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Abstract—Silicon debug poses a unique challenge to the en-for debugging. To overcome this issue, two typedefsign-
gineer because of the limited access to internal signals ohé¢ for-Debug (DfD) techniques,scan-basedand trace buffer-
chip. Embedded hardware such as trace buffers helps overcan 5segtechniques, have been introduced. Scan chains provide
this challenge by acquiring data in real time. However, tra@ th | f all d states f | hile t
buffers only provide access to a limited subset of pre-seltd € value of all scanned states lor one cycie, while trace
signals. In order to effectively debug, it is essential to atfigure  buffers allow the engineer to trace a small number of states
the trace-buffer to trace the relevant signals selected fam the in consecutive cycles. Although these two techniques yreat
pre-defined set. This can be a labor-intensive and time-conming  enhance the observability of the chip, the proportion oknet

process. This paper introduces a set of techniques to autort@the  ynat can pe observed is still small compared to pre-silicon
configuring process for trace buffer-based hardware. First the verification

proposed approach utilizes UNSAT cores to identify signalshat o . . . . .
can provide valuable information for localizing the error. Next, it Once a silicon chip fails during test, an iterative post-
finds alternatives for signals not part of the traceable setsthat silicon validation process is launched to locate the r@atse

it can imply the corresponding values. Integrating the promsed as shown in Figure 1. Engineers start with setting up the

techniques with a debugging methodology, experiments shaliat  opyironment to capture appropriate data from the chip under
the methodology can reduce 30% of potential suspects with ast t while it i . Lti Th thi t of
low as 8% of registers traced, demonstrating the effectivesss of €St WHIl€ ILIS TUn In real-ime. then, this sparse amount o
the proposed procedures. acquired data is analyzed by the engineer to prune the error

candidates and also setup the next debug session. This time-
consuming and labor-intensive cycle continues until thet ro
cause of the failure is determined.

Several techniques have been proposed to automate the data

I. INTRODUCTION analysis process [5]-[7]. They analyze the acquired data to
determine the root cause of the error. Clearly, the quality o

Modern integrated circuit development cycles require sethose analysis is affected by the acquired data and it can be
eral different synthesis and verification stages befordi@ai more effective if the data contains useful information reljzg
prototype is manufactured. Each verification stage ensdbegs the error location. Hence, one question software solutions
its corresponding synthesis step did not introduce anyr&rreo silicon debug need to address is which set of signals is
(e.g. timing, functional, power). At the Register Trandfevel important for tracing. This includes which signals and egcl
(RTL), formal methods [1], [2] and simulation [3] approasheduring the execution run to trace. Note that acquiring tha da
are used to verify that the RTL model complies with its funcat run time can be time-consuming to setup and the data is
tional specification. However with the growing size of maderread out at slower speed. Therefore, it is desired to mimmiz
designs along with the prevalent use of intellectual priyperthe iterations of the data acquisition and have a concisefset
(IP), it is infeasible to achieve 100% functional verificati signals for tracing. Furthermore, since only a small préipar
coverage. In addition, time-to-market constraints onlgvala of the entire design can be accessed by DfD hardware, it is
finite amount of engineering resources to be dedicated tisvaimportant for any software solutions to be able to handls thi
functional verification. This limits the verification engi@er's constraint.
ability to ensure functional correctness. As a result, fiomal This work proposes two novel approaches and a ranking
bugs are introduced into silicon prototypes. In fact, mbwnt system to enhance the data analysis while considering the
60% of design tape-outs require a re-spin with more than halita acquisition hardware constraints. It first utilizes SAY
of these containing a bug due to logic or functional errofs [4cores to identify registers that may contain useful infdiora
Each re-spin dramatically increases the cost of a projedt ao help the diagnosis process. Since the UNSAT core relates
eats away the time-to-market. directly to the error, it can provide greater precision.@etly,

The main challenge of silicon debug is the limited oba searching procedure is proposed to find alternatives for
servability of the internal signals in the chip. Unlike preuntraceable states. The algorithm takes the hardware con-
silicon verification, only nets that are connected dire¢tly straints into account and finds alternative states among the
output pins can be observed which is generally insufficiepte-selected registers such that values of those registers

