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Abstract. Influence maximization in the continuous-time domain is a
prevalent topic in social media analytics. It relates to the problem of iden-
tifying those individuals in a social network, whose endorsement of an
opinion will maximize the number of expected follow-ups within a finite
time window. This work presents a novel GPU-accelerated algorithm that
enables node-parallel estimation of influence spread in the continuous-
time domain. Given a finite time window, the method involves decom-
posing a social graph into multiple local regions within which influence
spread can be estimated in parallel to allow for fast and low-cost compu-
tations. Experiments show that the proposed method achieves up to x85
speed-up vs. the state-of-the-art on real-world social graphs with up to
100K nodes and 2.5M edges. In addition, our optimization solutions are
within 98.9% of the influence spread achieved by current state-of-the-
art. The memory consumption of our method is also substantially lower.
Indicatively, our method can achieve, on a single GPU, similar running
time performance as the state-of-the-art, when the latter distributes ex-
ecution across hundreds of CPU cores.
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1 Introduction

Influence maximization is one of the dominant topics in viral marketing. It per-
tains to the problem of identifying a subset of the population that, within a
certain time window (deadline), can trigger the maximum number of expected
follow-ups in a given network. Understanding the temporal dynamics of influence
diffusion is of paramount importance to marketing departments, as it enables
them to plan their campaigns operating within strict time-sensitive constraints.

The problem of influence maximization has been extensively studied in the
discrete-time domain with infinite deadlines [15, 9, 1, 10, 7]. However, optimizing
influence spread over infinitely long time horizons does not always reflect realistic
scenarios. For example, a marketer often wishes for an opinion to become viral
in a matter of minutes or days, not decades.

© Springer International Publishing AG 2017

DOI: 10.1007/978-3-319-62701-4_12
P. Perner (Ed.): ICDM     2017, LNAI 10357, pp. 151–165, 2017.

151



As such, maximizing influence spread within finite (and often short) time
windows is a variant of the problem which is closer to real world needs. En-
forcing such time-sensitive constraints requires influence diffusion models that
accurately capture the temporal dynamics of the process to predict how future
events unfold in time. A sequence of recent studies on real world data highlights
the superiority of continuous-time models over discrete-time ones in expressing
the temporal properties of influence diffusion [4, 5, 12, 16].

Motivated by these findings, recent work [6, 3] introduced continuous-time
generative models to address influence maximization within finite time windows.
The authors have modelled node-to-node influence propagation by transmission
rates obeying densities over time, and designed methods for computing exact
and approximate influence spread. The method that computes exact spread [6] is
not scalable; influence spread from a particular node is computed over the whole
network. Yet, in the continuous-time setting, influence decays rapidly towards
the network regions that are further away from the source. As such, a big fraction
of the computations is wasted analyzing regions of the graph where influence is
minuscule or zero, especially when the influence deadline is relatively short.

Based on this observation, we propose a novel approximation method that
uses deadline constraints to identify, for each node, a local graph region where the
volume of its influence is restricted. The method entails an inexpensive prepro-
cessing step that extracts a decomposition of the social graph into possibly over-
lapping trees, where the influence of each node is restricted within its own local
tree region. This enables us to avoid exhaustive graph inference, thus speeding-up
computations with minimal impact on accuracy. Further, it enables GPU-based
parallelization, since the influence spread of each node can be computed indepen-
dently within each local tree region. We build upon this node-level parallelism
and harness the parallel processing capacity of commercial-level GPUs to achieve
orders of magnitude faster computations than the current state-of-the-art.

Efforts to address the scalability issue have also been taken up by the authors
in [3], where an approximation method is developed and shown to be orders
of magnitude faster compared to exact inference [6]. This speed-up, however,
comes at the cost of enormous memory consumption, which hampers GPU-based
acceleration. Indicatively, for social graphs with millions of edges, the method
necessitates the instrumentation of massive clusters consisting of 192 CPU cores.
Consequently, it is not suitable for parallelization using inexpensive alternatives,
such as (multi-) GPU systems. The application of GPUs to this problem has been
previously explored [13], but is restricted solely to the discrete-time domain.

