
Constructing Stability-based Clock Gating
with Hierarchical Clustering

Bao Le1, Djordje Maksimovic1, Dipanjan Sengupta3, Erhan Ergin3, Ryan Berryhill1, Andreas Veneris1,2

Abstract—In modern designs, a complex clock distribution
network is employed to distribute the clock signal(s) to all the
sequential elements. As the functionality of these sequential ele-
ments depends heavily on usage scenarios, it is vital that the clock
network is optimized for these scenarios. This paper introduces a
clock network power optimization methodology based on design
usage patterns and stability based clock gating. Specifically,
whenever a register retains its value from the previous cycle,
a clock gating implementation shuts off its clock and disables
data loading to enable power reduction. We first introduce the
notion of a stability pattern and its correlation with clock gating
efficiency. Next, we introduce a methodology to identify efficient
clock gating implementations. In this framework, a clustering
algorithm leveraging stability patterns iteratively computes more
effective gating implementations. Each implementation is eval-
uated further on area overhead and critical path delay. If it
satisfies all criteria, it is implemented in the design; otherwise,
it is sent back to the clustering algorithm to compute new clock
gating implementations. Empirical results show 22.6% reduction
in clock network power and 16.0% reduction in total power
consumption. This confirms the practicality and robustness of
the proposed methodology.

Index Terms—Stability Based Clock Gating, Clock Gating
Efficiency, Agglomerative Hierarchical Clustering

I. INTRODUCTION

With the growing demand for mobile and wearable devices,
chip designers are under increasing pressure to design ultra-
low power chips. As a clock distribution network constitutes
more than 30% of the total consumed power, it is imperative
that its power consumption is minimized [1]. Clock gating is
a well known technique to reduce clock network power [2].
To maximize power reduction, clock gating opportunities
must be aggressively utilized. This often requires designer
knowledge of the system application. With increasing design
complexity and shorter time-to-market, finding effective clock
gating conditions continues to be a challenging task.

Clock gating is a circuit transformation where the clock of
a register is shut off when there is no useful activity at the
register [2]. This enables power savings as unnecessary switch-
ing is prevented. Clock gating is implemented at different
hierarchies of design. Coarse grained clock gating identifies
idle conditions of major functional units at the architecture
level [3]. Conversely, fine grained clock gating operates at
gate level by identifying idle conditions that are not visible
at architecture level [4]. Currently, automated tools identify
limited clock gating opportunities at the RTL-level mostly
based on circuit topology. As such, significant manual effort
is necessary to search for clock gating opportunities at the
gate level. Therefore, automation remains crucial to achieve
additional power savings from the clock network.

The focus of the work presented here is on fine grained
clock gating. It does not address coarse grained clock gating
nor power gating, wherein entire functional blocks are powered
down when idle. In more detail, fine grained clock gating turns

1University of Toronto, ECE Department, Toronto, ON M5S 3G4 ({lebao,
djordje, ryan, veneris}@eecg.toronto.edu)

2University of Toronto, CS Department, Toronto, ON M5S 3G4
3Advanced Micro Devices, 33 Commerce Valley Dr. East, Markham, ON

L3T 7N6 ({dipanjan.sengupta, erhan.ergin}@amd.com)

off the clock of a register under the following conditions: i)
when the register output is not observed at the primary outputs,
a condition known as Observability Don’t Care (ODC), or ii)
when the register output retains its value for two or more
consecutive clock cycles, also known as a stability condition
(STC) [5]. ODC is a well studied combinational synthesis
technique and can be automatically extracted from steering
logic such as multiplexers, tri-state buffers and enable sig-
nals [6]. However, STC relates to the sequential behaviour of
the design and its detection remains challenging and requires
significant design effort [7].

Various methodologies have been proposed to automate
clock gating identification and synthesis. The work in [8]–[10]
studies physical synthesis for gated clock designs. However,
this is out of the scope of this paper as we focus on clock
gating opportunity identification, a task typically performed at
design or logic synthesis stages. In [11], the authors compute
clock gating conditions using zero-skew trees. The work in [5],
[12] utilizes symbolic models for clock gating construction. In
addition,the authors of [1], [13] construct stability based clock
gating from existing internal signals in the design thereby
avoiding major area overhead. The authors in [14], [15] discuss
grouping registers for clock gating construction. This work
deploys the K-Mean algorithm [16] which requires the number
of groups to be specified. This is not trivial especially for large
and complex designs.

