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Abstract—We propose an automated failure triage framework
for Register Transfer Level (RTL) debugging in functional
verification regression flows which unifies three critical aspects
of the problem: the approximation of the general location of
root-cause(s) in the design under verification (DUV), the binning
of all related failures generated by regression runs, and the
distribution of these binned failures to the proper engineer(s)
for detailed analysis. The proposed triage engine entails two
novel methodologies. The first is a classification framework that
mines information from SAT-based debugging and simulation
to probabilistically reason about the relation of root-causes
with their respective failing verification traces. This enables the
construction of a priority ranking for these root-causes, and can
effectively guide debugging by focusing resources on high-priority
root-causes. Second, we propose a formulation of failure binning
as exemplar-based clustering for grouping and distributing fail-
ing traces to the proper engineering team(s). Experiments on
industrial designs show that the proposed methodology achieves
84% and 81% accuracy when it comes to failure grouping and
distribution respectively, with only a 6.5% runtime overhead over
existing debugging state-of-the-art techniques.

Index Terms—Failure Triage, Regression Verification, RTL,
Debug, Satisfiability

I. INTRODUCTION

THE semiconductor industry continues to experience an
increase in the size and complexity of VLSI circuits.

Recent studies proclaim that almost a third of modern designs
surpass the 100 million gate mark, and that over half of modern
circuits involve one or more embedded processors [1]. These
trends have widened the verification gap, a term referring to
the disparity between our verification and design capabilities.
Indicatively, functional verification today consumes over 50%
of the design effort [1].

One of the main reasons behind the strenuous verification
cost is the task of design debugging. Design debugging
commences after verification exposes an error trace (i.e., a
sequence of stimuli leading to a functional failure) and is
the task that locates the responsible design error(s) using
information provided by that error trace. Accounting for over
60% of the verification effort and as much as 39% of the
time for verification engineers [1], it has urged industry and
academia into developing automated solutions to reduce the
associated cost. Specifically, CAD tools that employ formal
engines, such as BDDs, SAT and QBF [2]–[5], have proven
to be the most effective in automating the localization of root-
causes. Driven by traditional industrial practices these tools are
mainly designed to perform debugging on a case-by-case basis,
where localization is largely focused on a single functional
failure at a time.

However, the rise in design complexity has brought a shift
in verification strategies that today are complemented by
extensive regression runs with strict coverage goals. The co-
existence of multiple design errors at early design stages often

results into hundreds of failures exposed by regression, thus
hampering the application of conventional formal debugging.

Specifically, in regression settings, performing an early
coarse-grain analysis to understand the nature of these failures
and eventually distribute them to the proper engineers for
detailed analysis constitutes an essential pre-processing debug-
ging step, referred to as failure triage. Failure triage is usu-
ally performed in three steps: coarse-grain debugging, failure
binning and failure bin distribution. Coarse-grain debugging
constitutes an early-stage analysis with a dual purpose: (a)
approximating the general location of the root-cause for each
of the exposed failures (i.e., testbench or specific design
modules), and (b) generating a priority sequence for potential
root-causes, so that high-priority ones are more likely to
correspond to the culprit of the failure. In turn, the goal
of failure binning is to leverage information from coarse-
grain debugging to discover correlations between the exposed
failures and bin together these failures that are likely to share
the same root-cause. Finally, failure bin distribution identifies
these failures that should be prioritized within each bin, and
it assigns each bin to the engineer(s) most familiar with these
high-priority failures.

Current studies assert triage as a fast growing regression
pain occupying up to 30% of the debugging effort [6]. Despite
these projections, triage remains a predominantly manual and
ad hoc process in the industry [7]. Typically, it is handled by
primitive means of high-level debugging, such as grouping
similar error logs together or simple waveform inspection.
These utilities mainly rely on symptom-related information
(e.g., which exception checker captured the mismatch), and
often fail to detect failures sharing the same root-cause. These
inaccuracies reflect into additional debugging overhead in the
detailed analysis stage that follows.

To reduce triage costs and mitigate the risk for time-to-
market, we introduce a novel failure triage engine, which
combines formal methods with data-mining techniques to
automate the process. The contributions of this work pertain
to each of the three triage stages previously discussed.

When it comes to coarse-grain debugging, approximating
the root-cause location can be efficiently performed by existing
formal solutions. Specifically, we assign this process to SAT-
based debuggers [3]. These tools identify, for each failure,
all possible design locations (suspects) where a modification
can rectify the corresponding error trace. However, no existing
method is available to generate a priority sequence for these
suspect components. As such, we propose a classification-
based method to address prioritization. Our goal is to detect
suspect components that are likely to correspond to the actual
error source of a failure, and segregate those from suspects that
are unrelated. We do so by performing feature engineering to
select appropriate attributes that can expose a separability be-
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tween these two entities. Specifically, we introduce two metrics
extracted from error trace information, namely the temporal
distance and excitation resistance of suspect locations, and we
empirically show that these can be used as suspect features to
produce accurate suspect priority sequences. The classification
task is performed by Support Vector Machines (SVMs).

Further, in this work, the tasks of failure binning and bin
distribution are unified under a single data-mining formula-
tion. Particularly, we automate both these stages by encoding
them as exemplar-based clustering, which partitions the set of
exposed failures into bins and also determines which failures
are the most representative of erroneous behavior within each
bin. By using the ranked suspects produced by coarse-grain
debugging as failure attributes, we introduce a novel high-
dimensional representation for each failure. This allows us to
map all failures in a joint space, where their similarity can
be naturally quantified though known distance metrics. We
then employ a belief propagation algorithm, known as Affinity
Propagation [8], to bin similar failures together and utilize
failures-exemplars to determine the best-suited engineer for
detailed debug. Experiments on industrial designs show that
our methodology achieves 84% accuracy when it comes to
failure grouping, and 81% accuracy for bin distribution, with
only a 6.5% overhead in runtime.

The remainder of this paper is organized as follows. Sec-
tion II offers background regarding the three main triage
stages, and discusses prior work in the field. Section III
outlines the proposed coarse-grain debugging method, and
discusses the metrics that are proposed for classification. The
formulation and exemplar-based clustering process for failure
binning and failure bin distribution are presented in Section IV.
Finally, Section V presents our experimental evaluation and
Section VI concludes the work.

II. TRIAGE IN RTL DEBUGGING

Failure triage commences immediately after regression is
complete and it precedes detailed debugging. Regression in
this context refers to the application of simulation test suites,
sanity checks and/or formal model checking at the end of
some predetermined development stage, to ensure the design
performs as expected. We assume that the results of this pro-
cess are persisted into proper simulation and failure log files.
With this assumption, triage essentially constitutes a filtering
process that translates an unstructured debugging problem (i.e.,
randomly pick a failure caught during regression and debug
it) into a structured set of multiple debugging instances, where
each debugging instance focuses on a group of related failures
and has the proper engineering resources allocated to it. A
high-level view of a triaged debugging flow is illustrated
in Figure 1, where the results of regression verification are
translated into K debugging instances (failure groups). This
Section elaborates on the steps, notation, requirements and
prior work in debugging triage.

A. Regression Data

To aid the presentation we first discuss what type of
input the triage engine receives after regression is complete.
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Fig. 1. Triage in design debugging flows

Consider a design undergoing regression verification, with
possibly multiple errors at the RTL. When a mismatch between
the expected “golden” value(s) (0,1 or X) and the one(s)
observed is identified at some observation point (end-to-
end checker, exception checker or assertion), we say that a
failure occurs. Suppose that N design failures are exposed
by the end of regression, and let these failures be denoted
as F = {F1, F2, . . . , FN}. In this work we consider scenarios
where verification, whether formal or simulation-based, returns
error traces, i.e., sequences of stimuli exposing these failures.
Thus, it is hereby assumed that, for each failure Fi, its
corresponding error trace, denoted Ei, is also available. It is
also assumed that several error-trace data are accessible by the
triage engine, such as internal signal values and signal/block
coverage information.

Finally, for a given regression run, one can assume that
several tests in the suite may pass without exposing any failure.
Suppose the regression run ends with M passing tests. Then
we denote these as P1, P2, . . . , PM , and again assume that
simulation data related to these passing tests are accessible by
the triage engine.

B. Coarse-grain Debugging

Coarse-grain debugging is the first triage sub-phase, also
shown in Figure 1. Here, the goal is to overapproximate the
error location for each failure in F. This task entails two parts:
(a) identifying a set of design locations that are potential root-
causes for each failure, and (b) generating a priority sequence
(ranking) of these locations. The latter involves identifying
these locations most likely to be the actual error source for
any given failure, a mechanism that can dramatically reduce
the engineering effort associated with detailed debugging, and
which also serves as a means to generate representative failure
signatures to aid the other two triage sub-phases that follow.

Recent work uses SAT-based debugging to address the first
part of coarse-grain debugging, and several heuristics based
on simulation data to produce the necessary rankings [9].
The application of such formal tools to exhaustively identify
all potential root-causes is a well-established method in the
industry, and thus is also adopted by the work presented here.
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In what follows, we revisit basic concepts and notation behind
SAT-based RTL debugging, the details of which are given
in [3], and we outline how rankings are generated in past
work.

