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Robust QBF Encodings for Sequential Circuits
with Applications to Verification, Debug and Test
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Abstract —Formal CAD tools operate on mathematical models describing the sequential behavior of a VLSI design. With the growing
size and state-space of modern digital hardware designs, the conciseness of this mathematical model is of paramount importance in
extending the scalability of those tools, provided that the compression does not come at the cost of reduced performance. Quantified
Boolean Formula satisfiability (QBF) is a powerful generalization of Boolean satisfiability (SAT). It also belongs to the same complexity
class as many CAD problems dealing with sequential circuits, which makes it a natural candidate for encoding such problems. This work
proposes a succinct QBF encoding for modeling sequential circuit behavior. The encoding is parametrized and further compression is
achieved using time-frame windowing. Comprehensive hardware constructions are used to illustrate the proposed encodings. Three
notable CAD problems, namely bounded model checking, design debugging and sequential test pattern generation, are encoded as
QBF instances to demonstrate the robustness and practicality of the proposed approach. Extensive experiments on OpenCore circuits
show memory reductions in the order of 90% and demonstrate competitive run-times compared to state-of-the-art SAT techniques.
Furthermore, the number of solved instances is increased by 16%. Admittedly, this work encourages further research in the use of QBF
in CAD for VLSI.

Index Terms —SAT, QBF, BMC, k-induction, design debugging, sequential ATPG.
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1 INTRODUCTION

THE semiconductor industry has products pervading
most commercial and consumer markets. Its growth

is driven by a constant demand for electronic devices
with continuously expanding functionalities and better
performance. The design of such complex devices has
been made possible by advances in Computer-Aided
Design (CAD) tools. Today, major phases of the Very
Large Scale Integration (VLSI) design flow, such as syn-
thesis [1], placement/routing [2], verification [3] and
test [4], have been fully or partially automated. Many
chip design tasks deal with sequential circuits where
procedures involving their analysis, optimization and
verification have been shown to be PSPACE-complete
(e.g., [5]–[8]). As the state-space of sequential designs
continues to grow, their concise representation and ef-
ficient manipulation pose a real capacity challenge to
modern CAD tools [9].

Existing CAD algorithms for sequential circuits can
be classified into two categories. Simulation-based ap-
proaches are prevalent in the industry. This is due to
their practicality and their scalability [9], [10]. These
methods simulate the sequential design for a large num-
ber of input test vector sequences to prove its functional-
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ity, debug it, profile its power consumption, derive vec-
tors for manufacturing test, etc. Due to the exponential
number of possible input combinations, simulation is
often non-exhaustive and it usually produces incomplete
results, a fact that has become a cause for concern [9].

In the pursuit for viable alternatives to simulation,
there has been a growing interest in formal CAD solu-
tions. A formal CAD tool implicitly or explicitly explores
the complete state-space of the design. It achieves this by
operating on a mathematical model that encodes the se-
quential behavior of the design. A variety of such formal
models have been proposed. Historically, the Finite State
Machine (FSM) model has been used to explicitly explore
the state-space of a sequential circuit. This approach
leads to the state-space explosion problem [11]. Later,
Binary Decision Diagrams (BDDs) [12] were introduced
to traverse the design state-space symbolically, greatly
improving the scalability of formal methods. However,
BDDs can still lead to memory explosion problems as
the size of modern designs grows [10], [13].

In the quest for scalable formal frameworks, Boolean
satisfiability (SAT) has emerged as an effective platform
for encoding many CAD for VLSI problems. This is pri-
marily due to the dramatic performance improvements
in SAT solvers [14]–[16]. A large number of NP-hard
CAD problems have been translated into SAT instances
which are solved by all-purpose SAT engines. Such SAT
encodings for sequential VLSI problems often require an
Iterative Logic Array (ILA) circuit representation, also
known as time-frame expansion. An ILA represents a
sequential design by replicating its combinational cir-
cuitry over a bounded number of cycles (time-frames).
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SAT encodings of problems in logic synthesis [17], model
checking [13], [18], [19], Automatic Test Pattern Genera-
tion (ATPG) [20] and debugging [21], among others, use
an ILA to allow the solver to reason on different time-
frames of the design operation.

Although SAT solutions using an ILA model have
further extended the scalability of formal tools, repli-
cating the circuitry of a modern industrial-size design
for a large number of cycles can exceed the available
memory resources [18]. Evidently, more compact rep-
resentations of sequential behavior are required using
novel formalisms to ensure scalability for CAD tools
without a sacrifice in performance.

Quantified Boolean Formula satisfiability (QBF) is a
powerful generalization of SAT. It is PSPACE-complete,
which makes it a natural candidate for encoding CAD
problems dealing with sequential circuits. On-going de-
velopments in QBF solvers [22]–[25] have increased their
performance dramatically. A robust QBF-based solution
for VLSI CAD problems requires a succinct problem
translation into a QBF instance, coupled with an effective
solver. To this end, a few QBF encodings for formal
verification problems have been investigated [26], [27]
but experiments indicate that memory savings over SAT
come at the expense of run-time performance.