Overall, the goal of prior work is to find stability clock
gating implementations that work with multiple registers and
require the least amount of additional circuitry to be imple-
mented. As available opportunities may remain unidentified,
reaching optimum power savings requires further investigation.

In this paper we propose a clock gating framework utilizing
the hierarchical clustering algorithm. We first introduce the
concept of a stability pattern, a crucial element in clock gating
implementation. For each register, a one dimensional binary
array is constructed to represent its stability pattern. Next, we
tailor hierarchical clustering to leverage this information to
optimize clock gating implementations. Each final implemen-
tation has two properties: it shuts off the clock of multiple
registers and it has great power saving capability.

Besides power savings, it is crucial to ensure that a clock
gating implementation does not impact other design metrics
such as area and critical path delay. To address these issues,
we further present a clock gating evaluation technique that
examines each gating implementation on area overhead and
critical path delay. We synthesize each clock gating imple-
mentation within the original design and examine its impact. If
the criteria are satisfied, the implementation is inserted into the
design. Implementations that do not satisfy design constraints
are utilized to construct new efficient gating implementations.

When we profile the methodology, experiments demonstrate
that the clock gating circuitry generated saves 16.0% of total
power consumption of the chip, on the average, and adds only
7.76% of additional area, an attractive design trade-off. In
terms of clock power, we reduce the figure by 22.6%. Evi-
dently, these results confirm the effectiveness of the method.

The paper is organized as follows. Section II presents

background information on clock gating. Section III describes
the concept of stability pattern and the cluster algorithm and
how they are utilized in clock gating construction. Section IV
presents the global evaluation framework. Section V contains
experiments and Section VI states the conclusion.

II. PRELIMINARIES

The following notation is used throughout the paper. Given
a sequential circuit C, the symbols X = {x1, x2, · · · , x|X|},
Y = {y1, y2, · · · , y|Y |}, and Q = {q1, q2, · · · , q|Q|} represent
the sets of primary inputs, primary outputs and registers in C,
respectively. Small letters such as a, b, c, · · · represent internal
signals in C. For any signal z, zk denotes the value of z at
clock-cycle (i.e., time-frame) k. Finally, clk denotes the root
(i.e, global) clock. We assume the design has one clock domain
and all registers to be positive-edge triggered.

A. Clock Gating Synthesis

As mentioned, fine-grained clock-gating is inserted at the
gate-level netlist by identifying idle conditions of individual
registers. This paper focuses on stability based clock gating
and the following example illustrates STC in a design.

clk

b
c

a

qm

Fig. 1. Stability Condition Example

a b c

qm

clk clki

eni

Fig. 2. Clock Gating Example

Example 1 Figure 1 shows a STC example. Register qm is
stable when the condition (a = 1∧ b = 0∧ c = 0) is satisfied.
In other words, when a = 1, b = 0 and c = 0, qm retains its
value from the previous clock-cycle. The condition (a = 1∧b =
0 ∧ c = 0) can be employed as a clock gating condition to
limit unnecessary switching at the register. Figure 2 displays
a functionally equivalent clock gating implementation. In this
implementation, when eni = 0, the gated clock clki stays 0
and thus disables the register data loading. When eni = 1,
the clock and the register behave as usual.

Conceptually, a clock gating implementation utilizes inter-
nal signals to compute a clock controlling (i.e., clock enable)
signal. In Example 1, eni is the clock enable signal and clki
is the gated clock. For the rest of this paper, the symbol
CG = {cg1, cg2, · · · , c|CG|} denotes the set of clock gating
implementations. For an implementation cgi, the correspond-
ing clock enable, gated clock are denoted as eni and clki,
respectively. As the focus of this work is clock gating under
STC, for the remaining of the paper, we use the term “clock
gating” to denote “stability based clock gating”.

B. Clock Gating Efficiency

The objective of a clock gating implementation cgi is to
prevent a portion of the clock network from unnecessary
toggling. Consequently, cgi is evaluated on its ability to block
such activity.

Definition 1 Given a clock gating implementation cgi, the
efficiency of cgi, denoted as E(cgi), is defined as the number
of times the clock clk has been cut down by cgi over a period
of time.