Index Terms—Silicon debug, post-silicon diagnosis, data acqui-
sition setup



B. Design for Debug Hardware Solutions

‘?g To increase observability of internal signals in the sitico
. — ) prototype, there are two main DfD techniques adopted in
; JTAG practice: scan chains and trace buffers.
: Scan chainsallow engineers to capture and off-load the
Refine ! 100110 . p
Capture Events I ! M value of scanned registers at a specific cycle. However-scan
1 out operation interrupts the execution of the chip becahse t
fNo { values stored in the registers are destroyed. In order tones

PR : the execution from the same point, the environment must be
: reset and restarted from the beginning of the test vector [8]
Trace bufferd9], [10] are another DfD technique that uses
;Yes an on-chip memory to record internal signals. As shown in
! Figure 2, a trace buffer contains control logic, called ddg
Data Analysis logic (e.g., embedded hardware assertions), employedrfor o
”””””””””””””””” ‘ line monitoring of circuit behavior. Once the trigger catimh
Fig. 1. A typical silicon debug flow is asserted the on-chip memory can start/stop recording the
logic values of the selected signals into buffers, whichdsiby
range from 8K to 256K. Subsequently, the recorded data can
imply the untraceable ones. The proposed searching aigoritbe read via a low-bandwidth interface, such as boundary. scan
is memory efficient because only a small window of thBue to the limited size of this on-chip memory, only a set of
complete silicon trace is analyzed. Finally, since in pcact pre-selected signals can be traced. Those pre-selectealsig
only one register group can be traced at a time, a simg@ee divided into groups and connected to the on-chip memory
ranking system is suggested to prioritize the traceablisterg through a multiplexer. During execution, only one group can
groups according to the result from the proposed analysis.be selected and traced at a time. The traceable signals are
Experimental results show that when the available hardwaygically manually selected by the designer. Recentlygsav
is complemented with the new techniques, the data analyalgorithms have been developed to automate the selection
methodology can reduce, on average, 30% of the numberpobcess [11]-[13]. In those works, authors try to select a
suspects that the engineer needs to investigate. Thistreducsmall set of signals such that their values can restore a
is achieved with only 8% to 20% of registers traced. significant amount of untraceable states. For examplate
The remaining paper is organized as follows. Section s$ignal selectiorproposed in [11] conducts structural analysis
summarizes prior work on hardware and software solutions the circuit. Then, it calculates the restorability of reis
for silicon debug. Section Il and Section IV illustrate thew to determine the signals to be traced.
approaches for selecting signals to be traced in runtimen;Th
a simple ranking system to determine the pre-selected group
for tracing is presented in Section V. Experimental resulfs. Automated Data Analysis

are presented in Section VI, followed by the conclusion in ajhough DD hardware enhancement increases the observ-
Section V1. ability of internal signals, there is a lack of techniques to
automate the data analysis process on the acquired data, e.g
Il. BACKGROUND the data analysisstep in Figure 1. Recently, there has been an

Silicon debug involves hardware and software componengfort to develop methodologies to aid the engineer in other
The hardware components consist of DfD hardware that if@rts of the silicon debug process besides data acquisition
proves signal observability. The software componentainel ~ Caty et. al. [5] and Yen et. al. [14] both perform silicon
the automated debugging tools and the test environmerp se#§bug by analyzing the data collected from scan chains. The
to collect and analyze the data from the tester. In the fotigw fprmer uses the data to determine the failing registers @t ea

subsections, we briefly introduce notation and review some tyneframe and then conducts back-tracing and forwardrtgac
this background material. from those registers to narrow down the potential root cause

candidates. The latter proposes a similar approach. They us
) the scan chain data to identify the portion of the trace where
A. Notation the error is sensitized. Then, the suspect list is pruneagusi
In this work, we consider a sequential circuit with primaryoth the path-tracing method [15] and simulating the faulty
input setx = (x,---,Xm), register set§ = (sy,---,sp), and value of the suspect in the golden model.
primary output setO = (01,---,0n). Sequential circuits are  Yang et. al. [7] propose a software solution to silicon debug
modelled inlterative Logic Array(ILA) representation. The that utilizes trace buffers. It analyzes the acquired data t
design is unfolded over time to maintain the state transitia@iscovering the root-cause of chip failure in both spatiad a
information. Throughout this paper, the superscript of m-sy temporal domains. At the end of each debug session, if the
bol refers to the cycle of the unfolded circuit. For examplepot-cause is inconclusive, the methodology provides ssgg
X2 represents the set of the primary input in the second cyctmns on the data acquisition setup of the sub-sequent debug
x% refers to the primary inputy in the second cycle. We alsosession. However, it assumes that all registers can bedttgce
let symbolT; denote thda-th simulated cycle. the trace buffer which is impractical. In practice, the nemb
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1§ Vector Response {g, h}
{abc} | Correct | Erroneous
(V) (Ocorr) (Oerr)
100 11 11
JTAG 110 11 11
oot 111 11 00
Fig. 2. Trace buffer configuration (a) Erroneous Circuit (b) Test vector sequence and re-
sponse. The initial value dfd, e,
f}is 000