2 Preliminaries

Our work is based on the continuous-time generative model for network diffusion
that has been introduced in [6]. Given a social network, modeled as a directed
graph G = (V, E), the influence propagation process begins from an initial set
S ⊂ V of source nodes, referred to as the seed set. The seed set is assumed to be
influenced by means of adopting an opinion at time zero.



Influence propagates via directed edges from the seed nodes towards their
out-neighbours. The newly influenced nodes influence their out-neighbours in
turn, and this process continues. An influenced node is assumed to remain in-
fluenced for the entire duration of the diffusion process. Consequently, the node
that influences a given node at the earliest time will be its parent in the in-
duced influence propagation graph (also called the cascade), effectively imposing
a Directed Acyclic Graph (DAG) cascade structure, even if G contains cycles.

The spread of influence from a node u to an out-neighbour v is assumed
to consume random time, drawn from a conditional density function fuv(tv|tu).
This models the time it takes for node u to influence node v at time-stamp
tv given that node u has been previously influenced at time-stamp tu. These
transmission times can be distributed differently across the edges, but they are
assumed to be mutually independent. We further assume that the transmission
function fuv(tv|tu) is shift invariant: fuv(tv|tu) = fuv(τuv), where τuv := tv − tu,
and nonnegative: fuv(τuv) = 0 if τuv < 0. Examples include exponential and
Rayleigh distributions. Consequently, each directed edge (u, v) ∈ E is associated
with a density function fuv(τuv), which models the time it takes for u to influence
v (independent of the actual timestamps when u and v are influenced). Because
of the mutual independence assumption, one obtains a fully factorized joint
density of the set of transmission times p({τuv}(u,v)∈E) =

∏
(u,v)∈E fuv(τuv).

An useful property of the above continuous-time Independence Cascade (IC)
model is that, for a given sample of edge weights corresponding to their respec-
tive transmission times, the time tu taken to influence a node u is the length
of the shortest path in G from the seed set S to node u. This shortest path
property is leveraged for influence spread estimation in [3] and is also utilized
in the work presented here, as it reduces the problem of approximating influ-
ence spread to a well-studied graphical optimization problem, namely that of
finding shortest paths. Because of this property, the infection times {tu}u∈V
can be obtained from the transmission times {τuv}(u,v)∈E via the transformation
tu = gu({τvw}(v,w)∈E) := minq∈Qu

∑
(v,w)∈q τvw, where Qu is the collection of

all directed paths in G from each of the source nodes to u, and gu(·) is the value
of the shortest-path minimization. With this setup, one can then compute the
probability of u being influenced within the deadline T as

Pr{tu ≤ T} = Pr{gu({τvw}(v,w)∈E) ≤ T}.
By standard definition [6], the influence spread ι(S, T ) of the seed nodes S in
the deadline T can then be computed as

ι(S, T ) = E

[∑
u∈V

I{tu ≤ T}
]
=

∑
u∈V

E [I{tu ≤ T}] =
∑
u∈V

Pr{tu ≤ T}

=
∑
u∈V

Pr{gu({τvw}(v,w)∈E) ≤ T} = E

[∑
u∈V

I{gu({τvw}(v,w)∈E) ≤ T}
]
,

where I{·} is the indicator function, E{·} is the expectation function, and the
expectation is taken over the set of independent variables {τvw}(v,w)∈E . The sum
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Fig. 1: Extracting local regions in the IC model∑
u∈V I{·} in the above formula is essentially the influence spread of the seed

nodes for a given sample of transmission times {τvw}(v,w)∈E .
Finally, influence maximization is the problem of finding an optimal set S of

seeds of a fixed size C such that ι(S, T ) is maximized, i.e., we seek to solve

S� = argmax
{S : |S| ≤ C}

ι(S, T ). (1)

We take C (determined by budgetary constraints) as an input in this paper. It
is noteworthy that the above optimization problem is NP-hard in general.