The first aim of this paper is the development of a new,
performance-driven mathematical model that encodes
the sequential behavior of a design using QBF [28].
The encoding uses a single copy of the design and
circumvents the memory-intensive circuit replication in-
herent in SAT-based representations using an ILA. To
achieve this, it utilizes a novel hardware construction to
represent the sequential circuit behavior.

Another contribution is the generation of a family of
logically equivalent QBF encodings of the ILA, built
around the original model. This is achieved using a
technique termed time-frame windowing. This exten-
sion parametrizes the original solution to enable further
compression and to boost the inference power of the
QBF solver. It is shown that the resulting family of ILA
encodings admits a non-trivial minimal-size member
that proves to be empirically vital in the experiments.

The final goal of this work is the application of this
theory to three notable CAD problems in sequential
design: Bounded Model Checking (BMC), design debug-
ging and sequential ATPG. This proves the usability and
applicability of the encoding. Each of these problems is
encoded in QBF using the new formalism and instances
are solved with a general-purpose QBF engine.

Unlike previous QBF-based encodings for verifica-
tion problems, the presented work provides a general-
purpose QBF-based ILA representation for a multitude
of CAD applications. It is designed to reduce memory
requirements but also achieve competitive run-times
when compared to state-of-the-art SAT. Indeed, an ex-
tensive suite of experiments on OpenCore designs con-
firms those achievements. Problem sizes are reduced by
roughly 90% on average. Run-times are comparable to

SAT and sometimes they outperform it by orders of
magnitude. As an added advantage, due to the reduced
memory footprint, the total number of solved instances
is increased by 16%. The theoretical and empirical results
of this paper encourage research in QBF-based encod-
ings and QBF solvers as platforms to efficiently tackle
intractable CAD problems.

The paper is organized as follows. Section 2 gives
preliminaries in SAT, QBF and the ILA representation.
Section 3 details the basic QBF encoding of time-frame
expansion. Section 4 presents time-frame windowing.
Sections 5, 6 and 7 illustrate the QBF formulations for
BMC, design debugging and sequential ATPG, respec-
tively, using the new formalism. Section 8 shows exper-
imental results and Section 9 concludes the paper.

2 PRELIMINARIES

2.1 Boolean Satisfiability

A propositional logic formula Φ over a set of Boolean
variables {x1, x2, . . . , xn} is said to be satisfiable or SAT
if it has a satisfying assignment: a truth assignment to
x1, x2, . . . , xn that makes Φ evaluate to 1. Otherwise, Φ
always evaluates to 0 and it is unsatisfiable or UNSAT.

A SAT solver determines whether a propositional
formula Φ is SAT. Modern solvers take Φ in Conjunctive
Normal Form (CNF) as a conjunction of clauses where
each clause is a disjunction of literals. A literal is an oc-
currence of a variable xi or its negation x̄i. For example,
formula Φ = (x1∨x2)∧(x1∨x̄2∨x̄3)∧(x3) is SAT because
{x1 = 1, x2 = 0, x3 = 1} is a satisfying assignment.

Given a logic circuit, a CNF formula expressing the
circuit constraints can be constructed in linear time [29].
SAT-based solutions for CAD problems [13], [17], [18],
[20], [21] translate a logic circuit into its equivalent CNF
formula, which is given to the SAT solver. A circuit
and its corresponding CNF formula are referred to in-
terchangeably in this work.

Most SAT solvers are based on the search-based DPLL
algorithm [30], first presented in 1962. After a number
of pivotal advancements [14]–[16], SAT solvers today can
handle industrial SAT instances with millions of clauses
and variables.

2.2 Quantified Boolean Formulas

Formally, the problem of Boolean satisfiability asks
whether ∃x1, x2, . . . , xn | Φ. In formula Φ, all variables
are existentially (∃) quantified.

Quantified Boolean Formula satisfiability (QBF) is a gen-
eralization of SAT that also allows for universal (∀)
quantification of the variables. QBF is PSPACE-complete,
which means that it can efficiently describe problems for
which no polynomial-size SAT encodings are known.

A QBF formula in prenex normal form is written as:

Q1V1 Q2V2 · · · QrVr | Φ

The prefix Q1V1 Q2V2 · · · QrVr consists of quantifiers
Qi ∈ {∀, ∃}, such that Qi 6= Qi+1, and mutually disjoint
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variable sets Vi called the scopes. The matrix Φ is a CNF
formula on the variables in the prefix.