of registers that are traceable are limited. Consequethily, Fig- 3.  Example erroneous circuit. The correct implemémtabf gate
constraint can greatly affect the performance of [7]. ¢ =OR(a, b) is &' =AND(2, b)
Formal methods are used in [6] to restore the state informa-

tion when a chip fails the test. It starts from the crash siate sjgnals. To make the most efficient use of this hardware, the
computes the states backward in time. Signatures are e@ptngineer uses two major criteria for selecting signals tuiae
during the chip execution and used to determine a unique Ofiding trace buffers:

small set of possible predecessor states that leads todkbk cr
state. It requires additional hardware structures to cdenpu
signatures before they are stored in the trace buffer.

1) Signals that are related to the error source or provide
valuable information to aid in pruning suspects.

2) Signal selection needs to comply with the hardware
constraints. As discussed in Section II-B, in most real-

D. UNSAT Cores word designs, only a small set of hard-wired signals can

This work utilizes the use of UNSAT cores to find sug-  0e traced during the execution.
gestions for the data acquisition setup. A brief overview of In the next subsection, an algorithm that utilizes the proof
UNSAT cores is give in this section. trace generated by SAT solvers to identify registers that ma
Given a set of Boolean variables|iteral is an instance of contain useful information to aid debugging is presented.
the variable or its negation. An SAT instance @onjunctive
Normal Form(CNF) is a conjunction otlauseswhere each A. Registers Identification with UNSAT Cores
clause is a disjunction of literals. An SAT instancesitisfied  Ag discussed in Section 1I-D, an UNSAT core of an un-
if there exists an assignment over variables such that@lbels satisfiable SAT problem is a subset of clauses that is also

are evaluated to be true. That is, at least one literal in eaghsatisfiable. Assume that there is a golden model, such as
clause is evaluated to be 1. _ a high-level behavioral model, available during the debug t

If such an assignment cannot be found, the SAT instancenivide correct responses of the design. Note, althoughisn t
unsatisfiedIn this case, any subset of clauses in the instangghavioral model we do not have access to the data on every
Modern SAT solvers [16]-[18] can produce UNSAT cores astfie data/address buses, as well as the essential contelssig

result of finding an instance to be unsatisfiable. The folf@vi that steer the data through the data-path, can be monitored.

core. - the correct output respons@, the CNF formulaC- X - O is
®=(ath) (a+c)-(b+7)-(@)-(c) unsatisfiable due to the contradiction between the err@eou
UNSAT core= {(a+c¢),(a),(T)} output response and the correct output response. Intlyjtive

o ) ) the contradiction can occur at any signals along the paths
An unsatisfied SAT instance can have multiple UNSAFom the actual fault location to the output where discreges

cores. Each represents a situation where the CNF formyla gpserved. Therefore, signals associated with clangés i
is unsatisfied. Additional UNSAT cores can be obtained QynSAT cores have to be one of the followings:

performing relaxation on the current UNSAT core clause$.[19
In summary, each relaxible clause in the UNSAT core is aug- .