1) SAT-based Debugging: When executing a baseline SAT-
based debugging pass for a given failure Fi ∈ F, the auto-
mated debugger returns a set of design components (RTL sig-
nals, blocks or modules), denoted as Si = {s1, s2, . . . , s|Si|}.
These design elements, s1, s2, . . . , s|Si|, are referred to as
suspects, and constitute all possible design locations that can
be responsible for failure Fi. Broadly speaking, automated
debuggers can perform the task at the gate-level, but in this
work we focus on RTL debugging, which offers a lower
resolution analysis. This is desirable since state-of-the-art
debuggers operate at the RTL. Additionally, a low resolution
analysis is more suitable for triage purposes, since decisions
are made based on blocks higher in the design hierarchy.
Along these lines, a suspect can be an always block, an
if statement, a module definition or instantiation etc.

In practice, the SAT-based debugger can be run with an
additional parameter, referred to as the cardinality constraint,
which is a positive integer. For a cardinality constraint equal
to c > 1 the debugger is forced to discover locations where
exactly c bugs need to interact to produce the observed
mismatch. However, when operating at higher RTL hierarchy,
a single suspect component will cover the case of higher
cardinality suspects at any level below.

In this paper we work with suspects of single cardinality.
Specifically, we leave the cardinality constraint free, and for
any suspect of cardinality c > 1, we traverse the hierarchy
upwards until we encounter the single cardinality suspect that
contains all c suspect locations below. In extreme cases this
includes the top-level design and/or the testbench as suspects
(the latter when one or more suspects are found to be in the
stimuli). It should be noted that the debugger rarely returns
suspects of cardinality greater than 2, unless it operates at the
gate level.

With this assumption and due to its exhaustive nature SAT-
based debugging guarantees that the design location responsi-
ble for some failure Fi will be included in suspect set Si. In
this context, suspect set Si can be viewed as a “signature”
that characterizes failure Fi. Finally, SAT-based debuggers
can point to the exact cycle where an erroneous value is
excited within some suspect component, and can also return
the erroneous value’s propagation path, which constitutes the
circuit elements that it traverses to reach the point of mismatch.

Example 1. To demonstrate the concepts introduced above
consider an error trace E1 leading to the exposure of failure
F1, as depicted in Figure 2. The sequential behavior of the
circuit for that trace is shown using its Iterative Logic Array
(ILA) representation [3]. Suppose an error at component s2 is
excited in cycle n− 2 and propagates to cause a failure (F1)
at an observation point in cycle n. The error trace is then
passed to an automated debugger. The result is a suspect set
S1 = {s1, s2, s3} of design components that can explain the
mismatch. Suspects s1, s2 and s3, where erroneous values are
excited in cycles k, n− 2 and n− 1 respectively, along with
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Fig. 2. Error trace and suspect components

excited in cycle n� 2 and propagates to cause a failure (F1)
at an observation point in cycle n. The error trace is then
passed to an automated debugger. The result is a suspect set
S1 = {s1, s2, s3} of design components that can explain the
mismatch. Suspects s1, s2 and s3, where erroneous values are
excited in cycles k, n� 2 and n� 1 respectively, along with
propagation paths of these erroneous values are illustrated in
Fig. 2. Note that the erroneous component is included in the
set S1 as suspect s2.

2) Suspect Ranking: Although the SAT-based debugger is
guaranteed to return the actual design error, in practice it
tends to include many other locations, as there are often many
unrelated design blocks where a change can be made to mask
the failure. A spurious suspect refers to such a result i.e., a
suspect location returned by the debugger that is not the actual
error source.

For various reasons, it is desirable to determine which
components are spurious suspects. During detailed debug, the
engineer must spend time investigating each of the suspects.
Therefore, knowing which suspects are spurious, can signif-
icantly accelerate the process, as it reduces the number of
locations that need to be examined. Additionally, identifying
spurious suspects early, can serve as a filtering process that
reduces “noise” in the debugging data that is collected, and
can therefore lead to more accurate failure binning and bin
distribution results.

Of course, there is no known method that can identify
spurious suspects with certainty. Thus, a mechanism is needed
that properly ranks all suspect components based on their
likelihood of being an actual design error. This ranking process
constitutes the second sub-phase of coarse-grain debugging.

Ideally, one needs to identify and promote suspects that
exhibit behavior similar to that of typical human-introduced
design errors. Recent work has experimentally shown that
metrics extracted from simulation data for each suspect com-
ponent can aid this process. Specifically, the authors in [9]
use signal toggle coverage measured within each error trace
to identify behavior that is representative of human-introduced
errors, but atypical of spurious suspects. However, one can
point to three main drawbacks in the above method. First,
signal toggle coverage may be of limited use when handling
suspects that correspond to larger design blocks. Second,
coverage information is extracted only from error traces, and
the potential of leveraging the coverage of passing tests has
largely been left unexplored. Finally, the simulation metrics
that are used have no statistical support, in that there exists
no statistical analysis to empirically confirm that they expose
a separability between spurious suspects and design errors. In
this work, we address all these points, as it will be shown in
the next Section.

C. Failure Binning
Failure binning is inherently an unsupervised learning task

(clustering), based on some descriptive model that associates
failures in F and quantifies how similar any two failures in
the set are. Its goal is to produce a complete partition of the
failure set F into K disjoint clusters (bins). Ideally, failures
that originate from the same RTL error are placed into the
same cluster, and into distinct clusters otherwise. The process
requires a pairwise failure similarity measure to be quantified
based on the above desired relationship.

There can be several ways to quantify similarity between
failures Fi and Fj , which we denote here as s(i, j). Some of
them may produce similarity measures that are true metrics,
in that they respect the triangle inequality, but that is not
always necessary. Indicatively, in [9], similarity is computed as
a weighted version of the Jaccard Index [10]. The weighted
Jaccard Index quantifies mutuality between the suspect sets
of Fi and Fj , while taking into account the ranking of the
suspects within these sets as well. Such similarities are not true
metrics, and thus this method operates in a non-metric space.
Particularly, failure binning is performed via a hierarchical
clustering algorithm [10].

On the post-silicon verification front, where triage has
also been attracting interest, the authors in [11] compute
similarity by extracting features from the failure reports using
a topology-aware approach based on graph partitioning. For
the binning task they employ k-means clustering.

Another significant parameter in failure binning is the
number of clusters to be formed, which generally has to be
“guessed” a priori. This is an inherently difficult task in failure
triage, since it assumes prior knowledge from the engineer’s
side regarding the number of design errors responsible for
the set of failures F. Since this type of knowledge is limited
and often absent in typical triage scenarios, the authors in [9]
employ heuristics based on cluster density, a mechanism that
appears to be the bottleneck of their method in terms of
binning accuracy. On the other hand, the work in [11] for post-
silicon triage, handles this issue by performing the clustering
process (k-means clustering) multiple times and outputting
the partition with minimal overall within-cluster similarity.
Multiple clustering runs, however, dramatically increase the
overall running time, while the accuracy highly depends on
the initial seeding of the algorithm, which is often arbitrarily
chosen.

D. Failure Bin Distribution
The final phase of triage is failure bin distribution, which

typically commences immediately after the binning stage.
Suppose that failure binning generates K failure clusters,
C1, C2, . . . , CK . The goal of failure bin distribution is to
allocate each of the K clusters to engineers that are most
familiar with failures within that cluster. In past work this
allocation is done as follows. For each cluster Ci, the union
of all distinct suspects across failures in Ci is computed, i.e.
the union

S
Sj

: Fj 2 Ci. Then, from this set of suspects, the
ones that have a high rank are identified, based on the ranking
process that takes place during the coarse-grain debugging
phase. Finally, cluster Ci is passed to the engineer(s) that
are best-suited to analyze these important suspect locations
in the design. This heuristic is, however, highly dependent on
the purity of each cluster. Specifically, failures that are falsely
placed in a cluster may misguide this allocation, as it is entirely
possible that their suspects are ranked high, but are completely
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propagation paths of these erroneous values are also shown
in the figure. Note that the erroneous component is included
in S1 as suspect s2.

2) Suspect Ranking: In practice, a SAT-based debugger
tends to return many design locations apart from the one
responsible for the failure, since there are often multiple
unrelated design blocks where a change can be made to mask
the failure. A spurious suspect refers to such a result i.e., a
suspect location returned by the debugger that is not the actual
or an equivalent error source. We note, the term “spurious”
in this work is different from the one used in traditional
abstraction and refinement debugging [10], where it refers to
non-viable solutions due to over-approximation of the solution
space during abstraction.

For various reasons, it is sensible to determine which design
locations are spurious suspects. For instance, during detailed
debug the engineer must spend time investigating each of the
suspects. Therefore, knowing which suspects are spurious can
accelerate the process, as it reduces the number of locations
that need to be examined. Additionally, identifying spurious
suspects early can serve as a filtering process that reduces
“noise” in the debugging data that is collected.

Of course, no known method exists that can identify spuri-
ous suspects with certainty. Thus, a mechanism is required
that properly ranks all suspect components based on their
likelihood of being an actual design error. This ranking process
constitutes the second sub-phase of coarse-grain debugging.

Ideally, one needs to identify and promote suspects that
exhibit behavior similar to that of typical human-introduced
design errors. Recent work has experimentally shown that
metrics extracted from simulation data for each suspect com-
ponent can aid this process. Specifically, the authors in [9]
use signal toggle coverage measured within each error trace
to identify behavior that is representative of human-introduced
errors, but atypical of spurious suspects. However, one can
point to three main drawbacks in the above method. First,
signal toggle coverage may be of limited use when handling
suspects that correspond to larger design blocks. Second,
coverage information is extracted only from error traces, and
the potential of leveraging the coverage of passing tests has
largely been left unexplored. Finally, the simulation metrics
that are used have no statistical support, in that there exists no
analysis to empirically confirm that they expose a separability
between spurious suspects and design errors. In this work, we
address all these points, as it will be shown in the next Section.