Qr (Q1) is referred to as the innermost (outermost)
quantifier. Variable v ∈ Vi is labeled as an existential
(universal) variable if Qi = ∃ (Qi = ∀). A scope Vi is
said to dominate a scope Vj if i < j. If there exists a truth
assignment to each existential variable as a function of its
dominating universal variables, such that the matrix is
satisfied for all universal variable assignments, the QBF
problem is SAT, otherwise it is UNSAT. For example, the
QBF problem: ∃x1 ∀x2 ∃x3 | (x2∨x3)∧(x̄1∨x̄2∨x̄3)∧(x1)
is SAT because when x1 = 1, for all values of x2, there
exists an assignment to x3 (x3 = 1 when x2 = 0 and
x3 = 0 when x2 = 1) that satisfies the matrix.

Unlike SAT where the DPLL algorithm is widely used,
no particular paradigm has yet been shown superior in
QBF solving. Search-based solvers [22], [25] extend the
DPLL algorithm to deal with universal quantification.
Quantifier elimination solvers [23] purge variables in
the prefix. The solver in [23] uses Q-resolution to elim-
inate existential variables and expansion to eliminate
universal ones. sKizzo [24] is a hybrid solver that uses
skolemization to represent the QBF instance with BDDs.
It then leverages search and resolution-based techniques
to reason on these BDDs. State-of-the-art QBF solvers
solve industrial QBF instances that typically contain tens
to hundreds of thousands of variables and clauses.

2.3 ILA Representation of Sequential Circuits

The ILA representation of a sequential circuit for a bound
k replicates its combinational component k times such
that the next-state of each time-frame is connected to
the current-state of the next time-frame. For example,
to prove a property with BMC, the design might have
to be unfolded for a number of time-frames equal to
the diameter of the system, which can be exponential
in the number of state variables [18]. In SAT-based
debugging [21], the replication bound k is equal to the
size of the counter-example that demonstrates a faulty
behavior and it can be in the order of thousands of
cycles. Similarly, in ATPG [20], k is the length of the
input test vector sequence. Clearly, replicating the com-
binational circuitry for increasing values of k can become
memory intensive in SAT-based applications.

The following notation is used in the paper. Variables
x, y and s are Boolean vectors denoting the primary in-
puts, primary outputs and state elements of a sequential
circuit. For each z ∈ {x, y, s}, zi denotes the ith bit in
vector z. Symbol b denotes the number of state elements
(DFFs). The behavior of a sequential circuit can be for-
mally described by the predicate T (s, s′) expressing the
transition relation of the system, which evaluates to 1 if
and only if s → s′ is a valid state transition. The predicate
T (s, s′, x, y) explicitly mentioning primary inputs x and
outputs y is also used to describe the system behavior.

The ILA of a sequential circuit for a bound k is shown
in Figure 1. The variables sj−1 and sj respectively denote

the current-state and next-state of the jth time-frame, for
1 ≤ j ≤ k. Similarly, for each z ∈ {x, y} and other circuit
variables, zj denotes the corresponding variable in time-
frame j, and Z = 〈z1, z2, . . . , zk〉 denotes the sequence of
all corresponding variables in the ILA.

sksk−1s2s1s0

TTT

Fig. 1. Iterative Logic Array

The ILA in Figure 1 can be encoded as:

T k(s0, sk) = ∃s1, s2, . . . , sk−1 |

k
∧

j=1

T (sj−1, sj) (1)

Predicate T k(s0, sk) evaluates to 1 if and only if there

exists a valid path p : s0 p sk, with k state transitions.

3 ENCODING ILA S USING QBF
This section outlines a succinct QBF encoding of T k

which circumvents the memory-intensive circuit repli-
cation necessary in SAT encodings.

A time-frame select vector t = 〈t1, t2, . . . , t⌈lg k⌉〉 of
universal variables is created to allow indexing of the
ILA time-frames in Figure 1. The aim is to associate each
truth assignment to 〈t1, t2, . . . , t⌈lg k⌉〉 with a different
ILA time-frame. The construction in Figure 2 illustrates
in hardware the matrix of the proposed QBF encoding.
The time-frame select variables are the common select
lines of two multiplexers (MUXes). The function of these
MUXes is to connect the current-state s and next-state s′

of the transition relation T to the current-state and next-
state of a particular time-frame in the ILA, according
to the truth assignment given to t. To achieve this,
the inputs to the left MUX, 〈s0, s1, . . . , sk−1〉, are shifted
by one time-frame from the inputs to the right MUX,
〈s1, s2, . . . , sk〉. In effect, depending on the assignment
given to vector t, the single copy of T in Figure 2
“simulates” a different ILA time-frame.

In the prefix of the encoding, it is necessary that
the states s0, s1, . . . , sk dominate t in order to ensure
state contiguity. Informally, the QBF encoding of T k will
express whether there exists an assignment to states

M
U

X

M
U

X T

x

y

s0

sk

s1

t1, . . . , t⌈lg k⌉

sk−1
s2

s s′

Fig. 2. QBF matrix of ILA encoding
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t̄1 t1

t̄2 t2 t̄2

t3

t2

t̄3

t5(2)t5(1)

t5(3) t5(4) t5(5)

(a) Tree for MUX5

[(t̄1 ∧ t2) → (s = s2)]∧

[(t̄1 ∧ t̄2 ∧ t3) → (s = s1)]∧

[(t̄1 ∧ t̄2 ∧ t̄3) → (s = s0)]∧

[(t1 ∧ t̄2) → (s = s3)]∧

[(t1 ∧ t2) → (s = s4)]

(b) Left MUX when k = 5

Fig. 3. Encoding MUXes

s0, s1, . . . , sk, such that for all assignments to t, the
construction in Figure 2 is satisfied.