The authors in [17] compute clock gating efficiency using
the toggle rate of the gated clock:

E(cgi) = 1−
toggle rate(clki)

toggle rate(clk)
(1)

Quantity E(cgi) can also be computed using signal proba-
bility propagation. As the clock is shut off whenever eni = 0,
a clock gating efficiency is the probability the enable signal
being equal to zero:

E(cgi) = Pr(eni = 0) (2)

Unfortunately, computing Pr(eni = 0) through probability
propagation is a complex task for large designs [18]. As a
result, designers often rely on simulation to obtain Pr(eni =
0) and E(cgi). Next, we show a novel approach to obtain
E(cgi) without constructing cgi.

III. CLOCK GATING COMPUTATION

In this section, we first describe the concept of a stability
pattern and how it relates to clock gating efficiency. Next,
we present an enhanced hierarchical clustering algorithm that
leverages stability patterns to generate clock gating imple-
mentations. In more detail, we modify hierarchical clustering
so that it not only combines similar implementations but
also ensures that a combination would result in an efficient
implementation. We also present an evaluation phase where
implementations are tested on area and critical path delay
before being employed in the design.

A. Stability Pattern

Definition 2 Given a synchronous design C and a t-cycle
stimulus, a stability pattern of a signal, ‘a’, is a single
dimension t-entry binary array, denoted as SP (a). The k-
th entry of SP (a) is equal to 1 (i.e. SP (a)[k] = 1) if and
only if a is stable at cycle k, i.e ak = ak−1.

From Definition 2, it is obvious that SP (a)[k] = 0 if
and only if signal a is not stable at cycle k. By convention,
SP (a)[0] = 0, ∀a.

We now extend stability pattern definition to a set of
registers.

Definition 3 Given a synchronous design C and a t-cycle
stimulus, a stability pattern of a set of registers, Qi, is a single
dimension t-entry binary array, denoted as SP (Qi). The k-th
entry of SP (Qi) is equal to 1 (i.e. SP (Qi)[k] = 1) if and
only if all registers in Qi are stable at cycle k.

Evidently, SP (Qi)[k] = 0 if there is at least one register in
Qi that is unstable at cycle k.

Example 2 Given a synchronous design C, a signal a ∈ C
and a stimulus of 5 cycles, if values of ‘a’ over 5 cycles are

[0,1,1,0,0,1], its corresponding stability pattern SP (a) would
be [0,0,1,0,1,0].

A clock gating implementation cgi is said to be the optimal
gating implementation for a set of registers Qi if and only
if cgi cuts down the clock for all cycles that registers in Qi

are stable. As SP (Qi) is a binary array and SP (Qi)[k] = 1
for all clock-cycles k that registers in Qi is stable, Pr(eni =
0) =

∑t

k=0
SP (Qi)[k]. Hence, we can compute E(cgi) as:

E(cgi) =

∑t

k=0
SP (Qi)[k]

t
(3)

In both Eq. 1 and 2, computing the efficiency requires the
toggle rate of clki or the probability of eni. These data require
cgi to be implemented in the design. On the other hand, Eq. 3
computes the efficiency directly from register data and does
not require cgi to be implemented. This is beneficial especially
early in the design stage. During this stage, a large set of clock
gating implementations is available to the designer and not all
of them can be implemented due to the design constraints. The
task at hand is to select efficient implementations. Evaluating a
gating implementation using Eq. 1 or 2 requires inserting it in
the design, which may be impractical to do for every available
implementation. Eq. 3 therefore provides a cost-effective way
to evaluate a large set of clock gating implementations as the
efficiency of each implementation can be quickly calculated
from simulation data.

Besides computing gating efficiency, stability patterns are
crucial in combining clock gating implementations. Due to
static power consumption, it is recommended to employ a sin-
gle gating implementation, with one enable signal for multiple
register clocks. In the next section, we describe how stability
patterns are used in combining clock gating implementations.

B. Clock Gating Clustering

This section presents a novel clustering algorithm that
combines clock gating implementations based on the stability
pattern similarity of their registers. We also describe how
negative combinations are avoided. The net result is clock
gating implementations which are effective in power reduction
while still maintaining engineering efforts already invested in
the design.

Recall that a stability pattern is a single dimension binary
array of length t. This array can be viewed as a data point
in a t-dimensional Euclidean space. As such, we can define
stability distance between two signals as:

Definition 4 A stability distance between two signals a and b
is defined as:

d(a, b) =

√

√

√

√

t
∑

k=0

(SP (a)[k]− SP (b)[k])2 (4)

Similarly, stability distance between two sets of registers Qi

and Q− j is:

d(Qi, Qj) =

√

√

√

√

t
∑

k=0

(SP (Qi)[k]− SP (Qj)[k])2 (5)

where SP (Qi) and SP (Qj) are stability patterns of two sets
of registers Qi and Qj . In essence, d(Qi, Qj) is the number
of cycles that registers in Qi have different stability behaviors
compared to registers in Qj .