Along similar lines, a recent thread of work on bug localiza-
tion and triage has successfully applied data-mining techniques
combined with coverage event analysis [11] and high-level
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instruction set simulation [12]. These works mainly focus
on probabilistically inferring the location of a bug, without
explicitly addressing the problems of failure binning and
distribution in regression settings. Data-mining tools have also
been developed in related verification fields, and prominently
for automatic assertion generation [13].

C. Failure Binning

Failure binning is inherently an unsupervised learning task
(clustering), based on some descriptive model that associates
failures in F and quantifies how similar any two failures in
the set are. Its goal is to produce a complete partition of the
failure set F into K disjoint clusters (bins). Ideally, failures
that originate from the same RTL error are placed into the
same cluster, and into distinct clusters otherwise. The process
requires a pairwise failure similarity measure to be quantified
based on the above desired relationship.

There can be several ways to quantify similarity between
failures Fi and Fj . In [9], similarity is computed as a weighted
version of the Jaccard Coefficient. The metric quantifies the
overlap between suspect sets of Fi and Fj , while taking into
account the ranking of the suspects within these sets. Binning
is then performed via hierarchical clustering algorithms. On
the post-silicon verification front, where triage has also been
attracting interest, the authors in [14] compute similarity by
extracting features from the failure reports using a topology-
aware approach based on graph partitioning. For the binning
task they employ k-means clustering.

Another significant parameter in failure binning is the
number of clusters to be formed, which generally has to be
“guessed” a priori. This is an inherently difficult task in failure
triage, since it assumes prior knowledge from the engineer’s
side regarding the number of design errors responsible for
the set of failures F. Since this type of knowledge is limited
and often absent in typical triage scenarios, the authors in [9]
employ heuristics based on cluster density, a mechanism that
appears to be the bottleneck of their method in terms of
binning accuracy. On the other hand, the work in [14] for
post-silicon triage, handles this issue by performing k-means
clustering multiple times and outputting the partition with
minimal overall within-cluster similarity. This incurs a severe
cost in the overall running time, while accuracy becomes
highly sensitive to the initial seeding of the algorithm.

D. Failure Bin Distribution

The final phase of triage is failure bin distribution, which
typically commences immediately after the binning stage.
Suppose that failure binning generates K failure clusters,
C1, C2, . . . , CK . Failure bin distribution aims at allocating
each of these K clusters to engineers that are most familiar
with failures within that cluster. In past work this allocation
is done by aggregating all suspects components that appear
in failures of a particular cluster, sorting them by rank and
passing that cluster to the engineer(s) that are best-suited to
analyze the high-ranked suspects in that cluster.

This heuristic is, however, highly dependent on the quality
of each cluster. Specifically, failures that are falsely placed

in a cluster may misguide this allocation, as it is entirely
possible that their suspects are ranked high, but are completely
unrelated to the error responsible for that bin. In this work,
we conjecture that it is naturally more suitable to allocate the
cluster based on the failure that is most representative of the
erroneous behavior within each bin, rather than by aggregating
and sorting all suspects. The mechanic through which we
determine such failures is presented in Section IV.

III. COARSE-GRAIN DEBUGGING

The proposed triage flow begins with the application of
SAT-based root-cause analysis on each failure Fi ∈ F, result-
ing in a set of N suspect sets S1, S2, . . . SN , as described in
Section II. Recall that the suspect ranking process that follows
requires us to produce an ordering of all suspects sj ∈ Si for
all suspect sets Si. For a particular set Si, we propose that the
ordering can be generated by sorting suspects in Si based on
their likelihood of being the actual error source responsible for
failure Fi. In this Section we describe a process for carefully
selecting features related to simulation, which can be used by
a predictive model to generate these likelihoods.

The process, which largely pertains to feature engineering,
entails several aspects. Across a wide range of possible suspect
features, such as location, type (signal, operand, type of state-
ment), coverage information etc., we need to identify those
that can efficiently aid in discriminating between spurious
suspects and human-introduced errors (suspects-errors); for
example, characteristics that are widely present in the former
and rare in the latter, or vice versa. Additionally, these fea-
tures need to be cost-efficiently mined, i.e., without requiring
complex computations, rerunning simulation and/or SAT-based
debugging. Finally, the number of suspect features should
preferably be much smaller than the number of suspects to be
classified, so as to mitigate “curse of dimensionality” issues.
In this work, we conjecture that signal controllability and
observability can give rise to effective simulation metrics that
distribute differently between spurious suspects and suspects-
errors, and thus become the basis of a predictive model.

With such directives, we focus on a particular probabilisitic
error behavior model, which forms the motivational factor
behind Bounded Model Debugging (BMD) [15], and which
has been extended in [9] to serve similar purposes as the ones
pursued here. The model embeds the concepts of excitation
probability and propagation probability into a single expres-
sion for the probability of a design location causing a failure
at some observation point. Excitation probability in this model
relates to signal controllability, while propagation probability
relates to signal observability. We restate the model and related
assumptions below [9].

Suppose that an error exists in the design and that simulation
begins at cycle 1. Let pex be the probability that the error is
excited at cycle i. Also, let ppr be the probability that the
error propagates from cycle i to cycle i + 1, and pob be the
probability that an erroneous value reaches some observation
point at some cycle i, given that the error has propagated
to that cycle. Finally, assume that the input vector sequences
are temporally independent and stationary random. Then, the
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probability pk,n that the error is excited at cycle k and
propagates to an observation point at cycle n ≥ k is

pk,n = (1− pex)k−1 · pex · pn−kpr · (1− pob)n−k · pob (1)

An analytic derivation of this formula is provided by the
authors in [9]. An informal explanation is as follows: each
cycle i in the ILA expansion of the error trace is viewed
as a single trial to excite the design error. Since the design
error is excited with probability pex at any cycle i, then
the probability that it is excited at cycle k can be naturally
modelled as a geometric distribution (1 − p)k−1 · p, where
p ← pex; that is, the probability that the first k − 1 trials
fail to excite the design error and there is a success at
cycle k. Similarly, the observation process is also modelled
as a geometric distribution, with the difference that the first
trial is indexed by k which is the first successful trial for
the excitation process. Then, n − k failed observation trials
follow until the error is finally observed at the n-th trial.
The propagation process, on the other hand, requires n − k
consecutive successes, from cycle k to cycle n which gives
rise to the product pn−kpr .

Note that, modelling the propagation and excitation process
by geometric distributions assumes that pex and pob remain the
same across cycles. Despite this simplifying assumption, it has
been empirically shown in [9] that the model produces good
approximation of the general error behavior (i.e., expected
propagation and excitation times). For the purpose of our work,
the model encapsulates two parameters that are of interest. The
first is the exponent n− k of the propagation probability ppr.
This quantity relates to the temporal closeness between the
excitation cycle k and the observation cycle n of an erroneous
value, and it can be cost-effectively mined from the error trace
of a failure, since the debugger points to the exact cycle where
an erroneous value is excited at a suspect location. The second
parameter is the excitation probability pex, itself. There is
arguably a relation between the coverage of a suspect location
(number of times the corresponding RTL segment is exercised)
and the excitation probability. One can say that a suspect block
with high coverage score measured between the simulation
origin (cycle 1) and the excitation cycle k, potentially contains
a bug that is harder to detect. In other words, it takes several
coverage counts for the bug in that suspect to be sensitized.
Such coverage measurement is also cost-effective given the
simulation logs that are available to the triage engine after
regression.

However, if we are to use metrics related to these parameters
as suspect features, we first need to ensure that they can
statistically expose a disparity between spurious suspects and
suspects-errors. To this end, our goal is to determine the
existence, if any, of underlying continuous distributions that
can characterize these two parameters of the error propagation
model. Knowing these distributions, enables us to perform
a model fitting process, which can quantify to what extent
spurious suspects and suspects-errors obey these distributions
and if a separability can be determined. Our goal is not
to perform exact inference on each suspect’s parameter, but
rather to infer how these parameters distribute across different

suspects. To some extent this allows us to tolerate the accuracy
loss introduced by the propagation model when we assume that
pex is fixed across cycles.

When it comes to the distance n − k between excitation
cycle and observation cycle, one can see that it has a decaying
exponential effect on pk,n in Eq. 1. Thus, we hypothesize that
exponential distributions can serve as continuous characteriza-
tions of this parameter. On the other hand, for a fixed n − k
distance, pk,n decays towards 0 as the excitation probability
pex tends to its limits, 0 and 1. Finally, when the distance n−k
varies we are interested in values for pex where pk,n obtains its
maxima. Since we are interested in maxima of pk,n and pex
has a finite lower limit, extreme value theory [16] suggests
that the Weibull distribution is a candidate for characterizing
the distribution of pex across various suspects. The probability
density function of the Weibull distribution is given below:

fWB(x;λ, κ) =
κ

λ

(x
λ

)κ−1
e−(

x
λ )
κ

(2)

where λ > 0 and κ > 0 are scale and shape parameters,
respectively.