To translate this statement into a QBF instance, we
describe how to formally encode the two MUXes in
Figure 2. A MUX with k inputs and ⌈lg k⌉ select lines,
denoted MUXk, is associated with a binary tree with k

leaves. The nodes at each tree level are labeled by a select
line, and the outgoing node edges are labeled by the
negative and positive literals of the select line associated
with that node. For each truth assignment of the select
lines, the literals along the edges of a unique path from
the root to a leaf are satisfied, and that leaf is selected.

For example, the decision tree associated with a
MUX of k = 5 inputs, select lines 〈t1, t2, t3〉, inputs
〈s0, s1, s2, s3, s4〉 and output s, is shown in Figure 3(a).
For a given k and for 1 ≤ j ≤ k, let tk(j) denote the
conjunction of literals on the path from the root to the
jth leaf in the tree associated with a MUXk, where leaves
are ordered from left to right. In Figure 3(a), if t1 = 0
and t2 = 1, then t5(3) = t̄1 ∧ t2 is satisfied irrespective
of t3, and hence s = s2. The implication t5(3) → (s = s2)
expresses this constraint. Figure 3(b) shows the set of
constraints for MUX5.

The left and right MUXes in Figure 2 can now be
respectively formalized as follows:

MUXk(s, t, 〈s0, s1, . . . , sk−1〉) =
k

∧

j=1

[tk(j) → (s = sj−1)]

MUXk(s′, t, 〈s1, s2, . . . , sk〉) =
k
∧

j=1

[tk(j) → (s′ = sj)]

Using these formalizations, T k can be encoded in QBF
as follows:

T k(s0, sk) = ∃s1, . . . , sk−1 ∀t1, . . . , t⌈lg k⌉ ∃s, s′ |

T (s, s′) ∧

k
∧

j=1

{

tk(j) → [(s = sj−1) ∧ (s′ = sj)]
}

(2)

3.1 Space Requirements

For a given k and for 1 ≤ j ≤ k, let lk(j) denote the
length of the path from the root to the jth leaf in the tree

associated with MUXk, where leaves are ordered from left
to right. Each conjunct of the form tk(j) → (s = sj−1)
and tk(j) → (s′ = sj) in the MUXes can be expressed
using 2b clauses of lk(j) + 2 literals. Hence, the number
of literals in the encoding of a MUXk is given by:

2b ·





k
∑

j=1

(lk(j) + 2)



 = 2b ·



2k +
k

∑

j=1

lk(j)





The summation of the lengths of all paths to the leaves

in the decision tree,
∑k

j=1 lk(j), can be expressed as the
following closed-form formula:

k
∑

j=1

lk(j) = k · ⌈lg k⌉ + k − 2⌈lg k⌉

by considering k paths of length ⌈lg k⌉, and subtracting
the number of leaves that are not at the lowest tree level.

Adding the literals in the transition relation T and the
two MUXes, the total number of literals L in the matrix
of Equation 2 is given by:

L = lit(T ) + 4b ·
[

k · (⌈lg k⌉ + 3) − 2⌈lg k⌉
]

(3)

where lit(T ) denotes the number of literals in the CNF
representation of T . This corresponds to Θ(lit(T )+ b · k ·
lg k) literals, as opposed to Θ(k · lit(T )) literals in a SAT
encoding. Since lit(T ) is practically much larger than k

and b, this leads to a significantly reduced problem size.

4 TIME-FRAME WINDOWING

Equation 2 gives a QBF encoding for an ILA using
a single copy of the transition relation, as shown in
Figure 2. The formulation can be generalized to include
an arbitrary number of copies of T , forming a fixed-
length window of explicitly unfolded time-frames. This is
illustrated using the hardware construction in Figure 4.

This parameterization of the basic scheme generates
a family of logically equivalent ILA encodings by bal-
ancing the role of explicit circuit unrolling and of uni-
versal quantification when reasoning on the sequential
operation of a design. Considering the two corner cases
of this parametrization, setting τ = 1 reduces time-
frame windowing to the basic formulation shown in
Figure 2 with (s, s′) = (s0,1, s1,1), while setting τ = k

degenerates the proposed QBF encoding to the SAT
encoding of the ILA shown in Figure 1. The inclusion of
explicitly unrolled copies of T in the window enhances
the ability of the QBF solver to make direct inferences
spanning a number of contiguous time-frames. We show
that a non-trivial property of this family of encodings
is the existence of an optimum trade-off in terms of
minimizing the size of the matrix of the encoding.