We extend the stability distance definition further for clock
gating implementations. For two clock gating implementations
cgi, cgj , with corresponding sets of registers Qi and Qj , the
stability distance between cgi and cgj , denoted as d(cgi, cgj),
is the stability distance of Qi and Qj , d(Qi, Qj). For the rest
of this paper, the term “distance” implies “stability distance”.

Intuitively, if two clock gating implementations cgi and cgj
have a small distance, they can be combined into a single
clock gating implementation. In more detail, (d(cgi, cgj))

2 is
the number of cycles where Qi and Qj have different stability
behaviors. If d(cgi, cgj) is small, Qi and Qj are more probable
to be stable together and thus, can be clock-gated using a
combined enable signal. Therefore, combining clock gating
implementations can be achieved by grouping corresponding
data points based on proximity. This can be achieved by em-
ploying a clustering algorithm. More specifically, we employ
an Agglomerative hierarchical clustering based algorithm [16]
due to the following reasons:

1) Hierarchical clustering does not require the number of
final groups to be specified. This is critical in this
work as the number of clock gating implementations
differs from design to design. Moreover, as complexity
varies from implementation to implementation, the final
number cannot be determined without knowing which
implementations will be utilized in the design. Therefore,
it is realistic and beneficial to have the number of imple-
mentations determined by clock gating insertion tools.

2) Agglomerative hierarchical clustering is a bottom up
approach. We start with a clock gating implementation for
each register. At each iteration, pairs of implementations
close in distance are merged. This iterative approach
can quickly identify inefficient combinations, reverse the
merging and direct the algorithm toward more effective
combinations. This will be presented in more detail next.

As stated, distance plays an important role in combining
clock gating implementations, However, distance is not the
only criterion to consider. Example 3 shows that both distance
and gating efficiency are essential in constructing gating im-
plementations. While distance dictates the number of register
clocks controlled by the enable signal, efficiency ensures the
power saving capability.

Example 3 Consider three registers qm, qn and qo and their
stability patterns [1, 0, 1, 0, 0, 1], [1, 1, 1, 1, 1, 0], [0, 0,
1, 0, 0, 0], respectively. We can compute that d(qm, qn) = 4
and E(cgi) = 33.3% where cgi is the clock gating circuitry
of qm and qn. For qm and qo, d(qm, qo) = 2 and E(cgj) =
16.6% where cgj is the clock gating circuitry of qm and qo. In
this example, in terms of clock gating efficiency, it is actually
more beneficial to clock gate qm with qn (E(cgi) > E(cgj))
together even though qm is closer to qo than qn (d(qm, qo) <
d(qm, qn)).

Motivated by the above observations, we tailor Agglom-
erative hierarchical clustering. The proposed clustering al-
gorithm not only groups neighbouring data points but also
ensures that gating efficiency after combining is higher than
a predefined threshold. This threshold prevents the algorithm
from suggesting inefficient implementations. Furthermore, the
algorithm stops when further merging results in a clock gating
implementation efficiency below the threshold.

Algorithm 1 presents the pseudocode of the enhanced
hierarchical clustering. Initially, each register has its own
clock gating implementation (Line 1). At each iteration, the
algorithm first computes the distances between all pairs of
implementations (Line 6-7). Pairs of implementations are then

Algorithm 1: Clock gating clustering

input : Q, sim,minE
output: CG

1 foreach qm ∈ Q do CG.insert(qm) ;
2 change← true ;
3 while change do
4 change← false ;
5 foreach {cgi, cgj} ⊂ CG do
6 d(cgi, cgj)← EuclideanDistance(sim) ;
7 D.push(d(cgi, cgj)) ;
8 end
9 D.sort() ;

10 foreach d(Qi, Qj) ∈ D do
11 if E(cgij) > minE then
12 CG← Merge(cgi, cgj) ;
13 D ← RemovePair(D,Qi, Qj) ;
14 change← true;
15 end
16 end
17 end
18 return clusters ;

sorted in ascending order of distance (Line 9). The algorithm
next merges pairs of implementations due to their proximity.
A merge is allowed if the new implementation efficiency is
greater than a predefined threshold. Since the closest pairs
are considered first, this is similar to a minimum-spanning
tree algorithm with the addition of backtracking. If two
implementations have been combined, they are removed from
the consideration set (Line 13). Algorithm 1 simply stops when
further grouping negatively impacts the clock gating efficiency.