3 Methodology

A fundamental step in maximizing influence is to compute the influence spread
of each node of the graph G. The most basic way of doing that, as suggested
by Equation 1, is via Näıve Sampling, where one generates a random sample of
{τuv}(u,v)∈E from the corresponding edge distributions {fuv(τuv)}(u,v)∈E , runs
a single source shortest path (SSSP) algorithm from each node, and computes
the influence spread of that node for that sample as the number of nodes whose
shortest distance from the source node is less than the deadline T . The process
repeats for several iterations (say, Ns times). On termination, the average spread
of each node across all Ns samples is computed. Due to its exhaustive nature,
Näıve Sampling is a costly process, as it runs a single source shortest path algo-
rithm from each node for each sample. Assuming Dijkstra’s algorithm at the core
of the process, the overall time complexity is O(Ns|V|(|E|+ |V| log |V|)), which is
prohibitively expensive. Space complexity is, however, minimal — O(|V|+ |E|).

Näıve Sampling is massively parallelizable across samples, but with shortcom-
ings. All samples need to be generated at once, which requires O(Ns(|V|+ |E|))
space. Moreover, it needs to run a SSSP algorithm from every node of the graph
to every other reachable node, which is redundant for smaller deadlines. Thus,
it is reasonable to identify, for each node, a “large enough, yet small” subgraph
wherein its influence within the deadline is primarily restricted to, and search
for its influence there (instead of the whole graph). We refer to this method as
Localized Näıve Sampling (LNS) (cf. Algorithm 1 and Algorithm 2). We obtain
such a subgraph for each node u by running Dijkstra’s algorithm from u with the
means of the edge distributions as the corresponding weights for each edge, and
keeping those nodes in the subgraph of u whose shortest distance from u in G is
“slightly greater” than T . Figure 1 depicts the process, and shows the subtrees



extracted for nodes u and v in the graph. The precise condition for deciding
whether to include a node v in the subgraph of u is mentioned in Algorithm 2
(Line 25). The explanation of the criterion and the choice of the free parameter
σ are explained further in the Appendix. The quantity V ar(u, v) in Line 20 of
Algorithm 2 is the variance of fuv corresponding to the edge (u, v) ∈ E .

Looking for the influence spread of each node in a smaller subgraph poten-
tially reduces computations. The subgraph we choose is a subtree of the shortest
path tree obtained when running Dijkstra’s algorithm. Computing shortest paths
in a tree for a given sample of weights is cost-effective, since there is exactly one
path from the source node to any other node. For a tree of size |L|, the time
complexity of computing the distance of each node from the root is O(|L|). Once
we extract a local subtree for each node, we generate multiple weight samples
for that subtree and compute the average influence spread of that node in that
subtree over all iterations. This process gives us an approximate spread for each
node, as opposed to its true spread under the IC model. However, it does not
largely affect the quality of the seeds obtained, as results in Section 4 show.

Assuming the size of each subgraph is bounded by |L|, the time complexity
of the serial version of LNS is O(|E|+ |V| log |V|+Ns|V ||L|), which in the worst
case is O(Ns|V |2), as |L| = O(|V |) in the worst case. But LNS is node-level
parallelizable (cf. Parallel Block in Algorithm 1), which leads, for the parallel
version, to a worst case runtime of O(|E|+ |V| log |V|+Ns|V |). This enables us
to achieve large reductions in time complexity primarily on large graphs (see
Section 4). The space complexity of our method is O(|V ||L|), which in the worst
case is O(|V |2), as we have to store all the local subgraphs for all the nodes.