In more detail, instead of a current and a next-state
(s, s′) getting assigned to contiguous current and next-
states in the ILA, for a window of size τ there are τ + 1
states s0,τ , s1,τ , . . . , sτ,τ getting assigned to sets of τ + 1
contiguous ILA states at a time. Given a bound k, ⌈k

τ
⌉
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t1, . . . , t⌈lg⌈k
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⌉⌉
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τ
⌉−1)·τ

s⌈
k
τ
⌉·τ

s0

x1,τ x2,τ xτ,τ

T TT

Fig. 4. A time-frame window of size τ

windows of size τ are needed to cover all time-frames.
Therefore, a generalized t = 〈t1, t2, . . . , t⌈lg⌈ k

τ
⌉⌉〉 for any

τ ≥ 1 now denotes a window select vector which, for each
assignment, selects a different window using a similar
MUX-based scheme as before. The left and right MUXes in
Figure 4 can be respectively formalized as follows:

MUX⌈ k

τ
⌉(s

0,τ , t, 〈s0, sτ , . . . , s(⌈ k

τ
⌉−1)·τ 〉) =

⌈ k

τ
⌉

∧

j=1

[t⌈
k

τ
⌉(j) → (s0,τ = s(j−1)·τ )]

MUX⌈ k

τ
⌉(s

τ,τ , t, 〈sτ , s2τ , . . . , s⌈
k

τ
⌉·τ 〉) =

⌈ k

τ
⌉

∧

j=1

[t⌈
k

τ
⌉(j) → (sτ,τ = sj·τ )]

Note that the total number of considered time-frames
is ⌈k

τ
⌉ · τ = Θ(k). The QBF encoding of the ILA using a

window of size τ is given as:

T ⌈ k

τ
⌉·τ (s0, s⌈

k

τ
⌉·τ ) = ∃sτ , s2τ , . . . , s(⌈ k

τ
⌉−1)·τ

∀t1, . . . , t⌈lg⌈ k

τ
⌉⌉ ∃s0,τ , s1,τ , . . . , sτ,τ |

τ
∧

j=1

T (sj−1,τ , sj,τ )

∧

⌈ k

τ
⌉

∧

j=1

{

t⌈
k

τ
⌉(j) → [(s0,τ = s(j−1)·τ ) ∧ (sτ,τ = sj·τ )]

}

(4)

The matrix of this encoding is equivalent to the construc-
tion shown in Figure 4.

In Equation 4, the states {sj|j mod τ 6≡ 0} are not
available in the outermost existential scope of the prefix.
Consequently, if j > 0 is not a multiple of τ , it is
not possible to express a constraint C(sj) by simply
conjuncting it with the matrix. Instead, it can be observed
that state sj corresponds to state s1+(j−1) modτ,τ in the
⌈ j

τ
⌉th window. Therefore, the implication:

t⌈
k

τ
⌉(⌈

j

τ
⌉) → C(s1+(j−1) modτ,τ ) (5)

expresses C(sj). In particular, if k mod τ 6≡ 0, in order

to get T k(s0, sk), the implication t⌈
k

τ
⌉(⌈k

τ
⌉) → (sk =

s1+(k−1) modτ,τ ) which “extracts” sk must be conjuncted
to the matrix of Equation 4.

4.1 Space Requirements

Increasing the size of the window does not necessarily
increase the size of the matrix. In fact, each MUX in
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Fig. 5. Number of QBF matrix literals vs. k and τ when
lit(T ) = 50 000, b = 100

Figure 4 can now be expressed using 2b · ⌈k
τ
⌉ clauses

with at most ⌈lg⌈k
τ
⌉⌉+2 literals in each clause because the

number of inputs to each MUX is ⌈k
τ
⌉. This corresponds to

a reduction from Θ(k ·lg k) to Θ(k
τ
·lg k

τ
) in the number of

literals in the CNF representation of a MUX⌈ k

τ
⌉ compared

to the CNF representation of each MUXk in Figure 2.
Using a similar reasoning as before, the total number

of literals L in the CNF matrix of Equation 4, which we
use as a figure of merit for the matrix size, is:

L = τ · lit(T )+4b ·

[

⌈
k

τ
⌉ · (⌈lg⌈

k

τ
⌉⌉ + 3) − 2⌈lg⌈

k

τ
⌉⌉

]

(6)

The window size τ∗ ∈ {1, 2, . . . , k} minimizing L can
be found numerically. In the following, we want to show
that τ∗ can be non-trivial, i.e., it is possible to have τ∗ ∈
{2, 3, . . . , k − 1}. To that end, we first prove that L is
convex with respect to τ , disregarding the ceilings:

∂2L

∂τ2
= 4b · k ·

(

2

τ3
· lg

k

τ
+

7

τ

)

> 0 for τ ≤ k

Next, in order for τ∗ ∈ {2, 3, . . . , k − 1}, it is sufficient
to have ∂L

∂τ
|τ=2 ≤ 0 and ∂L

∂τ
|τ=k−1 ≥ 0. This gives:

4b ·
k

(k − 1)2
·

(

lg
k

k − 1
+ 3

)

≤ lit(τ) ≤ b · k · (lg k + 2)

which is satisfied for typical values of b and lit(τ) and
reasonably large k.