Algorithm 1 is guaranteed to terminate. Initially, |CG| =
|Q|. At each iteration, the number of implementations is
reduced (E > minE) or the algorithm terminates. If the
number of clock gating implementations keeps reducing the
algorithm would eventually stop when there is only one left.

Hierarchical Cluster

2 3 4 5 6 7 8 9 1211 13 14 151 10

Register Index

(a) Hierarchical Clustering

Modified Clustering

1 2 3 4 5 6 7 8 9 12 13 14 151110

Register Index

(b) Clock Gating Clustering

Fig. 3. Hierarchical and clock gating clustering

Example 4 Figure 3 compares the execution (i.e., dendro-
grams) of a traditional hierarchical clustering and that of
the proposed algorithm on a sample set of registers. Without
the efficiency threshold, the classical hierarchical algorithm
groups implementations until there is only one. When the
number of implementations is too small, each implementation
efficiency is insignificant to provide any power savings. The
enhanced algorithm stops before clock gating implementations
become inefficient. The efficiency threshold can even alter the
grouping. Dashed lines indicate groupings differently between
two algorithms. More specifically, Register q4 even though
closer to registers q5, q6, produces a higher clock gating
efficiency when combined with registers q1, q2, q3. For the
same reason, registers q11, q12, q13 are combined with registers

q14, q15 in the enhanced algorithm and combined with registers
q8, q9, q10 in hierarchical clustering.

IV. CLOCK GATING EVALUATION

The algorithm presented in the previous section produces
a set of clock gating implementations that shut off multiple
register clocks with high efficiency. Before being employed,
these implementations must also be verified to respect de-
sign constraints, namely area and critical path delay. It is
essential to note that the number of implementations derived
by Algorithm 1 is not large. This is due to many original
implementations being combined or removed due to low
inefficiency. Thus, we can analyze each implementation before
inserting into the design.

To investigate the impact of an implementation cgi on area
and critical path, we first synthesize it with the original design.
After synthesis, we compare the clock gated design and the
original design in terms of area and critical path delay. If
the insertion of the clock gating circuitry violates the area
or critical path constraints, it will not be implemented. In
practice, these timing and area constraints can be specified
by the designer or provided by the design specifications.

Algorithm 2: Clock gating evaluation

input : C, CG, maxArea, maxDelay, sim,minE
output: FinalCandidates

1 CGt ← CG ;
2 CG.clear() ;
3 while Area.isAvailable() do
4 foreach cgi ∈ CGt do
5 Ccg ← Synthesize(cgi, C) ;
6 Area,Delay ← Synthesize(C, cgi) ;
7 if (Area > maxArea) ∨ (Delay > maxDelay)

then
8 Q← Q ∪Qi ;
9 else

10 CG.insert(cgi) ;
11 end
12 end
13 minE ← minE + α ;
14 CGt ← cluster(Q, sim,minE)
15 end
16 return CG ;

Algorithm 2 shows the pseudocode of the evaluation algo-
rithm. Given a set of implementations, the evaluation flow
returns the ones that will be inserted into the design. All
implementations that are being evaluated are stored in CGt.
For each cgi ∈ CGt, the algorithm synthesizes cgi with
C (Line 5). The area overhead and critical path delay are
computed next (Line 6). Implementations satisfying design
constraints are stored into CG, the final set of implemen-
tations. All implementations that violate design constraints,
stored in CGt, are sent back to Algorithm 1 to find new im-
plementations (Line 14). The algorithm terminates when there
is no more area available for clock gating implementations.