L o ; . - « Nodes along the error propagation paths
mented with a distinct relaxation variable. Additionaludas . Side inputsgt]o the errofprgpggaltionppaths

are added to the CNF to ensure assignments to relaxatio . . . :
9 I%:Iearly, those signals can be potential locations for trgci

variables complied with one-hot property, i.e. one and onl o ) .
one relaxation variable is assigned to 1. gggigr:owde information about the erroneous behavior of the

« Nodes that excite the error

I1l. DATA ACQUISITION SETUP Example 1 Consider the circuit shown in Figure 3(a). As-
Due to the insufficient observability of internal signalssume the error is atl’ , which should bal' =AND( a, b) . The
selecting which set of signals to observe is a key step test vector and the correct/erroneous response are shown in
the silicon debug process. Trace buffer-based DfD hardwdfigiure 3(b). Since the circuit is erroneous, the CNF formdba
provides the engineer great flexibility in the choice of &@&c = C- X - Ocorr, IS unsatisfiable. An UNSAT core of the problem
signals. However, they can only trace a limited subset of



Implication Implicatior, Algorithm 1 Identifying registers for tracing using UNSAT

cores
Y g 1: C := The erroneous design
T —\ : X = Input vectors
/Y /Y . O := Output vectors
P =C-X-0
Tk-1 Tk

2
3
01---0p 4
Tw - - Tor - Tew 5. procedure IDENTIFY TRACEDSIGNALS(®P)
6: Uinit:= Solve ® and extract the UNSAT core
Fig. 4. An unfolded circuit fromTli_y t0 Tiw 7: U — Uinit
8: while @ is unsatisfiabledo
9: relax on clausegc|c € Upir and ¢ is an input
vector unit clausg
{(thd/z) ) (ﬁers) ) (@Jre(g). 10: Unew+— Solve ® and extract the UNSAT core
I 11: U — UYU Unew
(A+et+gY) - (€3+¢€")- (b%)-(c*)- (g%} (1) 122 end while

13: while @ is unsatisfiablado

Therefore, signals that should be traced afeat frame 3 _
relax on clauseqc|c € Uiy and c is an output

(from the clauséd’2+d3) ) ande at frame 4 (from the clause ;
response unit claude

a3 A
(e5+€7). 15: Unew < SoOlve ® and extract the UNSAT core

Algorithm 1 shows the overall algorithm. It starts with16: U — UY Unew
obtaining the initial UNSAT core Uit in line 6). Then, the 17:  end while _ _
algorithm tries to obtain more UNSAT cores by relaxation as8: K < extract registers irt/
summarized in Section II-D. First, it relaxes unit clauses i19: return X,
Unit that represent input vectors (line 9) until the problem ig0: end procedure
SAT. Next, it repeats for unit clauses Wi,y that represent
output responses (line 14). Since each UNSAT core can
represent different error propagation paths, differeghais certain window of timeframegTc_w- - Tciw}, Wherew is
can be included. To ensure all paths are considered, the uriloe window size Those traceable registers are referred to as
of all UNSAT cores is taken as shown in line 11 and line 16andidate registersAs shown in Figure 4, the value
in the algorithm. Finally, registers associated with Valea in can be restored in three ways: (1) forward implication, (2)
the UNSAT cores are the potential locations for tracing.  backward justification or (3) combination of (1) and (2).

To solve this problem, we formulate a SAT instance that will

Example 2 Continue from Example 1, another UNSAT coreearch for assigned values to candidate registers thatheg
can be obtained by relaxingfo Let r; be the relaxation with the input/output trace, imply to the target registeneT
variable, the relaxed clause of {gis (g* + r1) and an alternative for the target register consists of those setec
additional clause (1) is added to the originakb. The new candidate registers. The detail of the formulation is giiren
UNSAT core is the following subsections.

{(ngd/l) ) (ﬁ+d2) ) (@jLe/z).(@Jres). A. Problem Formulation
TS5 U2\ 3 A3\ (A3 3\ (B 93, 3 The basic problem formulation is presented in this section.
(b_2+d_)'(d/2+d )'E3+e( ) (€+e%+15) In order to indicate whether a candidate register is sedecte
(A+h4+ 4. (2414 (ah)- (b)) - (ch)- (M)} (2) for generating an implication, new variables are added for
every candidate register. We use the notatios {I1,l2, -}
to label those variables. The formula contains two compt:en
as expressed as:

The new list of register-to-be-traced contaihat frame 2, 3,
e at frame 3, 4 and at frame 4.