Algorithm 1 Localized Näıve Sampling (LNS)

1: procedure LocalizedNaiveSampling(G, T , Ns, σ)
2: for u = 1 : |V| do
3: spread[u] = 0
4: Assign weights W to all edges of G equal to the

means of the corresponding edge distributions
5: dijkstraTree[u] = DijkstraTree(u,G,W, T, σ)
6:

Parallel Block :
7: for u = 1 : |V| do
8: for n = 1 : Ns do
9: Generate a sample of {τvw}(v,w)∈dijkstraTree[u]

10: for each node v in dijkstraTree[u] do
11: distance[v] = distance of v from u in dijkstraTree[u]
12: if distance[v] < T then
13: spread[u] = spread[u] + 1

14: spread[u] = spread[u] / Ns

15: return spread[]

In comparison, the state-of-the-art framework, ConTinEst [3], achieves its
superior runtime performance compared to traditional methods by employing a
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randomized version of Dijkstra’s algorithm [2]. This comes, however, at the cost
of space complexity. Specifically, the runtime to compute expected influence
across all nodes and all samples is O(Ns(|V| + |E|)), while space complexity is
O(Ns|E|) — a significant memory bottleneck, particularly for large graphs.

Algorithm 2 Dijkstra Trees

1: procedure DijkstraTrees(source, G, W , T , σ)
2: distance[source] = 0
3: variance[source] = 0
4: create vertex set Q
5: for u = 1 : |V| do
6: if u �= source then
7: distance[u] = ∞
8: variance[u] = ∞
9: parent[u] = UNDEFINED

10: Q.add with priority(u, distance[u])

11: while Q is not empty do
12: u = Q.extract min()
13: if distance[u]− σ ∗√variance[u] ≥ T then
14: break
15: for each out-neighbor v of u in G do
16: alt distance = distance[u] +W (u, v)
17: if alt distance < distance[v] then
18: distance[v] = alt distance
19: parent[v] = u
20: variance[v] = variance[u] + V ar(u, v)
21: Q.decrease priority(v, alt distance)

22: dijkstraTree = []
23: dijkstraTree.add([source, source])
24: for u = 1 : |V| except source do
25: if distance[u]− σ ∗√variance[u] < T then
26: dijkstraTree.add([u, parent[u]])

27: return dijkstraTree[]

To compute the joint influence spread of a set S of nodes, for each sample,
we mark the nodes that are influenced by each element s ∈ S. Then, we count all
such nodes that are influenced by at least one element of S; this count is exactly
the influence spread of S for that sample. We repeat the process Ns times and
take an average to obtain the expected influence spread of S. It can then be
shown that, over the local regions where our method operates, ι(S, T ) satisfies a
diminishing returns property referred to as submodularity : for S1, S2 ⊂ V with
S1 ⊆ S2 and u ∈ V \S2, it holds that ι(S1∪{u}, T )− ι(S1, T ) ≥ ι(S2∪{u}, T )−
ι(S2, T ). This implies that our method can be used as a subroutine in the greedy
algorithm that we describe below (cf. Algorithm 3).

Our goal is to find a set S of nodes of size C such that their combined
influence spread is maximum. Due to its intractability, the problem calls for



an approximation algorithm. For monotonic submodular functions, the greedy
algorithm described by Kempe et al. [9] is one such well-known approximation
algorithm. The algorithm is iterative, and at the ith iteration, adds to the seed
set Si−1 the node s ∈ V \ Si−1 that maximizes the marginal gain ι(Si−1 ∪
{s}, T ) − ι(Si−1, T ). We use LNS in each iteration of the greedy algorithm to
find such nodes. Because we approximate the influence spread ι(S, T ) by using
random samples drawn from edge distributions, we introduce a sampling error.
Fortunately, the greedy algorithm is tolerant to such sampling noise (see [3]).