As stated Algorithm 2 attempts to find new implementations
from ones that violate area or critical path delay constraints.
This is accomplished by sending them to Algorithm 1 with
higher efficiency threshold minE. Recall that Algorithm 1
aggressively combines implementations as long as the new im-
plementation efficiency greater than minE. These aggressive
combinations create implementations that work with a large
number of register clocks; however, they can also result in

TABLE I
CLUSTERING CLOCK GATING RESULTS

Design Info Original Designs Industrial Clock Gated Designs Clustering Clock Gated Designs
Design # Area Clock Total Area Area Clock Total Clk Total Area Area Clock Total Clk Total
Name Regs (µm2) Power Power (µm2) Ovhd Power Power Pw Pw (µm2) Ovhd Power Power Pw Pw

(µW) (µW) (%) (µW) (µW) Impr Impr (%) (µW) (µW) Impr Impr
(%) (%) (%) (%)

divider 424 9137 238.9 313.7 9894 8.28 213 256 10.8 18.4 10329 13.05 130 213 45.6 32.1
div64bits 5512 142056 410 508 142387 0.23 304 411 25.9 19.1 142865 0.57 287 378 30.0 25.6
deframer 2509 37060 650 870 37060 0 650 870 0 0 37315 0.69 634 810 2.5 6.9
fdct 5717 193067 4440 5320 193067 0 4440 5320 0 0 211029 9.30 3120 4680 29.7 12.0
mrisc 371 3700 62.3 75.93 4783 29.27 25.3 32.1 59.4 57.7 5346 44.49 15.7 40 74.8 47.3
b14 215 8365 176.8 218.6 8365 0 176.8 218.6 0 0 8404 0.47 155.3 195.7 12.2 10.5
b15 416 12427 343.8 411.4 12427 0 343.8 411.4 0 0 12561 1.08 338.8 409.1 1.5 0.6
b17 1314 37527 1078 1250 37527 0 1078 1250 0 0 38870 3.58 992.6 1172 7.9 6.2
b19 6030 207518 4956 5915 207518 0 4956 5915 0 0 209218 0.82 4921 5896 0.7 0.3
b21 430 16306 353.1 445.5 16306 0 353.1 445.5 0 0 16889 3.58 279.2 365 20.9 18.1
AVG. 3.78 9.61 9.52 7.76 22.6 16.0

complex implementations that violate other design constraints.
In order to prevent these combinations, Algorithm 2 iteratively
increases the efficiency threshold for Algorithm 1 (Line 13).
This effectively prevents Algorithm 1 from making too many
combinations. This is a technique we call recursive clustering.
The motivation behind recursive clustering is to divide large
implementations into smaller ones that achieve the same power
savings while still satisfying design constraints.

V. EXPERIMENTAL RESULTS

This section presents the experimental results. All exper-
iments are run using a single core of a i5-2500K 3.3 GHz
workstation with 8GB of RAM and a timeout of 7200 seconds.
Five OpenCore and five ITC-99 benchmark circuits are used to
profile the method. All circuits are synthesized with a TSMC
65nm technology library. Place and route for each circuit is
then performed. Finally, the power consumption is estimated.
All of these tasks are completed using industrial tools.

Each design is simulated using a test bench. This test
bench depicts a typical design run and thus is utilized to
construct stability patterns for the registers. For Algorithm 1,
the effectiveness threshold, minE is set at 40%. maxArea is
set at a limit of 5% of the original design area. This means
that each clock gating circuitry cannot add more than 5% of
the original design area. Parameter maxDelay is set to the
same value as the maximum delay of the original design. This
ensures that clock gating does not increase the critical path
delay. For each circuit, we implement clock gating using an
industrial tool and the proposed framework. Area, maximum
frequency and power consumption are compared between the
original version and two clock gated versions. All data is
collected after physical synthesis is performed.

Table I shows the empirical results. The first column gives
the design name and the next column contains the total number
of registers. The next three columns have the area, the clock
network power consumption and the total power consump-
tion of the design, respectively. The next six columns give
information on the design when clock gating is implemented
by Power Compiler. In more detail, columns six, seven, eight
and nine present the area, the area overhead, the clock network
power consumption and the total power consumption. Columns
ten and eleven display the improvement by employing Power
Compiler. The last six columns show data when using the
proposed clock gating framework. Columns 12, 13, 14 and
15 give the area, the area overhead, the clock network power
consumption and the whole design power consumption. The
final two columns show the overall improvement achieved by
the presented methodology.

