPACT OF WINDOW SIZES ON THE SEARCHING ALGORITHM

Window # of targets # of succ. Succ. rate
w=2 5 2 40%
w=4 4.8 2.3 48%
w=6 4.1 2 49%
w=8 3.6 1.7 47%

registers, such asConfig 1 andConfig 2 of s1453. However,
there are cases where less groups are required when smaller
groups are used, such asConfig 3 of s1453. In those cases,
the algorithm is not able to find alternatives for some non-
traceable registers that have the alternative previously.Hence,
the average calculated is done with less target registers.

VII. C ONCLUSION

Internal state information is important for silicon debug
because they can aid in pruning the suspect modules. However,
due to the hardware constraints, only a small proportion of
the registers can be traced during the execution. This paper
presents novel techniques to identify a more precise set of
registers as the suggested candidate for tracing. It considers the
hardware constraints and presents an approach to find alterna-
tive recommendation for non-traceable registers such thattheir
value can be obtained through implications of other traceable
registers. The experimental results show that the proposed
techniques can help silicon debug diagnosis methodologiesto
achieve good performance under the data acquisition hardware
limitation.
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