Figure 5 shows a three-dimensional plot of Equation 6
versus τ and k, using a transition relation with lit(T ) =
50 000 literals in its CNF representation and b = 100
state variables. This corresponds to a circuit with roughly
8 000 primitive gates. The values of τ∗ minimizing the
number of literals in the matrix are highlighted in the
figure for each value of k. Figure 5 clearly demonstrates
the matrix size reduction made possible by parametriz-
ing τ , as opposed to using a default value of τ = 1.

5 BOUNDED MODEL CHECKING

Model checking is concerned with verifying (or falsi-
fying) safety, liveness and other properties in a finite-
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state system. Bounded Model Checking (BMC) [13], [18]
replicates the transition relation for a bounded number
of cycles k, which can be incremented in search for
counter-examples with k state transitions that violate a
given property. This essentially constitutes an ILA con-
struction conjuncted with additional property-specific
constraints which are given to a SAT solver. In this work,
we consider safety properties. Another model checking
technique that leverages the ILA is k-induction [31]. In
this section, we encode both BMC and k-induction in
QBF using the proposed framework.

5.1 BMC using SAT

Given a set of bad states, determining whether a bad
state is reachable in k time-frames starting from a valid
initial state can be formulated as follows in SAT [18]:

∃s0, s1, . . . , sk | I(s0) ∧
k

∧

j=1

T (sj−1, sj) ∧ B(sk) (7)

where I(s) denotes the predicate recognizing valid initial
states and B(s) is the predicate recognizing bad states.
To determine whether a bad state is reachable in at most
k time-frames, it suffices to replace B(sk) in Equation 7

by
∨k

j=0 B(sj).
Given Equation 7, a SAT solver either returns a

counter-example of a sequence of states leading to a bad
state (i.e., returns SAT), or it proves that a bad state can
not be reached in k time-frames (UNSAT). In principle,
BMC is complete as it can prove that no bad state can
be reached if a large enough bound k is used. However,
as k increases, SAT-based BMC may require excessive
memory due to the underlying ILA size [18].

5.2 BMC using QBF

The BMC formulation in Equation 7 can be re-written in
QBF using the ILA encoding of Equation 2 as follows:

∃s0, s1, . . . , sk ∀t ∃s, s′ | I(s0) ∧ T (s, s′)∧

k
∧

j=1

{

tk(j) → [(s = sj−1) ∧ (s′ = sj)]
}

∧ B(sk) (8)

The above equation is obtained by constraining the
initial and final states of the ILA to I(s0) and B(sk),
respectively.

Using Equation 4 and assuming that k mod τ ≡ 0,
the QBF-based BMC encoding can be generalized for a
window of size τ as follows:

∃s0, sτ , . . . , sk ∀t ∃s0,τ , . . . , sτ,τ | I(s0) ∧

τ
∧

j=1

T (sj−1,τ , sj,τ )

∧

k

τ
∧

j=0

{

t
k

τ (j) → [(s0,τ = s(j−1)·τ ) ∧ (sτ,τ = sj·τ )]
}

∧B(sk)

(9)

If k is not a multiple of τ , sk will not be available in
the first scope of the prefix in Equation 9. As described

g1 g3

s′
2

s′
1

x1

s1

s2

y2

g2

y1

DQ

DQ

(a) Sequential circuit

x1

x1x1

00

10 01
s2, s1 s2, s1

s2, s1

x̄1 x̄1

x̄1

(b) State transitions

x1

s1

s2

s′
1g3

s′
2

y1y2

g2

g1

(c) Erroneous circuit

1

0

1

t1

x1
s1
1s′

1

s′
2

g3

y2 y1

g2

g1

s1

s2

s2
1

s2
2

s1
2

s0
2

s1
1

s0
1

s1
2

0

1

0

1

0

0

1

1

0

(d) BMC matrix construction

Fig. 6. BMC example

in Equation 5, B(sk) in Equation 9 would be replaced by
t⌈

k

τ
⌉(⌈k

τ
⌉) → B(s1+(k−1) modτ,τ ). For each unit clause in

B(sk), this implication can be expressed using a clause
of at most ⌈lg⌈k

τ
⌉⌉+1 literals. For instance, given B(s) =

s̄1 ∧ s2, k = 5 and τ = 2, B(s5) in Equation 9 becomes:

t3(3) → B(s1,2) = t1 → (s̄1,2
1 ∧ s

1,2
2 )

= (t̄1 ∨ s̄
1,2
1 ) ∧ (t̄1 ∨ s

1,2
2 )

In the following example, the given QBF-based formu-
lation is generated in bit-level detail for a BMC instance.