IV. ALTERNATIVE SIGNAL SEARCHING k+w k4w

g .
The algorithm bENTIFYTRACEDSIGNALS from the previ- ®= _J:| ®e(L, X!, Ooprn Sicnown EN(, U Ly e

ous section selects a list of registers that may containutisef = J=kew

information about the behavior of the faulty chip. Howewas,  The first component models the design from timeframe

mentioned in Section 1I-B not all registers can be tracedwiflk—w t0 Tisw. Intuitively, each®! represents a copy of the

the trace buffer. In this case, one can try to obtain the valeeroneous design at timefranjewith the vectorx! and Oy

of non-traceable registers indirectly by implication @sother enforced. Previous traced register value§, {,) are also

traceable registers. used to constrain the problem, since they may be helpful
Consider a circuit modelled in the ILA representation showin generating implications. As will be explained in the next

in Figure 4. The goal is to find registers that can implgubsection, special CNF models are required for the target

the non-traceable register, target register denoted% (sy register and candidate registers.

at timeframeTy). Since % cannot be traced directly, we The valuew is user-defined, but also depends on the size of

want to restore its value with traceable registers within the trace buffer. We can setsuch that &+ 1 = buffer depth



>C 1: cond; = (s # X) OR (a # X)
2: condy := (s =a)OR (s = X) OR (a = X)
3: condy AND conds is TRUE
(a) Schematic (b) Model Syntax

Fig. 5. The model of target registers

1: if I then
| 2: (s = a) is TRUE
3: else
s é al 4 condy := (s # X) OR (a # X)
>0 5 condy :=(s=a) OR (s =X) OR (a = X)
6 cond; AND condy is TRUE . o
7. end if Fig. 7. ILA of the example circuit in Figure 3(a)
(a) Schematic (b) Model Syntax

Fig. 6. The model of candidate register
shown in Figure 6(a). The variablereferred to aselect vari-
able determines whether the register connects to its fanout.
to fully utilize the memory space of the trace buffer. HowWhen| equals 0, the network remains the same (line 1-2 in
ever, largemw's can increase the computation complexity anfiigure 6(b)). When equals 1, the register is disconnected
memory consumption, since there are more candidate regjisféom its fanout and allow the SAT-solver to assign 0/1 to the
for selection and a larger portion of trace is analyzed. Tigéther end of the break. This enables the possibility totifien
flexibility of w allows the user to adjust it according to thdorward/backward implications. Similar to the model forgat
available resources. registers, at least one of the two variables at the discdadec
The second ComponeEN(UT+W LJ) constrains the num- ends must have a non-unknown value. If both ends have non-
ber of selected candidate registers. The detail of the nomst Unknown values, the values must be the same.
tion can be found in [20]. To find the minimum number

of candidate registers required for implications, it statte Example 3 Figure 7 shows a portion of the ILA of the

constraint from one active select variable and incremedrds lexample circuit in Figure 3(a). Assume that traceable regis

value up to the total number of the select variables, untilge d and f, and the target register i$.eLet the value of

solution is found. the input/output trace as shown in the brackets next to the
At the end, each solution of the problem is one implicatiofiariables. The candidate registers ape®, °, d°, 6, d7, 71,

for the target register. Candidate registers of which thecse which are modeled as shown in Figure 6 with six additional

variable () is active are the necessary registers to genergiglect variables{|*---18}. One can verify that the value of e
the implication. Note that the algorithm identifies not ot  can be restored if the value of ds known.

registers, but also the timeframe where those registersitare
to generate the implication.
In the next subsection, the models for target registers and
candidate registers are described. C. Formulation Improvements

As shown in Figure 2, typically, traceable registers are
divided into groups. When configuring the trace buffer, one
group of the traceable registers is selected and traced for

Target registerand candidate registersieed to be encodedseveral timeframes. With this observation, we can reduee th
specially in the CNF formula in order to solve the problernumber of select variables for the candidate registersedils
In this section, models applied to these two types of registef introducing one distinct select variable for each caathd
are discussed. register, all registers in the same group can share the same

Target Register. The goal of the target regists'gv is to have select variable. Furthermore, the same register in diftere
a non-unknown value. The implication can come from twtimeframes can share one select variable as well. In Exa&ple
directions: forward propagation from assignments in thhbega assumingd and f are in different groups, the number bB$
timeframe, or the backward justification from assignments tan reduce to two, e.gl®>,d® d’ share oné, while f° 6 f/

a later timeframe. Hence, the target register is modelled stsare another one.