Algorithm 3 Overall Algorithm

1: procedure InfluenceMaximization(G, T , C, Ns, σ)
2: for u = 1 : |V| do
3: Assign weights W to all edges of G equal to the

means of the corresponding edge distributions
4: dijkstraTree[u] = DijkstraTree(u,G,W, T, σ)

5: S = ∅
6: for i = 1 : C do
7: for u = 1 : |V| do
8: Call the Parallel Block in LNS to compute :
9: marginal spread[u] = ι(S ∪ {u}, T )− ι(S, T )
10: s = argmaxu∈V\S marginal spread[u]
11: S = S ∪ {s}
12: return S

As shown in [14], the above greedy approach obtains a seed set which achieves
at least a constant fraction (1 − 1

e ) of the optimal spread, provided the in-
fluence spread function is a monotonic submodular function. In the proposed
method, however, the influence spread function is not sub-modular under the
IC model. Thus, the approximation ratio cannot be claimed. However, there
are loose bounds that we can claim by showing that ι(S, T ) is approximately
submodular, based on the following definition.

Approximate Submodularity: For given ε ≥ 0, we say that a function
F : 2V → R is ε-approximately submodular if there exists a submodular function
f : 2V → R such that for every S ⊆ V :

(1− ε)f(S) ≤ F (S) ≤ (1 + ε)f(S).

Theorem 1 The influence spread ι(S, T ) is ε-approximately submodular under
the continuous IC model.

Proof. Consider f : 2V → R to be the influence spread function under the
continuous IC model when the whole graph is considered for computations.
The function f abides to the standard spread definition, which is known to
be submodular. In the decomposition we propose, a finite set of graph nodes
∅ ⊆ RS � V are rendered unreachable by set S (for finite T ), when in fact they
might be reachable in the IC model. Thus, it follows that f(S)− ι(S, T ) ≤ |RS |,
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or f(S)−|RS | ≤ ι(S, T ). It also trivially holds that ι(S, T ) ≤ f(S), which implies
ι(S, T ) ≤ f(S) + |RS |. Hence,

f(S)
(
1− |RS |

f(S)

)
≤ ι(S, T ) ≤ f(S)

(
1 +

|RS |
f(S)

)
.

Set ε := max

{ |RS |
f(S)

∣∣∣ S ⊆ V

}
. Then, 0 ≤ ε < 1 (as |RS | < f(S) for every

S ⊆ V ). Also, we obtain

(1− ε)f(S) ≤ ι(S, T ) ≤ (1 + ε)f(S).

Thus, ι(S, T ) is ε-approximately submodular. ��
By Theorem 5 of [8], we obtain the following approximation result.

Corollary 1. For C ≥ 2 and any constant 0 ≤ δ < 1 with ε = δ
C , the greedy

algorithm obtains a seed set which achieves at least a constant fraction 1− 1
e−16δ

of the optimal value.

Since ε = δ
C , we have ε = O(δ), provided C is constant. It follows that

for lesser values of ε (equivalently, for smaller values of |RS |), we achieve better
approximations of the influence spread, which are closer to the optimal value. Of
course, the values of |RS | and ε are entirely dependent on the depth of the local
subtrees we choose. Deeper subtrees offer potentially better approximations, but
induce extra computational cost. In Section 4, we show that when we select deep
enough trees, without still covering the whole graph, we obtain quality results
on par with the state-of-the-art methods while maintaining runtime benefits.

4 Experiments

We base our evaluation on real world networks found in the Stanford Network
Analysis Project (SNAP) [11]. Table 1 shows some of the network characteristics.
In each network, we associate each directed edge with a transmission function
obeying an exponential density, whose scale parameter is drawn uniformly at
random from the open-closed interval (0, 5].

Table 1: Network Statistics

Network # nodes # edges density

ego-Facebook 4,039 88,234 21.84

gnutella08 6,301 20,777 3.29

wiki-vote 7,115 103,689 14.57

gnutella04 10,876 39,994 3.68

soc-Epinions1 75,879 508,837 6.71

ego-twitter 81,306 2,468,149 30.35

soc-Slashdot0922 82,168 948,464 11.54



(a) gnutella08 (b) facebook (c) wiki-vote

Fig. 2: Seed set spread vs. seed set size with T = 0.2

(a) gnutella04 (varying T ) (b) gnutella04 (varying σ)

Fig. 3: Effect of T and σ on spread respectively

4.1 Quality of Seed Sets

To compare the quality of seed sets that are produced by our methodology, we
perform an immediate comparison between our method and ConTinEst [3], since
the latter has been shown to statistically outperform other approximation meth-
ods on real world data. To do so, we need a procedure that can receive these seed
sets as input and obtain near ground-truth estimates of their influence spread.
We perform the comparison by running Näıve Sampling for 10,000 iterations on
each seed set that is obtained. For practical reasons, we restrict this comparison
on the four smallest graphs in our dataset, since Näıve Sampling requires at least
8,000 hours to produce results for the larger graphs.