In these experiments, Power Compiler is restricted to only
implement stability based clock gating. Even though Power

Compiler can also implement ODC based clock gating, those
implementations are out of the scope of this paper and hence
are not included. It is essential to note that the presented frame-
work does not alter or hinder any ODC based power reduction
capability. Hence, any ODC implementations would provide
comparable power reductions to the original or STC-based
clock gated version of the design. Industrial tools construct
stability clock gating by identifying specific design structures
exhibiting stability conditions. While this technique works
well on processor designs, it cannot be utilized for a wide
range of design types. More specifically, when those structures
are not available and the stability conditions are complex,
Power Compiler cannot identify stability clock gating op-
portunities. Our technique does not exploit circuit structures
and thus can be applied for any design. Even for processor
designs, it also identifies more clock gating opportunities.
Overall, the proposed methodology saves 22.6% of the clock
network power and 16% of the total power compared with
the original circuit while Power Compiler only saves around
9.5%. It should be noted, that previous work [1], [13], [19]
do not report the actual design area but only the complexity
of the AND-INVERTER graph representation of the design.
Evidently, these numbers cannot be used and compared to our
results that are generated by commercial vendor tools.

Table II displays the run-time of the proposed methodology
on different designs. The first column displays the design
name. Column two shows the number of clock gated registers
and the next column contains the number of clock gating
candidates implemented in the design. Column four gives the
run-time of the clustering algorithm and Column five shows
the run-time of the evaluation framework presented in Sec-
tion IV. The last column gives the total run-time. It is essential
to note that although fdct and b19 time out after 7200
seconds, the framework is still able to construct some gating
implementations for those designs. These implementations, as
shown in Table I, already provide significant power savings.
These designs timeout because many of the merged clock
gating implementations have efficiency below the threshold
and have to be reverted.

Figure 4 displays the size of CGt in Algorithm 2 during
evaluation runs for the divider circuit with and without
recursive clustering. Algorithm 1 initially produces 34 clock
gating implementations. Recursive clustering sends constraint
violating implementations back to Algorithm 1. Without re-
cursive clustering, we simply remove any implementations that
violate design constraints. As discussed earlier, recursive clus-
tering prevents large implementations that violate constraints
by creating smaller implementations. Thus, |CGt| can be
increased. In this example, the number of implementations at

TABLE II
CLOCK GATING CLUSTERING RUN-TIME

Design # CG # Clustering Evaluation Total
Name Regs CGs Time Time Time

(s) (s) (s)
divider 225 13 0.045 3.14 3.2
div64bits 339 16 93.6 2029.17 2122.8
deframer 46 3 7.43 314.82 322.3
fdct 1936 228 TO TO TO
mrisc 1313 20 1.16 9.5 10.7
b14 25 4 0.45 12.22 12.7
b15 6 1 0.91 25.63 26.5
b17 132 33 3.58 107.39 111.0
b19 60 11 TO TO TO
b21 101 12 0.9 54.67 55.6

one point increases to 40. More importantly, by dividing large
implementations into smaller ones, recursive clustering is able
to identify seven additional employable implementations.
This shows the practicality of recursive clustering.

Finally, Figure 5 displays the area and total power consump-
tion for divider under clock gating with different minE
thresholds. Recall that minE is the minimum efficiency of an
implementation that Algorithm 1 can return. We can see that
when minE is set too small (≤ 20%), the power saving is not
optimal. This is due to many inefficient clock gatings being
implemented. Parameter minE should also not be set too high
as efficient implementations may be rejected. For divider,
when minE = 90%, no clock gating is implemented. For
divider, 40% ≤ minE ≤ 60% gives the most power sav-
ing. This range implies that all effective implementations have
efficiency greater or equal to 60%. As far as area is concerned,
the clock gating implementations do not pose a significant
overhead. The maximal overhead for divider is 15.8% when
minE = 20 and only 13.05% for 40% ≤ minE ≤ 60%.
Of all benchmarks, only mrisc_core poses a significant
area overhead. This is due to mrisc_core being a small
design and thus clock gating implementations may consume
significant area w.r.t to the original design size.

VI. CONCLUSION

This work proposes an automated clock gating construction
flow that employs hierarchical clustering to identify efficient
gating implementations. In more detail, we introduce the
concept of stability patterns and tailor hierarchical clustering
algorithm to leverage stability pattern for clock gating op-
timization. We also propose an evaluation technique which
prevents ineffective gating implementations from being im-
plemented. The net result is a set of gating that have good
power saving capability and are cost-effective to implement.
An extensive set of experiments demonstrates its practicality
and effectiveness. In the future, we plan to utilize place and
route information and more advanced grouping algorithms to
improve power saving capability. An additional target of future
work is to avoid the exhaustive search through all pairs of

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

Im
p
le

m
e
n
ta

ti
o
n
s

Iteration

With Reclustering
Without Reclustering

Fig. 4. # of implementations vs. iterations for the divider circuit

 0

 50

 100

 150

 200

 250

 300

 350

 400

20 30 40 50 60 70 80 90
 0

 2000

 4000

 6000

 8000

 10000

 12000

P
o
w

e
r

(u
W

)

A
re

a
 (

u
m

2
)

Effectiveness Threshold (%)

Total Power Consumption
Total Area

Fig. 5. Power consumption and area of divider with clock gating

clock gating implementations in Algorithm 1 by employing a
more sophisticated data structure.