Example 1 Figure 6(a) depicts a modulo-3 incrementer
where the output y2y1 is a binary number incremented if and
only if the input x1 = 1. Figure 6(b) shows the circuit’s state
transition diagram with initial state 〈s1, s2〉 = 〈0, 0〉. Note
that state 〈s1, s2〉 = 〈1, 1〉 is unreachable.

Given the incorrect implementation in Figure 6(c) (gate g2

is NAND instead of NOR), a BMC problem can be formulated
to ask whether the bad state 〈s1, s2〉 = 〈1, 1〉 is reachable for a
given bound. I(s) = s̄1∧s̄2 and B(s) = s1∧s2 are given. The
QBF-based BMC formulation for k = 2 (it is UNSAT for k =
1) using τ = 1, along with the corresponding construction
are given by Equation 10 and Figure 6(d), respectively.

∃s0
1, s

0
2, s

1
1, s

1
2, s

2
1, s

2
2 ∀t1 ∃s1, s2, s

′
1, s

′
2 |

s̄0
1 ∧ s̄0

2 ∧ T (〈s1, s2〉, 〈s
′
1, s

′
2〉) ∧ s2

1 ∧ s2
2∧

{

t̄1 → [(s1 = s0
1) ∧ (s2 = s0

2) ∧ (s′1 = s1
1) ∧ (s′2 = s1

2)]
}

∧
{

t1 → [(s1 = s1
1) ∧ (s2 = s1

2) ∧ (s′1 = s2
1) ∧ (s′2 = s2

2)]
}

(10)

When t1 = 0, Figure 6(d) simulates the first ILA time-
frame, where 〈s0

1, s
0
2〉 = 〈0, 0〉 is the initial state, and 〈s1

1, s
1
2〉

represents the next-state. When t1 = 1, the same 〈s1
1, s

1
2〉
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constrains the current-state of the second time-frame, while
〈s2

1, s
2
2〉 = 〈1, 1〉 constrains the (bad) final state. A counter-

example reaching the bad state is the sequence of states
〈s1, s2〉: 〈0, 0〉 → 〈1, 0〉 → 〈1, 1〉, corresponding to the
primary input sequence 〈x1

1, x
2
1〉 = 〈1, 1〉.

5.3 Modeling k-Induction

The method of k-induction [31] uses an inductive proof
consisting of a base-case and an inductive-step to verify
(or falsify) properties. In this subsection, we express this
proof method using our QBF-based ILA encoding.

The base-case asks whether a bad state is reachable
within k − 1 transitions of the initial states. This can be
expressed as a BMC instance, as described in Subsec-
tion 5.1. The inductive-step states that if the bad state
B(s) is not reached within any sequence of k−1 unique
state transitions s0 → · · · → sk−1, then it is unreachable
in k unique state transitions. This can be expressed as
the following SAT instance [31]:

∃s0, s1, . . . , sk |

k
∧

j=1

T (sj−1, sj) ∧

k−1
∧

j=0

B(sj) ∧ B(sk) ∧
∧

0≤i<j<k

si 6= sj (11)

B(s) is unreachable in any number of state transi-
tions, if the base-case holds and Equation 11 is UNSAT.
Otherwise, k is increased in both the base-case and
the inductive-step until the property is verified or a
counter-example is found in the base-case. A discussion
on the implementation of the uniqueness constraints
∧

0≤i<j<k si 6= sj can be found in [27].
The k-induction formulation for the inductive-step

given in Equation 11 can be translated into QBF using
the proposed ILA encoding of Equation 2 as follows:

∃s0, s1, . . . , sk ∀t ∃s, s′ | T (s, s′) ∧

k−1
∧

j=0

B(sj) ∧ B(sk)

∧

k
∧

j=1

{

[tk(j) ↔ (s = sj−1)] ∧ [tk(j) → (s′ = sj)]
}

(12)

The equivalences in the terms
∧k

j=1[t
k(j) ↔ (s = sj−1)],

which enforce the uniqueness constraints, are based on
a similar encoding given in [27].

5.4 Previous Work

In [26], a QBF-based BMC encoding is given, which
introduces two universal state variables, and hence Θ(b)
universal bits. A k-induction formulation using QBF is
given in [27], which uses k universal bits to traverse
the ILA time-frames using a forced one-hot encoding.
Furthermore, the non-copying iterative squaring encod-
ing studied in [27] defines T 2k(s, s′) recursively as a
function of T k. This corresponds to a BMC formulation
with Θ(lg k) universal variables and Θ(lg k) quantifier

scopes. The authors in [27] conclude that QBF solvers
are not taking advantage of those compact encodings to
improve performance.

Our modeling of BMC using QBF stems from the
general-purpose ILA representation in Section 3. It dif-
fers from previous work due to the novel MUX-based
implementation. Additionally, the proposed BMC for-
mulation introduces at most O(lg k) universal variables,
thus preserving the advantage of the non-copying iter-
ative squaring method while using a constant number
of quantifier scopes (∃∀∃) and a linear representation of
time. Another major contribution is the time-frame win-
dowing technique, which allows further size compres-
sion and boosts the inference power of the QBF solver.
These unique characteristics seem to have a significant
impact on performance, as shown in Section 8.