To verify our hypothesis, we prove that the product (1 −
pex)

k−1pex in Eq. 1 is in the domain of attraction of the
Weibull, by showing that the Gnedenko [17] criteria are
satisfied. This essentially proves that, for various probabilities
pex across different suspects, the samples drawn from the
density (1−pex)k−1pex will converge to some known Weibull
distribution.

Theorem 1. Assuming the validity of the model in Eq. 1,
with positive constants k, n, ppr and pob, then F (pex) =
(1− pex)k−1pex is in the domain of attraction of the Weibull
distribution.

Proof. It has been shown by Gnedenko [17] that a distribution
F (x) belongs to the domain of attraction of the Weibull, if the
following two criteria are satisfied:

Criterion 1: xl = inf{x|F (x) > 0} > −∞

Criterion 2: lim
h↓0

F (hx− xl)
F (h− xl)

= xγ , γ > 0

The lower bound of F (pex) = (1 − pex)k−1pex is clearly
zero, thus xl = 0 and Criterion 1 is met. To validate that
Criterion 2 is satisfied, we use l’Hopital’s rule and compute
the relevant limit (using xl = 0):

lim
h↓0

F (hpex − xl)
F (h− xl)

= limh↓0
ϑ
ϑhF (hpex − xl)
ϑ
ϑhF (h− xl)

=

= lim
h↓0

ϑ
ϑhhpex(1− hpex)k−1

ϑ
ϑhh(1− h)k−1

=

= lim
h↓0

pex(1− hpex)k−1 + hpex(k − 1)(1− hpex)k−2
(1− h)k−1 + h(k − 1)(1− h)k−2 =

= pex lim
h↓0

(1− hpex)k−1 + h(k − 1)(1− hpex)k−2
(1− h)k−1 + h(k − 1)(1− h)k−2 =

= pγex
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limh#0
F (hpex � xl)

F (h� xl)
= limh#0

#
#hF (hpex � xl)

#
#hF (h� xl)

=

= limh#0
#
#hhpex(1� hpex)n�1

#
#hh(1� h)n�1

=

= limh#0
pex(1� hpex)n�1 + hpex(n� 1)(1� hpex)n�2

(1� h)n�1 + h(n� 1)(1� h)n�2
=

= pexlimh#0
(1� hpex)n�1 + h(n� 1)(1� hpex)n�2

(1� h)n�1 + h(n� 1)(1� h)n�2
=

= p�ex

where � = 1. Hence Criterion 2 is also satisfied. ⇤
With the exponential and Weibull distributions established

as the underlying models for the two parameters of interest, we
define two metrics that we will be using as features to represent
suspect locations. These metrics have to be quantities that are
tied to the two parameters at hand, and distribute similarly.
Specifically, we propose a metric referred to as temporal
distance, which is associated with the m�n parameter in the
model, and a metric referred to as excitability in connection
to the excitation probability pex.

Temporal distance refers to the number of cycles between
the excitation of the suspect and the observation of the failure
divided by the length of the error trace. As such, the temporal
distance dj(si) of suspect si with excitation time ti in an error
trace Ej of length |Ej | cycles is given as follows:

dj(si) =
|Ej | � ti

|Ej |
(5)

Temporal distance assumes real values in the range [0 . . . 1].
Here, the smaller the distance is, the easier it is for the
error excited at the relevant RTL block to propagate at the
observation point and justify the mismatch.

Excitability relates to the number of times a portion of
the circuit (e.g., an RTL block) is covered by a test in the
regression suite. Given an error trace Ej , a suspect block si,
and its excitation cycle ti, we first define the coverage count
cj(si) of si in the cycles 1 and up to ti with respect to Ej as
follows:

cj(si) = < # of times si is covered in error trace Ej > (6)

Then, the excitability rj(si) of a suspect RTL block si with
respect to Ej is defined as the quotient:

rj(si) =
cj(si)

ti
(7)
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Fig. 3. Simulation metrics for suspect s1 2 S1 related to failure F1. Temporal
distance is measured between the excitation cycle k and the last cycle in Ei.
Excitability with respect to Ei is measured in the trace window staring at
cycle 1 and ending at cycle k. Excitability across passing tests is measured
using coverage logs for passing tests P1 and P2.

Excitability also assumes values in the range [0 . . . 1]. Intu-
itively, the larger the excitability of a suspect is the easier it is
for an error in the relevant RTL block to be excited by the test
vectors and eventually propagate to the observation point. The
metric is normalized over the number of cycles (ti, assuming
simulation starts at cycle 1) that it takes for the error to be
sensitized.

However, excitability can also be measured in passing tests.
One would expect that suspect locations with high coverage
statistics across passing tests are also less likely to contain
bugs that can be easily excited; these locations are covered
multiple times but no error is captured. Recall, that we assume
there are M passing tests in the suite, P1, P2, . . . , PM , the
lengths of which (in terms of number of cycles) are denoted
|P1|, |P2|, . . . , |PM |. Then, we define the passing coverage
count cP

j (si) of a suspect location si to be as follows:

cP
j (si) =

< # of times si is covered in passing test Pj >

|Pj |
(8)

Then, the (average) excitability rP (si) of a suspect RTL block
si with respect to passing tests P1, P2, . . . , PM is defined as:

rP (si) =

j=MP
j=1

cP
j (si)

M
(9)

Observe that the excitability of a suspect location with
respect to passing tests is identical between suspects that
correspond to the same design location but appear in different
suspect sets. In contrast, the excitability with respect to each
error trace can be potentially different between these suspects
to capture their varying behavior within these error traces.
Finally, we are opting not to synthesize these two aspects of
excitability into a single quantity to avoid selection bias, and
instead we use them as separate features for each suspect.

Our model fitting process in Section V confirms that the
exponential and Weibull distributions are a good fit for these
two metrics, respectively. Using these models, we show that
suspects-errors are generally governed by lower temporal
distance and higher excitability compared to spurious ones. An
informal justification of the above is that we expect human-
introduced errors to be relatively easier to excite (higher
excitability), and easier to propagate (lower temporal distance),

Fig. 3. Simulation metrics for suspect s1 ∈ S1 related to failure F1. Temporal
distance is measured between the excitation cycle k and the last cycle in Ei.
Excitation resistance with respect to Ei is measured in the trace window
staring at cycle 1 and ending at cycle k. Excitation resistance across passing
tests is measured using coverage logs for passing tests P1 and P2.

where γ = 1. Hence Criterion 2 is also satisfied.

With the exponential and Weibull distributions established
as candidate models for the two parameters of interest, we now
define two metrics that will be used as features to represent
suspect locations. These metrics have to be quantities that are
tied to the two parameters at hand, and distribute similarly.
Specifically, we propose a metric referred to as temporal
distance, which is associated with the exponent n − k in the
model, and a metric referred to as excitation resistance in
connection to the excitation probability pex.

Temporal distance refers to the number of cycles between
the excitation of the suspect and the observation of the failure
divided by the length of the error trace. As such, the temporal
distance dj(si) of suspect si with excitation time ti in an error
trace Ej of length |Ej | cycles is given as follows:

dj(si) =
|Ej | − ti
|Ej |

(5)

Temporal distance assumes real values in the range [0 . . . 1].
Here, the smaller the distance is, the easier it is for the
error excited at the relevant RTL block to propagate at the
observation point.

Excitation resistance relates to the number of times a portion
of the circuit (e.g., an RTL block) is covered by a test in the
regression suite. Given an error trace Ej , a suspect block si,
and its excitation cycle ti, we first define the coverage count
cj(si) of si with respect to trace Ej as follows:

cj(si) = 〈# of times si is covered in Ej in cycles [1, . . . , ti]〉

Then, the excitation resistance rj(si) of a suspect RTL block
si with respect to Ej is defined as the quotient

rj(si) =
cj(si)

ti
(7)

Excitation resistance also assumes values in the range
[0 . . . 1]. Intuitively, the smaller the excitation resistance of a
suspect is the easier it is for an error in the relevant RTL block
to be excited by the test vectors and eventually propagate to the
observation point. The metric is normalized over the number

of cycles (ti, assuming simulation starts at cycle 1) that it takes
for the error to be sensitized.

It should be noted here that excitation resistance relates to
the maximum likelihood estimate for 1−pex in the error prop-
agation model. Let pMLE be the maximum likelihood estimate
for 1−pex in the geometric distribution (1−pex)k−1pex. Then
it is known that pMLE is given by:

pMLE =

n∑
j=1

(kj − 1)

n∑
j=1

kj

(8)

where n is the number of samples drawn and kj is the total
number of trials in each sample j. Note that in each sample
j there is one successful trial and kj − 1 failed trials. For
a suspect with excitation time ti that would translate into an
estimate of (ti−1)/ti, since we only have one sample, which is
the error trace itself and ti trials, one for each cycle. However,
this assumes that each cycle before ti is a failed trial and may
produce a rather pessimistic estimate when taking into account
real conditions beyond the model’s assumptions. For example,
in reality not each cycle should be strictly viewed as a failed
trial, especially when the suspect location is not covered in
that cycle. Thus we only consider failed trials to be the ones
where the location is at least exercised in that cycle, as this
rises from Eq. 7. This means that excitation resistance rj(si)
is upper bounded by the maximum likelihood estimate pMLE

for the suspect’s probability of not being excited at some cycle,
since rj(si) = cj(si)/ti ≤ (ti − 1)/ti.