For this set of results, the algorithms are configured as follows: abiding to
author guidelines in [3], ConTinEst is set to perform 10,000 sampling rounds
for transmission times. For each sampling round, it is also configured to run 5
iterations for the randomization required by the neighborhood size estimation
subroutine. LNS is also set to 10,000 iterations, while the σ parameter is tuned
to 0.9 to produce large enough local regions.

Results are shown in Figure 2. We also report the spread achieved by greedily
selecting the node with highest out-degree each time (High Degree). Finally, the
deadline is fixed to T = 0.2. One observes that LNS is on par with ConTinEst in
terms of seed quality. In fact, the relative error never surpasses 11% across all
four graphs. On the average, the relative error of our method is 1.2%. In contrast,
a simplistic method such as High Degree, produces solutions that are, on the
average, up to 21.2% off in terms of influence spread compared to ConTinEst.
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We also evaluate the effect that the deadline constraint has on our method’s
accuracy. Figure 3(a) compares the spread obtained by our method and that
obtained by ConTinEst under various deadlines (between T = 0.2 and T = 1.0)
for σ = 0.9 on a graph with 10,876 nodes (gnutella04). One observes that
the proposed method maintains the quality of seed sets even when the deadline
increases. Indicatively, the average relative error ranges between 0.2% for T = 0.2
and 0.7% for T = 1.0. Finally, we study the effect of σ on seed quality. For a fixed
T = 0.8, and for σ ranging between 0.1 and 0.9, it can be seen in Figure 3(b)
that accuracy drops with lower values of σ, as expected. However, for σ ≥ 0.4,
our average relative error falls between 0.8% and 3.5%.

4.2 Runtime Evaluation

Our runtime evaluation entails two parts. First, we empirically expose that GPU-
based acceleration for ConTinEst is severely hampered by memory bottlenecks.
We do so by porting a sample-parallel version of the implementation in [3] into
a GPU utility. Experiments show that, for graphs of substantial size, the par-
allel version performs poorly. Second, we report running times under different
deadlines, and demonstrate a comparison between the ConTinEst engine and a
node-parallel version of LNS implemented on GPUs. Any implementation men-
tioned henceforth is carried out on a single 2.6GHz processor, and a GPU card
with 4GB RAM on an NVidia K520 Grid platform.

First, we report runtime comparisons between four implementations: two
CPU-based implementations of ConTinEst and LNS, a sample-parallel GPU im-
plementation of ConTinEst, and a node-parallel GPU implementation of LNS.
Note that ConTinEst, by construction, does not allow node-level parallelism. All
implementations are set to retrieve seed sets of size 50.

Figure 4(a) demonstrates results for the three smallest graphs in the dataset.
As it can be seen, the CPU implementation of LNS is the slowest one. This is
expected as the method is designed for parallel computing and is not a good fit
for serial execution. Indicatively, the GPU implementation of LNS is dramatically
faster by a factor ranging from x100 to x1000, justifying the above argument. One
interesting finding is that for graph sizes like the ones in Figure 4(a), the sample-
parallel implementation of ConTinEst is slower by a factor ranging between x2
and x5 compared to the serial implementation. This can be justified by the
fact that only a small batch of samples can be ported into the GPU each time,
due to the large space complexity of the process. This, in turn, necessitates
multiple kernel calls which incur significant communication overhead between
the host system and the GPU device. Finally, it can be seen that the GPU-
based implementation of LNS and the CPU-based implementation of ConTinEst
have similar run-times for the set of smaller networks.