shown in Figure 5. A extra signal is introduced to disconnect The second optimization is to find implications for a group
ég from its fanin. The syntax of the model is shown irof target registers. As mentioned in Section Ill-A, target
Figure 5(b).cond (line 1) ensures that a non-unknown implivegisters identified by the proposed method are correlated t
cation is generated by either forward implication or bacdldvaeach other. Hence, if there exists an implication for one of
justification. conc gives the flexibility that the implication the target registers, the same implication may as well imply
only needs to be satisfied from one direction. Furthermére the value of other target registers. By grouping severajetar
there are implications from both directions, the impliedliea register together, the number of executions of the seagchin
have to be the same. algorithm can be reduced. As a result, the overall runtime is

Candidate Register Candidate registers are traceable regiseduced. However, it is a trade-off between the runtime bhad t
ters that the SAT solver can assign 1/0 when they are selectecision of solutions, because more traceable registess m
For each candidate register, two variables, are introdasedneed to be selected when multiple registers are targeted.

B. Register Modelling



TABLE |

TRACEABLE REGISTER GROUP INFORMATION -11 §how the performqnce of_the_ gnalysis with the prop.osed
techniques. Each row is one individual case that contains a
Circ. || Total reg. | # of groups | # of reg./group] Perc. different bug in the design. A single random functional erro
spi 160 8 8 40% (wrong assignment, incorrect case statement, etc) istegser
hpdmc 453 16 8 28% . he RTL code. The final < th ; ¢
usb 2054 32 16 2504 into the RTL code. The final row is the geometric mean o
S1423 74 6 6 29% the data in columns. In the experiment, the analysis pesorm
$5378 179 ! 8 31% the model-free diagnosis for one hierarchical level in each
59234 211 8 8 30%

debug session. The total number of modules returned at the
end of the debug sessions is shown in columns two and five.
This is the sum of the number of modules that the engineer
needs to investigate after each debug session. As shows in th

The algorithms described in previous sections identify retable, with state information the debugging tool can effety

isters that should be traced to provide more informatiorhen teliminate more false candidates in all cases. The percentag
error. Since registers are selected by groups at the end whesluction on the number of suspects, e.g. comparing column
configuring the trace buffer, we describe a simple rankirfiye and column two, is listed in column six. The reduction
system to prioritize the traceable register groups acogrth can be as high as 98% and an average of 31% reduction is
the result from the proposed algorithms. achieved.

« Rule 1: The group that contains the most registers re-Columns three and seven show the number of debug ses-
turned by the algorithmdENTIFYTRACEDSIGNALS has Sions performed. About one third of cases require less debug
higher priority. This is because those registers are djrecf€ssions to find the root cause of the error, for example,
related to the error source. Their values may contain md8¢ Second case api, hpdnt and both cases afbs. The
useful and direct information. number of registers traced by the trace buffer is shown in

« Rule 2: When searching alternatives for non-traceaff@lumn eight. Those numbers are small compared to the
registers, different target registers may require difieretotal number of registers shown in Table I. The benefit of
traceable groups. If a group is being selected at high&€é Proposed technique is shown when one considers the
frequency than others, it gets a higher rank. Intuitiveljeéductions in both the number of suspects and the number
this group contains registers that have a higher chancedodebug sessions. o o
provide implications to non-traceable registers. Finally, the runtime of the debugging is summarized in

« Rule 3: A higher rank is assigned to the group th&olumn four and columns 9-11. Because of the reduction
needs to be traced for more timeframes. This is simply & Suspects and debug sessions, the runtime for diagnosis
efficiently utilize the memory space of the trace buffer.iS also reduced in the case of the proposed methodology.

The runtime is 52% less on average (from 1426s down to
684s). The runtime on searching the registers for tracing is
recorded in column 10. This is the additional computation

In this section, experiments on OpenCores.org designs aeduired by the proposed methodology. As shown in the