Excitation resistance can also be measured in passing tests.
One would expect that suspect locations with high coverage
scores across passing tests are less likely to contain bugs
that can be easily excited; these locations are covered mul-
tiple times but no error is captured. Recall that we assume
there are M passing tests in the suite, P1, P2, . . . , PM , the
lengths of which (in terms of number of cycles) are denoted
|P1|, |P2|, . . . , |PM |. Then, we define the passing coverage
count cPj (si) of a suspect location si to be as follows:

cPj (si) = < # of times si is covered in passing test Pj >
(9)

Then, the excitation resistance rP (si) of a suspect RTL
block si with respect to passing tests P1, P2, . . . , PM is
defined as:

rP (si) =

M∑
j=1

cPj (si)

M∑
j=1

|Pj |
(10)

Observe that the excitation resistance of a suspect location
with respect to passing tests is identical between suspects that
correspond to the same design location, even if they appear
in different suspect sets. In contrast, the excitation resistance
with respect to each error trace can be potentially different
between these suspects to account for their variability within
these error traces. From a probabilistic standpoint, rP (si) is an
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approximation of pMLE for suspect si viewing all M passing
tests as samples and the sum of all coverage counts over these
tests as failed trials, whereas rj(si) refines the approximation
regarding suspect si by considering its presence in error trace
Ej . Figure 3 shows an example of how these metrics can be
extracted for a particular suspect location.

The model fitting process described in our experiments
(Section V) confirms that the exponential and Weibull dis-
tributions are a good fit for these two metrics, respectively.
Using these models, we show that suspects-errors are generally
governed by lower temporal distance and lower excitation
resistance compared to spurious ones. An informal justification
of the above is that we expect human-introduced errors to be
relatively easier to excite and easier to propagate compared to
spurious suspects, which often correspond to obscure ways of
justifying a mismatch. This, in turn, statistically justifies the
suitability of these metrics for discriminating spurious suspects
and suspects-errors by means of a predictive utility, such as a
classifier.

In our methodology we choose Support Vector Machines
(SVMs) [18] to undertake the binary classification task, where
our goal is to predict whether a suspect is a suspect-error
(class 1) or a spurious suspect (class 0). There is a twofold
rationale behind choosing SVMs. First, we are not interested
in estimating the marginal probability of a suspect component
being an error. Rather, we desire some measure of confidence
based on which we can produce an ordering of the suspects
in the suspect raking process. SVMs offer exactly this type of
prediction. For each suspect location that is passed as a new
input to the classifier, the SVM will output a confidence score
indicating how likely it is that the new input belongs to one
of the two classes. Second, SVMs do not require training sets
(suspects passed as training inputs) to be much larger than the
number of features. Given that the number of suspects that
can be identified is not always in our control, since it largely
depends on the complexity of the design and type of errors
that the suite can detect, we desire a model that can operate
with training sets of small size without jeopardizing accuracy.

The specifics of how SVMs optimize the boundary hyper-
planes that separate classes in the feature space are outside of
the scope of this paper, so they are omitted here. However, we
declare some important meta-parameters of the SVM model
used: (a) the Radial Basis Kernel is used as a non-linear
kernel function for feature mapping, (b) the hinge loss function
is used as a soft margin, and (c) the classification strategy
is “one-against-one”. The training set for the SVM model
is a collection of past debugging results, i.e., identified root
causes, spurious suspects, and relevant simulation metrics that
are aggregated across previous regression epochs. Maintaining
a comprehensive database ensures that enough data will be
available for training purposes. In case that the design process
is in very early stages, implying the absence or limited access
to training sets, then one can resort to heuristics that are based
on the same simulation metrics that we introduce in this work;
for example, conducting suspect ranking based on empirical
thresholds on these metrics. Such heuristics have also been
discussed in previous works [9].

Assuming that historical debugging data are indeed avail-

able, the inputs to our SVM model are suspect objects rep-
resented using the three features described before; temporal
distance, excitation resistance with respect to the error trace,
and excitation resistance across passing tests. Suspects that are
labelled and thus belong to the training set are accompanied
by their class indicator, which is set to 0 if the suspect is
spurious and set to 1 if the suspect is the actual error source.
Thus, if a suspect si ∈ Sj in the training set is spurious,
then it is represented as si :=< dj(si), rj(si), r

P (si), 0 >,
and if it is a suspect-error, then it is represented as si :=<
dj(si), rj(si), r

P (si), 1 >. Suspects that are unlabelled, that
is, the ones we need to make predictions for, are represented
identically, but without the class indicator.

In any case, if we denote the SVM module as SVM(x, ϑ),
where x is a new input and ϑ is the set of trained model
parameters, then the confidence score of si ∈ Sj for some
failure Fj in terms of being in class 1 or class 0, is denoted
as scoreji (class), such that:

scoreji (class)← SVM(< dj(si), rj(si), r
P (si) >,ϑ) (11)

where class assumes the corresponding class indicator. For
each suspect si, score

j
i (class) assumes real values between

−∞ and +∞. The greater the value is for a particular class,
the more confident the engine is that si belongs to that class.

To order suspects based on likelihood of being the actual
error source we need to assign weights to these suspects, such
that ones strongly related to class 1 assume a larger weight.
Specifically, the weight of si ∈ Sj for some failure Fj , denoted
wji , is given as:

wji =

{
scoreji (class) , if class = 1

−scoreji (class) , if class = 0

With this weighting scheme, we sort each suspect set Sj
in non-increasing order of suspect weights. Ties are broken
randomly. Essentially, suspects with larger weight, which are
more likely to be suspects-errors based on our assumed model,
appear earlier in the ordered set. Apart from guiding bin
distribution as it is later discussed, these weights form a basic
element in how we define pairwise failure similarities for the
failure binning process that follows.

IV. AUTOMATING FAILURE BINNING AND BIN
DISTRIBUTION VIA BELIEF PROPAGATION

Once all suspect weights are computed, the engine proceeds
to construct pairwise failure similarities. Recall that the simi-
larity between two failures Fi and Fj quantifies to what extent
these two failures possibly share the same root cause.

Definition 1. Given any two failures Fi, Fj ∈ F with i 6= j,
we denote their pairwise failure similarity as s(i, j) ∈ R≤0.
We say that for three distinct failures, Fi, Fj , Fk, if s(i, j) >
s(i, k), then Fi is more likely to originate from the same error
source as Fj , than it is to originate from the same error source
as Fk.

To compute similarities, we propose a mechanism that
represents failures as high-dimensional objects, enabling a
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mapping of these into a joint space. Particularly, we construct
a feature-based representation for each failure Fj ∈ F, as fol-
lows. Suppose s1, s2, . . . , sD are all the distinct suspect com-
ponents in

⋃N
i=1 Si. Then, failure Fj is represented by a D-

dimensional real-valued feature vector ~Fj = [xj1, x
j
2, . . . , x

j
D],

where each feature xji is assigned the weight (significance) of
suspect si with respect to failure Fj , if si appears in Sj , or
obtains a value of 0 otherwise:

xji =

{
wji , if si ∈ Sj
0 , if si /∈ Sj

(12)

Failures are then mapped into a D-dimensional space, where
similarity s(i, j) can be naturally defined as the negative
squared error (Euclidean distance) between ~Fi and ~Fj :

s(i, j) = −|| ~Fi − ~Fj ||2 (13)

The squared error in Eq. 13 is negated to abide to similarity
semantics. Note that pairwise similarities s(i, j) are non-
positive real values, as desired. If two failures Fi and Fj
have multiple common suspects of similar weight, then their
vectors are expected to appear closer in the joint space,
thus obtaining a relatively large pairwise similarity. For the
binning and distribution stages that follow, these pairwise
failure similarities are given in the form of a N×N similarity
matrix S.

A. Problem Formulation

Unlike prior work, our methodology generates solutions to
failure binning and distribution simultaneously, in a unified
manner. This is achieved by casting the whole process as
exemplar-based clustering. Exemplar-based clustering parti-
tions the data into clusters, but also identifies the most
representative member of each cluster, also referred to as
exemplar. An exemplar is the cluster member that exhibits
maximum overall similarity to all other members in the cluster.
In our context it can be viewed as the failure that is the most
representative of the erroneous behaviour associated with all
other failures in the same bin. This failure-exemplar along with
its suspect locations can thus determine how to distribute the
failure bin it belongs to.

To solve the problem under this setting we apply an algo-
rithm known as Affinity Propagation (AP) [8]. The algorithm
is derived as an instance of max-product loopy belief propa-
gation on graphical models [8]. AP does not explicitly search
for exactly K clusters, but instead offers a trade-off between
the number of clusters and the within-cluster similarity that is
obtained. As such, it is not required that the number of clusters
is specified a priori. Instead, the algorithm allows the engineer
to specify failures that are believed to be of high importance.
For that purpose, a parameter called preference, denoted pi, is
associated with failure Fi. When preference pi is set to higher
values, then Fi is internally promoted by the algorithm to
become an exemplar. Preferences are provided as input in the
form of a N -dimensional vector p = [p1, p2, . . . , pN ]. These
values are then assigned to the self-similarities in the diagonal
of matrix S. Specifically, s(k, k) = pk,∀k ∈ {1, . . . , N}.