However, as seen in Figure 4(b), the performance of LNS surpasses that of
ConTinEst for larger networks (> 100K edges). Specifically, for deadline T fixed
to 0.2, LNS is x13.7 and x6.8 times faster than ConTinEst for soc-Epinions1 and
soc-Slashdot0922, respectively. Further, the performance of LNS improves sig-
nificantly as the deadline becomes smaller (stricter constraints), while ConTinEst



(a) CPU/GPU implemen-
tations

(b) Runtime vs. number
of edges

(c) Effect of σ

Fig. 4: Runtime results

(a) LNS Runtime vs. #
seeds (varying σ)

(b) LNS Runtime vs. #
seeds (varying T )

(c) LNS vs. ConTinEst
(varying T and σ)

Fig. 5: Effect of T and σ on runtime

largely remains unaffected. In more detail, for T fixed to 0.1, LNS is faster across
all social graphs, with improvements ranging between x2.1 and x85.7. In fact,
the greatest gains appear for the three largest graphs in our dataset — soc-
Epinions1, soc-Slashdot0922 and ego-twitter — for which the runtime im-
provements are x47.9, x85.7 and x5.2, respectively. For ego-twitter, ConTinEst
consumes≈ 420K seconds, while LNS terminates after≈ 80K seconds. In absolute
terms, these savings correspond to days of computations (i.e., savings amounting
to 4 days for ego-twitter), which is substantial in a realistic campaign planning
process. Finally, note that ConTinEst runtime remains similar moving to shorter
deadlines, whereas LNS is 66.9% faster, on the average. This stresses the merits
of leveraging deadline information prior to influence estimation.

We also report how the choice of σ affects runtime for the GPU-based im-
plementation of LNS.Results are obtained on soc-Epinions1. Figure 4(c) shows
that runtime grows exponentially with σ. This is expected, since for a larger σ,
the borders of the local regions extend far beyond the deadline, possibly to a
point where the local regions for multiple vertices cover the entire reachable set
of nodes from the corresponding source nodes.

Finally, Figure 5 illustrates the relation between runtime and the number of
seeds (logarithmic scale). Results are obtained on soc-Slashdot0922. In Fig-
ure 5(a), we fix T = 0.1 and let σ ∈ {0.1, . . . , 0.7}. One observes that LNS

runtime is linear in the number of seeds to obtain, irrespective of σ. Further, in
Figure 5(b), we fix σ = 0.4 and let T ∈ {0.1, 0.2, 0.3}. Again, T does not affect
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(a) Different graphs, Number
of simulations = 100

(b) Different densities, Num-
ber of simulations = 10000

Fig. 6: Peak memory vs. density (deadline T = 0.2)

linearity. However, the impact of increasing T is much larger than increasing σ.
Finally, Figure 5(c) contrasts the behavior of LNS to that of ConTinEst when
the deadline varies. One can observe the following: (a) ConTinEst runtime is
unaffected by the deadline constraint, since this is only used as a query after all
computations are completed, and (b) it is also largely unaffected by the number
of seeds to be obtained, which is beneficial when obtaining a relatively large sized
seed set. In summary, LNS outperforms ConTinEst for relatively short deadlines
and reasonably strict budget constraints (i.e., challenging viral marketing cases).

4.3 Memory Consumption

In this section we empirically evaluate to what extent LNS and ConTinEst stress
memory when implemented using their faster variants. We report peak memory
consumption for GPU-based LNS and CPU-based ConTinEst, which are set to
perform 100 sampling rounds. Figure 6(a) confirms the memory intensiveness
of ConTinEst, especially for larger graphs, while it shows that LNS maintains
memory consumption relatively low, even as graph size increases. Specifically,
ConTinEst consumes between 0.21GB and 5.9GB, while peak memory for LNS
ranges between 0.04GB and 0.36GB, which corresponds to an average improve-
ment of 1260%.