ISCAS’'89 benchmarks are presented. Minisat [18] is used t&ble, it can be significant in cases, suchhadnt. This is
the underlying SAT-solver. Experiments are conducted onbacause the algorithm has a higher failing rate on finding the
Core 2 Duo 2.4GHz process with 4GB Memory. recommendation for the non-traceable registers in thosesca
To emulate the real trace buffer hardware structure, a sub$ae detail on the performance of the searching algorithrh wil
of registers of each design is selected randomly, oSkgte be discussed later. Overall, the total runtime of the prepos
signal selection[11], as traceable by the trace buffer andnethod is about 1.43 times longer than the runtime when
they are divided into groups. The grouping configuration iso state information is used. However, since the number
summarized in Table I. The first column lists the benchmadf the final suspects is reduced significantly, this add#ion
used in the experiments. The second column of the table shawstime may be acceptable if the time saved from the manual
the total number of registers in each design. Columns thrde dnspection of less suspects is greater.
four have the number of the register groups and the number oNext, we discuss the performance of the alternative search-
registers in each group, respectively. Column five shows thy algorithm. Clearly, the performance of the algorithm de
percentage of total registers that can be traced. pends on the available traceable signals. Some signals atay n
In addition, as mentioned in Section IV-C, several targék able to restore at all if the necessary registers are asdr
registers can be combined into one search execution to eedhbi@nce, in addition to selecting the traceable registergariyg
the runtime. In our experimental setup, the target register another approacttate signal selectignis also usedState
every four timeframes are targeted together. For desigms fr signal selectiorselects registers that their values have a higher
OpenCores.org, test vectors are extracted from the tedibepotential to restore other unknown registers. However, due
provided by OpenCores.org. Test vectors for ISCAS’'89 ate the technical implementatiorgtate signal selectioonly
generated randomly. In both cases, the trace length is batwbandles ISCAS benchmarks. The results are summarized in
100 to 300 timeframes. In the experiment, wewgtdow size Table Ill. The second and fourth columns of Table Il show
(w) to be six timeframes. the percentage of targets that the search algorithm sifatigss
Table Il summaries the performance of debug analysis undierds alternative recommendation. The number of traceable
two situations. Columns 2 — 4 show the performance of thiegister groups selected in order to generate applicagon i
analysis with no state information available, while col shown in columns three and five. In the case of the random

V. GROUP RANKING

VI. EXPERIMENTS



TABLE Il
PERFORMANCE OF DEBUGGING WITH PROPOSED TECHNIQUES

With no state information With proposed methods
Circ. # of # of Runtime (s) || # of % # of # of [ Runtime(s)
susp. | sessions Diag. susp. | reduction | sessions| traced sig.| Diag. | Search] Total increased
<pi 146 11 1990 73 50% 11 24 828 | 1011 0.92
P 144 11 179 76 48% 9 32 101 94 1.09
hodme 1| 213 17 3817 170 21% 17 40 2323 | 15734 473
P 167 16 2321 131 22% 15 40 1963 | 14233 6.98
ush 103 15 3795 38 74% 11 64 1609 | 9218 2.85
224 14 7091 138 39% 7 128 4245 | 18519 3.49
s1423 || 438 6 847 13 98% 6 6 19 28 0.06
506 6 768 148 71% 6 18 452 36 0.64
<5378 || 103 6 549 92 11% 6 16 456 | 288 136
191 6 1577 164 25% 6 32 1505 | 634 1.36
s9234 || 83 6 1042 74 11% 6 16 1011 | 1553 2.46
average]] 179 | 9.5 | 1426 || 83 | 31% | 84 | 28 [ 684 | 1012 | 1.43
TABLE IIl . . .
PEREORMANCE OF THE SEARCH ALGORITHM with the UNSAT core approach is considered, as well the
trace buffer hardware constraints. However, in the thirseca
Circ. Ft*a”iom . State ?'9”:] Se'%Ctlonl the searching algorithm is not carried out to find alterrestiv
Sulcgc')(;ae| Cags' sel.]] succ. rate] # cand. el for non-traceable registers. Those registers are simplyrag.
B (] . - - .
spi 100% 4 . . Comparing the result of the case 3 and the case 4, we can see
hpdme 25% 11 - - that with the help of the searching algorithm, the debugging
i‘ggf 181 - - has better performance. For example, the reduction of stspe
ush 6%° 8 ) ) increases from 27% to 31%. This implies the effectiveness of
<1423 100% 1 100% 2 the searching algorithm.
100% 3.5 100% 4 In the last set of experiments, two variations of the ex-
100% 6.3 100% 7 ; ; : :
s5387 100% 63 100% 7 periment setup are implemented to further investigate the
S9734 50% T 50% T performance of the searching algorithm, namely, the search

average][ 49% | 47 | window size (w) and the hardware group structure.