Supposing that the algorithm takes S and p as input, then,
a set of N2 binary random variables hij ∈ {0, 1} is defined,
such that hij = 1 if and only if failure Fi has chosen Fj as its
exemplar. In this setting, if hjj = 1, then Fj has in fact been
chosen as an exemplar by other failures. The objective function
is then to maximize the sum of all similarities between failures
in the cluster to their failure-exemplar, while also maximizing
the total preferences. The associated constrained optimization
problem is given as:

max
{hij}

i=N∑

i=1

j=N∑

j=1

s(i, j)hij (14a)

subject to∑

j

hij = 1 ∀i (14b)

hjj = max
i
hij ∀j (14c)

Eq. 14b ensures that each failure chooses exactly one other
failure as its exemplar, while Eq. 14c ensures that an exemplar
is never choosing another exemplar. The goal is to find settings
of {hij} that maximize the sum-product in Eq. 14a. AP finds
solutions through an iterative message-passing process [8].
Upon convergence it returns a set of exemplar failures denoted
as Fex:

Fex = {Fj ∈ F : hjj = 1} (15)

Due to the blocking constraint in Eq. 14c, each exemplar
defines exactly one cluster of failures and is itself a member
of the cluster. Hence, the number of clusters, K, equals the
number of exemplars |Fex|. Further, for each non-exemplar
failure Fi there exists an exemplar failure Fj which is the
most similar to Fi across all other exemplars in Fex. The
set of non-exemplars that are most similar to exemplar Fj is
therefore

{Fi ∈ F : i = argmax
Fj∈Fex

s(i, j)} (16)

Each non-exemplar failure is then assigned to the same
cluster Ck as its most similar exemplar failure Fj . Ultimately,
during the bin distribution stage, cluster Ck is passed to the
engineer(s) that are responsible for the high-ranked suspect
locations in Sj associated with failure Fj , where Fj is the
exemplar in cluster Ck.

The are several benefits offered by the proposed formula-
tion. First, it does not enforce any constraints on similarities,
apart from requiring that they are non-positive real values.
Similarities can be either metric or non-metric, symmetric
or asymmetric, with no impact on the formulation, unlike
prior work which only operates with non-metric similari-
ties [9]. Second, the number of clusters emerges algorithmi-
cally from the message-passing process, and does not need to
be “guessed”. Moreover, bin distribution is guided by suspects
that correspond to failures-exemplars, with low risk of false
positive failures misguiding the process. Finally, this enables
engineers to focus resources and perform detailed debugging
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on each exemplar failure and its suspect set. Assuming that
a failure-exemplar is indeed representative of the design error
responsible for its cluster and that ranking pushes the actual
error towards the top of the ranked suspect list, fixing it is
likely to eliminate most or all other failures in the same cluster.

B. Triage with Prior Belief

An additional benefit is that the method offers flexibility and
user-control considering various triage scenarios. Although
it is generally difficult to have an accurate estimate on the
number of design errors responsible for all failures, there are
cases where engineers, based on experience, target specific
failures around which they wish F to be partitioned. These are
failures that the engineer believes should serve as exemplars of
erroneous behavior. For example, an engineer may suspect that
a bug triggering a specific assertion also manifests at multiple
other locations either as exception catching or golden value
mismatches, but without explicit knowledge of which these
locations are. In that case, they may wish to identify at least
one cluster with this failing assertion being the exemplar. To
accommodate such scenarios, triage can be performed under
two different settings.

The uniform setting refers to cases where no assumptions
are made regarding to what extent specific failures should
be targeted; they are all treated as equally likely to become
exemplars. Generally this translates into fixing all preferences
pk ∈ p to be the median of all similarities:

pk =
1

N2

i=N∑

i=1

j=N∑

j=1

s(i, j), k ∈ {1, . . . , N} (17)

Conversely, the non-uniform setting refers to scenarios
where the engineer selects specific failures to promote as
exemplars. If failure Fk is targeted then pk is set to 0.
Otherwise pk is set to the median of similarities, as in Eq. 17.
Setting higher preferences affects the number of clusters to be
produced, but the number also rises from the message-passing
procedure. It is therefore entirely possible that the number
of clusters formed at the end will not match the number of
promoted failures, if this number does not reflect a reasonable
partition. However, if the “guess” is close to ground truth, then
the algorithm can produce higher quality solutions. Note that
this feature is not offered by any of the existing methods, as the
only parameter that is externally enforceable is the number of
clusters K and, possibly, the initial seeds for k-means. Such
constraints, however, cannot guarantee that F is eventually
partitioned around targeted failures.

To conclude, Figure 4 illustrates the triage process outlined
in the previous Sections.

V. EXPERIMENTAL RESULTS

This Section presents experimental results for the proposed
triage framework. All experiments are conducted on a single
core of an Intel Core i5 3.1 GHz workstation with 8GB of
RAM. A total of eight designs are used, from OpenCores [19]
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Fig. 4. Proposed Triage Flow

TABLE I
BENCHMARKS AND REGRESSION STATISTICS

Ckt. Instance # # # distinct
(# logic elem.) No. errors fail. (N ) susp. (D)

vga-1 4 45 36
vga vga-2 8 97 61

(109797) vga-3 10 106 129
vga-4 13 121 155
fpu-1 3 19 28

fpu fpu-2 7 30 29
(83303) fpu-3 9 83 60

fpu-4 11 125 111
ddr-1 5 28 46

ddr ddr-2 6 51 82
(55069) ddr-3 8 54 79

ddr-4 9 72 113
mem. ctrl-1 5 32 45

mem. ctrl mem. ctrl-2 7 31 29
(46767) mem. ctrl-3 8 66 94

mem. ctrl-4 11 95 137
tate pairing-1 5 51 37

tate pairing tate pairing-2 7 55 40
(106786) tate pairing-3 8 61 92

tate pairing-4 10 95 157
pkt. fwd-1 5 21 35

pkt. fwd pkt. fwd-2 6 25 28
(40197) pkt. fwd-3 7 86 90

pkt. fwd-4 10 104 196
fdct-1 3 22 83

fdct fdct-2 7 38 100
(277444) fdct-3 9 66 91

fdct-4 9 90 165
scam core-1 4 32 19

scam core scam core-2 5 44 50
(509304) scam core-3 7 71 55

scam core-4 10 68 79

and in-house development. The underlying automated debug-
ging tool used for extracting the suspect locations is imple-
mented based on [3]. A platform coded in Python is developed
to parse debugging and simulation results. For each design, a
set of different errors is injected each time by modifying the
RTL description. In total, thirty two regression simulations
are run, generating a different number of failures each time,
caused by a different set of errors. The types of the injected
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RTL errors resemble typical human-introduced errors that lead
to non-trivial triage scenarios. Types of injected bugs include:
• Type A: missing pipeline stages, incorrect assignments,

operands, function replacements
• Type B: incorrect testbench stimuli, incorrect reference

model (bug is outside of DUV)
• Type C: bit flips, incorrect padding, and stuck-at faults
For each design, we separate its regression runs into a

training set and a testing set. The training set is used to train an
SVM model that we associate with each design, and to select
proper model parameters (discussed in Section III) via 5-fold
cross validation. The testing set is used to evaluate suspect
ranking, failure binning and bin distribution accuracy. In order
to emulate how a design evolves during a typical verification
process, the injected errors used to produce the training dataset
are first fixed, and then new ones are introduced to produce
the testing set. Finally, errors in the design are captured by
checkers and/or System Verilog Assertions.

Table I summarizes benchmark information per regression
run. From left to right, columns show the design name and
total number of logic elements in the synthesized design, the
instance number corresponding to each regression run, the
number of simultaneously injected RTL errors, the number
of exposed failures (N ), and finally the number of distinct
suspect components (D) generated by SAT-based debugging
per instance. Instance names with 1 or 3 as a suffix correspond
to those used for training, while instances with 2 or 4 as
a suffix are used for testing and evaluation. The SAT-based
debugging tool used in our flow returns suspect components hi-
erarchically, from the module level down to the signal level [3].
When collecting suspect locations, we favor suspects that
correspond to design modules and/or Verilog/VHDL blocks,
rather than suspects at the signal/gate level. Apart from the
reasons outlined in Section II-B1, this is also to maintain the
dimensionality of each failure at manageable levels, without
necessitating dimensionality reduction.

A. Evaluation of Metrics

In this subsection we present our model fitting process for
testing the discrimination power of the proposed metrics. Any
suspect components and relevant metrics mentioned hence-
forth are aggregated from the regression runs that belong to the
training set, as shown in Table I. For our evaluation we create
a histogram hd

err that captures the frequency of suspects-errors
that have temporal distance falling within intervals of length
0.1 in the range [0.0 . . . 1.0]. Likewise, we create histogram
hd
spur for the temporal distance of spurious suspects, hr

err for
the excitation resistance of suspects-errors, and hr

spur for the
excitation resistance of spurious suspects.

We expect that Weibull explains well our empirical data
when it comes to excitation resistance. However, for the
sake of rigor we further test the goodness of fit offered by
alternative distributions that also exhibit at least exponentially
decreasing tails. These distributions are the Log-normal, de-
noted fLN , and Gamma, denoted fG. On the other hand, for
temporal distance data we solely perform an exponential fit,
since it naturally arises from Eq 1.