Finally, we discuss the effect of graph density on memory consumption for
10,000 iterations on both methods, and a social graph with 70K nodes and 500K
edges. Figure 6(b) demonstrates that ConTinEst requires approximately 500GB
of space to accommodate computations. The bulk of this space is occupied by
the least label list structures, which store information for all 10,000 sampling
iterations to support faster queries. As the density of the graph drops (from 7.0
to 4.5), peak memory remains at similar levels (8.3% drop). In contrast, LNS
starts off at 1.2GB and for the smallest density it only consumes 0.8GB; a 32%
reduction by virtue of producing shallower local subgraphs.

5 Conclusion

We present a novel approximation framework for influence maximization in the
continuous-time domain. Our work addresses two drawbacks of existing meth-



ods: the lack of node-level parallelism, and the memory intensive nature of the
dominant methodologies. The proposed approximation algorithm is the first to
enable node-parallel influence estimation in the continuous-time setting, while
maintaining memory requirements relatively low. By employing commercial-level
GPUs we dramatically speed-up computations with minimal impact on accuracy.

6 Appendix

In this section, we explain our criterion for selecting local subgraphs. As men-
tioned in Section 3, the transmission times {fuv(τuv)}(u,v)∈E are differently dis-
tributed across the edges, but are mutually independent. Consequently, the joint
distribution of the transmission times is fully factorized. Also, the variance of a
path q is the sum of the variances of the distributions corresponding to the edges
on q, i.e., V ar(q) =

∑
(u,v)∈q V ar(u, v), where V ar(u, v) is the variance of the

distribution fuv associated with the edge (u, v) ∈ E . We use these properties to
define our criterion for selecting the local subgraphs corresponding to each node.
By linearity of expectation, if q is a path from node u to node v, the expected
time for u to influence v along q equals the sum of the means of the distributions
corresponding to the edges on q. It also holds that the expected shortest distance
from u to v equals the length of the shortest path from u to v with edge weights
equal to the means of the corresponding distributions. Thus, if there is a path
q from u to v whose expected length is less than the deadline T , then v is most
likely to be within the influence spread of u for an arbitrary given sample, and
should be included in the local subgraph of u. As such, running Dijkstra with
edge weights being the distribution means allows us to extract these subgraphs.

Unfortunately, the converse is not true, i.e., if the shortest path from u to
v has expected length greater than T , it does not mean that v cannot be in
the influence spread of u for any sample. Since each sample is a set of random
numbers generated from a given set of distributions, it is entirely possible that,
for a given sample, the edge weights on a path from u to v are small enough to
have v influenced by u for that particular sample. Fortunately, the frequency of
such an incident happening decreases as the expected shortest distance between
u and v progressively increases beyond the deadline T . Since most of the mass
of a probability distribution is concentrated near its mean and is within some
multiple of its standard deviation, we use that fact to decide whether v is going
to be in the influence spread of u for a significant number of samples. This is
the reason behind our selection criterion at Line 25 of Algorithm 2:

if distance[u]− σ ∗√variance[u] < T then
dijkstraTree.add([u, parent[u]]).

We measure the variance of a node u as the variance of the shortest path
between the source node and u. The parameter σ in the above criterion is a free
parameter. It suggests how much of the variability in the model we are willing
to account for. If we increase σ, we cover wider local neighbourhoods, thereby
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improving accuracy, but at the cost of runtime. On the other hand, if we decrease
σ, we obtain narrower local neighbourhoods, which leads to faster computations,
but at the cost of accuracy. Our experiments suggest that, for moderately big
graphs, we can choose σ = 0.9, while for much larger graphs, σ = 0.3 suffices.

Finally, the subgraph we choose for each node is a portion of the Dijkstra tree,
where we only keep the nodes that satisfy the above selection criterion. Replacing
a local subgraph by a local subtree leads to significant under-approximations of
the influence spread. But, as our empirical evaluations in Section 4 show, it is
a good representative region to sample from for deciding whether v lies in the
influence spread of u for an arbitrary given sample.
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