First, the algorithm is executed with four different
window size(w). The performance is summarized in Table V.
. : . ! . The first column lists the fouwindow size considered. The
selection, the algorithm is able to find an alternative fmtﬁt second column shows the average number of targets of all
h_alf of the targets on average. The performanc_e of USIBYE (osicases. One can observe that as the window size becomes
signal selectioris similar to the random selection. This can, qer the number of targets is decreased. This is bechase t
be because that the main goal $ffate signal selectiors 10 e jnputioutput values are applied when a larger window
restore as many registers as possible over the whole désigiy \seq which provides extra information to imply values to
does not target a specific region of the design. some targets that are unknown under the smaller window of the

In the next set of experiments, we investigate the perfaface. The third and fourth columns show the average number
mance of debugging when various state information is avaif targets that are successfully found an alternative aed th
able. The experimental results are summarized in Table IV. Auyccess rate, respectively. In general, a higher successsra
numbers are the average of 11 buggy benchmarks discusgesiieved as the window size increases. This is expected sinc

in Table II. The reference case for comparison is the cagfre are more candidates for selection and a longer trace is
where no state information is used (columns 2 — 4 of Table Il}sed, which can restore values of more signals.

The first column lists the four considered cases. The next tWONext’ three trace buffer group structures are tried to see

columns summarize the number of suspects reduced and e performance of the searching algorithi®onfi g 1 is the
ratio of the number of sessions comparing to the referenggnfiguration in Table 1Config 2 and Config 3 have the
case. The fourth column is the ratio of traced registers ¢ tgame number of traceable groupsCasfig 1 does, but the
total number of registers, followed by the reduction on theumber of registers in each group is only half and quarter of
diagnosis runtime. the size inConfi g 1, respectively. For instanc€pnfig 1 of

To demonstrate the advantage of the proposed UNSAT chi@nt has 32 groups of the size of eight registe@sfig 2
approach, we compare it with the X-simulation describduas 32 groups of the size of four registers, wiibnfig 3
in [7] as shown in the first two cases of the table. lhas 32 groups of the size of two registers.
these two cases, no hardware constraints are considezed, i.The success rate on finding an alternative is plotted in
assuming all registers can be traced. From the table, Wirgure 8(a). As expected, since there are less traceable reg
can see that the UNSAT core approach outperforms the ¥rs, more non-traceable registers cannot be replacedteien
simulation approach in all columns, particularly with resp the success rate drops as the number of candidate becoming
to the number of traced registers. This demonstratesttigat less. Figure 8(b) depicts the average number of selected
UNSAT core approach can achieve better performance wittaceable groups for generating implications. In genenale
less state informatiarin the second two cases, only debuggingzaceable groups are required when each group contains less




TABLE IV
IMPACT OF STATE INFORMATION ON THE DIAGNOSIS

Cases sus[;/)o. (rJ(faduc. s?e/oss. trazoe((jjfsig. ru:ft]ingtedri:guc.
UNSSeAE;I; Cvr\]/ith 31% 89% 10% 26%
TABLE V

IMPACT OF WINDOW SIZES ON THE SEARCHING ALGORITHM

Window [ # of targets| # of succ.| Succ. rate

w=2 5 2 40%
w=4 4.8 2.3 48%
w=6 4.1 2 49%
w=8 3.6 1.7 47%

registers, such &nfi g 1andConfig 2 ofs1453. However,

there are cases where less groups are required when smaller

groups are used, such @snfig 3 of s1453. In those cases,
the algorithm is not able to find alternatives for some non-
traceable registers that have the alternative previotignce,
the average calculated is done with less target registers.

Internal state information is important for silicon debudig. 8.
because they can aid in pruning the suspect modules. Ho,vve\z%

due to the hardware constraints, only a small proportion o
the registers can be traced during the execution. This paper

VII. CONCLUSION

presents novel techniques to identify a more precise set fg]
registers as the suggested candidate for tracing. It cersside
hardware constraints and presents an approach to findaltern
tive recommendation for non-traceable registers suchthieat

value can be obtained through implications of other traleeab

registers. The experimental results show that the propos&d

[9

techniques can help silicon debug diagnosis methodoldgies
achieve good performance under the data acquisition haedwg1i]
limitation.
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