REFERENCES

[1] A. Hurst, “Automatic synthesis of clock gating logic with controlled
netlist perturbation,” in Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE, June 2008, pp. 654–657.

[2] W. Qing, M. Pedram, and W. Xunwei, “Clock-gating and its application
to low power design of sequential circuits,” IEEE Trans. on Circuits and
Systems I, vol. 47, no. 3, 2000.

[3] B. Le, D. Sengupta, and A. G. Veneris, “Reviving erroneous stability-
based clock-gating using partial max-sat,” in ASP-DAC, 2013, pp. 717–
722.

[4] N. Banerjee, K. Roy, H. Mahmoodi, and S. Bhunia, “Low power
synthesis of dynamic logic circuits using fine-grained clock gating,” in
Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings,
vol. 1, 2006, pp. 1–6.

[5] P. Babighian, L. Benini, and E. Macii, “A scalable algorithm for RTL
insertion of gated clocks based on ODCs computation,” IEEE Trans. on
CAD, vol. 24, no. 1, 2005.

[6] L. Benini, G. D. Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic synthesis of clock-gating logic for power optimization of
synchronous controllers,” ACM Trans. on Design Automation of Elec-
tronic Systems, vol. 4, no. 4, 1999.

[7] R. Fraer, G. Kamhi, and M. Mhameed, “A new paradigm for synthesis
and propagation of clock gating conditions,” in Design Automation
Conference, 2008. DAC 2008. 45th ACM/IEEE, 2008, pp. 658–663.

[8] W. Shen, Y. Cai, X. Hong, and J. Hu, “Activity and register placement
aware gated clock network design,” in Proceedings of the 2008 Interna-
tional Symposium on Physical Design, ser. ISPD ’08. New York, NY,
USA: ACM, 2008, pp. 182–189.

[9] ——, “An effective gated clock tree design based on activity and register
aware placement,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 18, no. 12, pp. 1639–1648, DECEMBER 2010.

[10] ——, “Activity-aware registers placement for low power gated clock
tree construction,” in VLSI, 2007. ISVLSI ’07. IEEE Computer Society
Annual Symposium on, March 2007, pp. 383–388.

[11] D. Garrett, M. Stan, and A. Dean, “Challenges in clockgating for a low
power asic methodology,” in Low Power Electronics and Design, 1999.
Proceedings. 1999 International Symposium on, Aug 1999, pp. 176–181.

[12] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power opti-
mization based on rtl clock-gating,” in Design Automation Conference,
2003. Proceedings, June 2003, pp. 622–627.

[13] T.-H. Lin and C.-Y. Huang, “Using sat-based craig interpolation to
enlarge clock gating functions,” in Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, June 2011, pp. 621–626.

[14] S. Wimer and I. Koren, “Design flow for flip-flop grouping in data-
driven clock gating,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 22, no. 4, pp. 771–778, April 2014.

[15] ——, “The optimal fan-out of clock network for power minimization
by adaptive gating,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 20, no. 10, pp. 1772–1780, Oct 2012.

[16] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[17] J. Srinivas, M. Rao, S. Jairam, H. Udayakumar, and J. Rao, “Clock
gating effectiveness metrics: Applications to power optimization,” in
Proceedings of the 2009 10th International Symposium on Quality of
Electronic Design, ser. ISQED ’09, 2009, pp. 482–487.

[18] F. N. Najm, “Power estimation techniques for integrated circuits,”
in Proceedings of the 1995 IEEE/ACM international conference on
Computer-aided design, ser. ICCAD ’95, 1995, pp. 492–499.

[19] R. Wiener, G. Kamhi, and M. Y. Vardi, “Intelligate: Scalable dy-
namic invariant learning for power reduction.” in Power And Timing
Modeling, Optimization and Simulation (PATMOS), 18th Int. Workshop
on, L. Svensson and J. Monteiro, Eds., vol. 5349. Springer Berlin
Heidelberg, 2009, pp. 52–61.