TABLE II
GOODNESS OF FIT

DKL divergence
model hd

err hd
spur hr

err hr
spur

fexp 0.0592 0.0950 N/A N/A
fWB N/A N/A 0.0443 0.2822
fG N/A N/A 0.0723 0.1148
fLN N/A N/A 0.0548 0.2071

For model fitting we apply multinomial maximum likeli-
hood [20] on the histograms, and we use the Kullback-Leibler
(KL) divergence to evaluate the quality of fit. The KL diver-
gence between empirical data h ∈ {hd

err,h
d
spur,h

r
err,h

r
spur}

and fitted model f ∈ {fWB , fLN , fG, fexp} is denoted
DKL(h|f) and given below:

DKL(h|f) =
∑

d

hd log
hd
fd

(18)

where fexp is the exponential distribution, and d corresponds
to the sampling points used for evaluation. KL divergence
measures information loss when h is represented by f . Low
KL divergence implies that the model explains the data well,
and vice versa.

Both for temporal distance and excitation resistance we
find which distribution and under which parameters offers the
lowest KL divergence for suspects-errors. We then use that
same model to fit our empirical data for spurious suspects, and
we obtain the KL divergence as well. The goal is to exhibit
that the best model to fit the data for suspects-errors does not
offer a good fit for spurious suspects. This, in turn, exposes
a separability between these two entities when the metrics at
hand are used as the characterization basis, and thus justifies
that these metrics can be used for filtering suspects.

Figure 5 illustrates the produced histograms. Particularly,
Figure 5(a) shows the aggregate temporal distance histogram
for suspects-errors over all circuits (hd

err) and its exponential
fit. By inspection, once can say that the distribution of tempo-
ral distance for suspects-errors follows the exponential curve,
as expected. Similarly, Figure 5(b) illustrates the aggregate his-
togram hd

spur. It can be seen that temporal distance distributes
differently for spurious suspects, with a tail that does not
decrease exponentially and a great portion of the frequencies
almost uniformly distributed in the range [0.0 . . . 0.5]. It is
worth noting that the majority of spurious suspects exhibit
relatively low temporal distance. This skewness can be justi-
fied to some extent by considering the existence of spurious
suspects that are temporally related to the actual design error
when the former reside in the error’s fan-out or fan-in cone.

In terms of excitation resistance, the histogram for suspects-
errors and the Weibull fit, as well as the histogram for
spurious suspects are illustrated in Figure 5(c) and Figure 5(d),
respectively. In this experiment, there are apparent differences
between the histograms. Human-introduced errors tend to
follow a Weibull model, and in fact with a relatively low mean.
In contrast, spurious suspects appear to concentrate towards
modes further away from small excitation resistance values.
This concentration can potentially be a consequence of some
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(a) Exponential fit on hd
err (b) hd

spur (c) Weibull fit on hr
err (d) hr

spur

Fig. 5. Temporal distance and excitation resistance histograms

TABLE III
SUSPECT RANKING QUALITY

suspect top-20% (top-50%) top-20% (top-50%) rank error in proposed (%)
Instance set size rank error in [9] failing traces only failing + passing traces

No. (mean) (%) d r d+r r d+r

vga-2 16 36.8 (22.8) 30.8 (17.3) 40.6 (26.5) 32.2 (17.5) 25.0 (24.0) 21.2 (14.9)
vga-4 18 35.1 (24.1) 44.5 (31.3) 39.2 (34.1) 30.5 (24.3) 28.5 (21.7) 20.3 (12.4)
fpu-2 9 26.3 (18.3) 24.5 (19.8) 23.9 (18.4) 18.7 (10.5) 19.3 (15.4) 16.6 (9.8)
fpu-4 14 34.7 (19.9) 27.6 (22.9) 30.5 (26.2) 25.6 (18.4) 28.8 (27.0) 22.7 (17.7)
ddr-2 16 22.8 (13.0) 23.5 (18.1) 22.7 (16.1) 16.6 (8.1) 22.3 (16.5) 16.9 (8.3)
ddr-4 21 24.5 (16.3) 20.8 (17.4) 34.9 (26.5) 20.7 (13.9) 19.6 (16.6) 19.0 (10.2)

mem. ctrl-2 13 32.9 (20.1) 30.4 (20.1) 41.7 (29.0) 24.7 (12.6) 30.7 (24.1) 18.5 (9.3)
mem. ctrl-4 24 34.7 (27.2) 33.8 (24.9) 36.6 (23.5) 29.8 (19.3) 25.3 (22.1) 25.1 (18.4)

tate pairing-2 20 21.2 (14.6) 29.5 (19.0) 24.5 (20.0) 17.5 (13.0) 24.6 (18.0) 17.6 (11.9)
tate pairing-4 27 18.4 (15.0) 20.6 (15.4) 16.7 (14.4) 11.8 (8.2) 19.9 (18.4) 9.9 (5.7)

pkt. fwd-2 13 11.3 (9.8) 19.6 (13.3) 25.6 (20.3) 9.0 (6.1) 10.5 (10.1) 9.0 (5.9)
pkt. fwd-4 12 19.6 (14.3) 21.3 (15.2) 23.7 (17.6) 14.2 (7.7) 19.1 (17.6) 10.4 (7.2)

fdct-2 20 30.3 (28.4) 33.7 (29.5) 37.1 (29.2) 29.4 (21.2) 30.2 (19.4) 20.6 (18.8)
fdct-4 24 31.2 (25.0) 30.4 (22.0) 28.4 (28.0) 23.5 (20.5) 28.1 (23.6) 18.4 (17.3)

scam core-2 13 41.7 (32.6) 35.1 (30.6) 40.1 (35.2) 31.4 (27.2) 33.7 (28.1) 29.1 (16.8)
scam core-4 15 25.8 (22.2) 27.2 (24.5) 26.6 (22.3) 19.7 (19.0) 19.9 (18.7) 17.5 (14.9)

Average 27.9 (20.3) 28.9 (21.3) 32.3 (25.6) 22.2 (15.5) 24.1 (20.1) 19.4 (13.5)

TABLE IV
FAILURE BINNING QUALITY

NMI precision (PPV) cluster statistics
Instance log no proposed abs. error mean size

No. bins scoring [9] uniform impr. non-uniform impr. [9] proposed [9] proposed [9] proposed
vga-2 0.37 0.77 0.73 0.82 12.3% 0.83 13.7% 0.77 0.79 2 1 9.7 10.8
vga-4 0.44 0.75 0.79 0.81 2.5% 0.81 2.5% 0.83 0.86 1 1 8.6 8.6
fpu-2 0.42 0.79 0.80 0.79 -2.0% 0.87 8.8% 0.75 0.75 1 1 5.0 5.0
fpu-4 0.58 0.81 0.73 0.86 17.8% 0.92 26.0% 0.66 0.89 3 0 15.6 11.4
ddr-2 0.29 0.85 0.80 0.92 13.5% 0.93 14.8% 0.78 0.90 2 1 12.8 7.3
ddr-4 0.31 0.66 0.68 0.79 16.1% 0.79 16.1% 0.64 0.74 1 0 9.0 8.0

mem. ctrl-2 0.56 0.92 0.91 0.92 1.1% 0.91 0% 0.82 0.82 0 0 4.4 4.4
mem. ctrl-4 0.37 0.90 0.85 0.94 10.5% 1.0 17.6% 0.79 1.0 2 0 10.6 8.6

tate pairing-2 0.23 0.82 0.71 0.82 15.5% 0.84 18.3% 0.63 0.88 2 0 6.1 7.9
tate-pairing-4 0.35 0.70 0.66 0.77 16.7% 0.78 18.2% 0.55 0.83 4 1 15.8 8.6

pkt. fwd-2 0.18 0.64 0.59 0.75 27.1% 0.93 57.6% 0.47 0.94 3 2 8.3 6.3
pkt. fwd-4 0.19 0.68 0.70 0.79 12.9% 0.88 25.7% 0.71 0.85 2 2 13.0 13.0

fdct-2 0.24 0.88 0.81 0.90 11.1% 0.93 3.0% 0.81 0.85 3 2 20.4 22.2
fdct-4 0.39 0.90 0.90 0.92 2.2% 1.0 11.1% 0.84 0.85 1 1 10.1 14.3

scam core-2 0.48 0.75 0.72 0.81 12.5% 0.82 13.9% 0.67 0.74 2 1 6.8 8.5
scam core-4 0.12 0.77 0.76 0.78 2.6% 0.79 4.0% 0.68 0.80 2 0 8.2 7.7

Average 0.31 0.79 0.75 0.84 12.0% 0.87 16.0% 0.70 0.85 1.94 0.81 8.87 9.12

TABLE V
RANKING ERROR FOR EACH TYPE OF INJECTED BUGS

Error Type top-20%
rank error

top-50%
rank error

Type A 18.7% 11.2%
Type B 14.4% 9.2%
Type C 24.8% 20.1%

tests in the suite being tailored to rigorously exercise specific
module-level functionality in the DUV.

Table II summarizes goodness of fit results, where we
report the KL divergence of the model fitting process for
the histograms previously discussed. Recall that lower KL
divergence indicates a better fit. Column 1 corresponds to
the model to be fitted each time, while columns 2 to 5 show
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(a) vga (b) fpu

Fig. 6. 3D mapping of spurious suspects and suspects-errors

KL divergence values for histograms hd
err, hd

spur, hr
err and

hr
spur, respectively. From these results, one can see that the

exponential and Weibull distributions are indeed the best fit
for temporal distance and excitation resistance. Additionally,
the learned parameters for suspects-errors are not appropriate
to characterize spurious suspects, hence the discrepancies in
KL divergence shown in Table II.

B. Quality of Suspect Ranking

To further support the quality of the suggested metrics, we
demonstrate the prediction error that the SVM model achieves
for each design, using the features defined in Section III. It
is worth stressing that each suspect set usually contains a
large number of spurious suspects, whereas it only contains
a single suspect-error. If we were to train using all spurious
suspects we would introduce a significant bias in class sizes
(approximately a 1 : 20 ratio). To alleviate this issue, we
down-sample: for every suspect error we randomly select three
spurious suspects from the same suspect set, thus enforcing a
1 : 3 ratio between the two classes in the training set. This
ratio empirically provided a good trade-off between class size
bias and training set size.

To perform a direct comparison of prediction quality be-
tween our method and the heuristic-based method in [9] we
contrast the suspect ranking quality that these two methods
produce, since suspect ranking is merely an ordering of
suspects based on prediction confidence. To this end we find
useful to define prediction error as follows: a suspect-error
is misclassified if it does not belong to the top-20% of the
ordered suspect list. For example, if a suspect-error appears in
a suspect set of size 50, and our SVM-based ranking places
it anywhere below the top 10 positions, then the suspect-error
is misclassified. Similarly we report prediction error based on
the top-50% of the ranked suspect sets. Results are shown in
Table III. Here, each table entry corresponds to the average
top-20% prediction error, and the average top-50% prediction
error in parentheses, for the method in [9] and the proposed
method under various configurations. We split results in two
major sets; one corresponding to our method’s performance
when only failing traces are used, and one when both failing
and passing traces are utilized. Further, we break-down results
based on which features are used; temporal distance only (d),
excitation resistance only (r), or both (d+r). Finally, we report
the mean suspect set size for each regression.

From Table III, it can be seen that the proposed supervised
method is superior to [9], even when only failing traces
are used. This is expected, since [9] performs unsupervised
ranking without any training. Our method offers a 21% (24%)
reduction in average top-20% (top-50%) prediction error. The
average errors are 22.2% vs. 27.9% and 15.5% vs. 20.3%,
respectively. When information from passing tests is also used,
our method’s predictive power further improves. We achieve a
19.4% (13.5%) top-20% (top-50%) error, which constitutes an
improvement of 31% (34%) over existing methods. One inter-
esting observation is that the discriminating power of temporal
distance appears to be stronger compared to excitation resis-
tance when it comes to failing traces. Excitation resistance,
on the other hand, appears to offer stronger predictions when
passing traces are used; high coverage of specific modules in
passing tests may be a strong indicator of bug-free modules.
However, the prediction error does not improve significantly
when examining the top-50% suspects compared to other
settings in the table. This may be explained by the fact that,
some times, coverage levels -which affect excitation resistance
measurements- are characteristic of the test itself rather than
the root-cause, and thus cannot expose abnormalities between
root-causes and spurious suspects. In any case, the fusion of all
these metrics across failing and passing tests aids the engine
to break such uncertainties and achieve superior performance.

One question that arises regarding ranking quality is
whether it depends on the type of injected errors. Table V
shows accuracy achieved for all three types of injected errors.
It can be seen that Type B bugs that lie outside of the DUV are
the ones identified as real bugs most effectively by the ranking
scheme. Type A bugs are also effectively pushed higher in the
ranked lists. On the other hand bugs that are more obscure or
deeper, such as the ones of Type C, are more difficult for the
engine to promote as actual errors, mainly due to the fact that
other equivalent suspects resemble them. This is essentially the
case where the discriminating power of excitation resistance
and temporal distance is less obvious. Despite that, the ranking
error for Type C bugs still ranges between acceptable values.

To visualize how the three features used in this work help
us discriminate between suspects-errors and spurious ones, we
show two of the 3-dimensional mappings that are produced
when training an SVM for vga and fpu (without down-
sampling). Figure 6 illustrates the distinct subspaces that these
two classes occupy. Although there exist some overlaps, these
are treated properly by training non-linear SVMs.

C. Quality of Failure Binning

The quality of failure binning can be naturally quantified
by two factors. The disparity between the number of bins
formed and the number of errors present in the design which
we refer to as the absolute cluster error, and the ratio of correct
clustering decisions (clustering accuracy) when failures are
grouped together. To evaluate clustering accuracy we use the
Normalized Mutual Information (NMI) [21], as it is well suited
for comparing clusterings with different number of clusters.
NMI always ranges between 0 and 1, with 1 corresponding to
perfect accuracy.
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Fig. 7. Failures resolved by bin distribution

Table IV summarizes these results. From left to right,
columns indicate the instance name, NMI for the method in [9],
NMI for the proposed method under the uniform setting and
a non-uniform setting, the improvements we achieve on NMI
for both these settings, the average precision, also known as
Positive Predictive Value (PPV), the absolute cluster error, and
finally the mean cluster size. For reference, we also provide
the NMI achieved by a simple binning method based solely
on the error logs. It can be viewed as a document clustering
process, where we apply a common method based on word
frequency scores to represent error logs and then apply k-
means clustering. Results for this method are shown in the
second column. Finally, column 3 shows the NMI achieved
when we turn-off the SVM-based scoring function, and instead
allow failures to be represented by 0/1 vectors in Eq. 12. The
results obtained in this case offer an estimate on the accuracy
of other methods that may replace the SAT engine in our flow.
For example, when Binary Decision Diagrams [22], critical
path tracing, or simulation may be preferred. These methods
can produce sets of possibly buggy locations, but cannot output
exact excitation and propagation paths.

In terms of NMI, the proposed binning method achieves
a 12.0% improvement over [9] in the uniform setting, while
this extends to a 16.0% improvement in the non-uniform
setting. In the latter, to emulate the case of a good -but not
perfect- guess we set the preferences in such a way so that one
third of the exemplar failures are correctly identified by the
engineer. The better the guess is, the higher the accuracy, but
identifying many of these exemplars may not reflect a realistic
assumption. Our method’s precision is also significantly higher
(0.85 vs. 0.70). Lower precision indicates higher false positive
rates, which confirms that this is the bottleneck of the method
in [9], while our method is robust in that sense. False positives
are damaging triage effectiveness, as they can misguide bin
distribution and “pollute” failure bins with noisy debug data.

We also observe that the proposed method tends to form
slightly larger clusters and is characterized by smaller absolute
cluster error. The latter implies a better estimation on the
actual number of errors present in the design. Finally, the
performance of log clustering is poor, as it is seen in the second
column. This mainly reveals the shortcomings of exclusively
relying on the error logs, and it also exposes the non-trivial
nature of our regression data sets.

Fig. 8. Ranking and binning accuracy vs. training set size
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Fig. 9. Triage time consumption break-down

Finally Figure 8 shows how suspect ranking and failure
binning accuracy is affected when we change the training set
size. We report the average top-20% and top-50% ranking
error as in Table III. Suspect ranking is relatively unstable
initially, but quickly improves when more failures are added.
This is expected for a learning algorithm. For training sets that
include 60 or more failures (approximately half of the test set
size) then the engine stabilizes to the accuracy levels shown
in Table III. Similar conclusions can be drawn for failure
binning, although this stage is more robust for small training
sets. Failure vectors already include important information
encoded by non-zero values in their dimensions when suspects
are present into suspect sets. This can produce good baseline
clusterings before the SVM scores converge.

D. Quality of Bin Distribution

A direct way of assessing the quality of bin distribution is to
identify, for each cluster, whether fixing the root-cause of the
exemplar failure eliminates the majority of failures in the same
cluster. We report the percentage of failures resolved by fixing
the exemplar failure, on a cluster by cluster basis, taking the
average per regression run. The method in [9] decides distribu-
tion by ranking suspects and assigning the cluster based on the
highest-ranked suspect. To compare against our method, we
take the same measurements, but assume that the fix happens
on that top suspect. Results are shown in Figure 7. It can
be seen that the proposed distribution process outperforms
the one in [9], with an average of 80.6% failures resolved
vs. 63.1% failures resolved across all regression sessions. The
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effectiveness of this stage suffers the most from false positives
(low PPV in Table IV). Our method is, however, significantly
more resilient, with the only exceptions being ddr-4 and
tate pairing-4. In these cases, the AP algorithm is not
as effective in identifying the proper exemplars.

E. Runtime Evaluation

Finally, we measure time consumption for the triage engine
and present a break-down of the total time based on the three
major steps: the baseline SAT-based debugging session, the
SVM training stage, and the suspect ranking phase along
with the failure binning/distribution pass. Results are shown in
Figure 9. SAT-based debugging is an exhaustive search process
and, as expected, dominates the total time (93.8% avg.), with
training following (5% avg.). Ranking and binning/distribution
together account for only 1.2% of the total time. Since the
scope of this work refers to formal verification flows, it should
be clarified that the baseline SAT-based debugging session is
always performed whether triage is present or not. As such, the
proposed triage framework does not incur the time overhead
related to this task. It simply requires that it is moved one step
higher in the flow, as part of coarse-grain debugging.

VI. CONCLUSION

In summary, this work introduces a novel automated frame-
work for the growing problem of failure triage in regression
debugging. The proposed method harnesses the power of
formal debugging engines and combines it with well-known
machine learning techniques to achieve high quality results
for the major stages of a modern triage process. Because of
the way it is constructed, this engine can benefit from future
advances in formal tools, coverage and simulation tools, and
potentially from the use of additional statistical measures that
a regression suite can offer. Finally, it offers fertile ground
for exploring novel approaches to intelligently collect relevant
training data during the evolution of a design.
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