Finally, our encoding is not limited to BMC. It provides
a general platform for a flexible and performance-driven
represention of sequential circuits in a multitude of CAD
problems, as shown in the sections that follow.

6 DESIGN DEBUGGING

Design debugging starts after a functional verification
engine has produced a counter-example indicating that
the design is erroneous. Its objective is to locate all
possibly erroneous lines in the netlist [21], [32].

6.1 Design Debugging using SAT

SAT-based design debugging [21] takes in the erroneous
circuit T and the expected behavior of the counter-
example where T fails. It encodes the debugging prob-
lem as a SAT instance whose satisfying assignments
correspond to the potential error locations in the circuit.

The following steps, relevant to the work here, are
performed for a counter-example of k cycles [21]:

i) For each gate gi in the circuit, an error modeling
MUX with select line ei is introduced. This is shown in
Figure 7(b) for gates g1, g2 and g3 of Figure 7(a). An
inactive MUX select line (ei = 0) does not modify the
circuit, whereas an active select line (ei = 1) disconnects
gi from its fanouts and replaces it with a new uncon-
strained input wi, which can freely “fix” any potential
error at the output of gate gi. The transition relation of
this enhanced circuit is denoted by Ten(s, s′, 〈x, w, e〉, y),

g3

y2

g2

s′
1

s1

x1

y1

s2 s′
2

g1

(a) Erroneous circuit T

e1

e2

g1

g2

e3

w3

g31

0

1

0

1

0
s′
1

s1

y2

s2 s′
2

x1

y1

w1

w2

(b) Enhanced circuit Ten

Fig. 7. Enhancing T with error models
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where w and e respectively denote the unconstrained
inputs and select lines of the error modeling MUXes.

ii) The enhanced circuit Ten is replicated as an ILA of

length k:
∧k

j=1 Ten(sj−1, sj , 〈xj , wj , e〉, yj), such that the
error modeling MUXes corresponding to the same gate
share the same select line in all time-frames.

iii) A set of constraints ΦC(s0, 〈x1, . . . , xk〉, 〈y1, . . . , yk〉)
is added to ensure that the initial-state, primary inputs
and primary outputs of the ILA match the expected
circuit behavior for the counter-example.

iv) An error cardinality constraint ΦN (e) is added to
ensure that the number of activated select lines is equal
to the number of errors N .

SAT-based debugging returns N potentially erroneous
gates by activating the corresponding bits in e to match
the expected circuit behavior. N is initialized to 1 and
incremented until Equation 13 becomes SAT:

∃e, s0, s1, . . . , sk, X, W, Y |

k
∧

j=1

Ten(sj−1, sj, 〈xj , wj , e〉, yj)

∧ ΦC(s0, X, Y ) ∧ ΦN (e) (13)

Note that an all-solution SAT solver can be used to return
all satisfying assignments to e, or equivalently, all N -
tuples of potentially erroneous gates.

6.2 Design Debugging using QBF

The design debugging formulation from Equation 13
can be translated into QBF using the ILA encoding in
Equation 2 by adding two MUXes which help constrain
the primary inputs and outputs at each time-frame:

∃e, s0, s1, . . . , sk, X, Y ∀t ∃s, s′, x, w, y |
k
∧

j=1

tk(j) → [(s = sj−1) ∧ (s′ = sj)]∧

k
∧

j=1

tk(j) → [(x = xj) ∧ (y = yj)]∧

Ten(s, s′, 〈x, w, e〉, y) ∧ ΦC(s0, X, Y ) ∧ ΦN (e) (14)

Figure 8 gives the construction corresponding to Equa-
tion 14. The four MUXes assign the current-state, next-

M
U

X

MUX

MUX

M
U

X

t1, . . . , t⌈lg k⌉

s0

y

x

s′

sk

s2
s1

xk

yky2y1

x2x1

s

sk−1

s1

Ten

Fig. 8. Design debugging construction
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0
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1
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1
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2

s0
2

s1
1
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1
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1
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1

y2
2

y1
2
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s′
2

11

0
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(b) Design debugging construction

Fig. 9. Design debugging example

state, primary inputs and primary outputs of Ten ac-
cording to the time-frame select variables t. Constraining
the initial-state s0, inputs X and outputs Y in Figure 8
according to ΦC(s0, X, Y ), and adding the error cardi-
nality constraint ΦN (e) yields the matrix of the design
debugging QBF formulation given by Equation 14.

The following example illustrates the above concepts.

Example 2 Consider the correct and erroneous designs in
Figure 6(a) and Figure 6(c). In Example 1, BMC yields a
2-time-frame counter-example with initial state 〈s0

1, s
0
2〉 =

〈0, 0〉 and the sequence of inputs 〈x1
1, x

2
1〉 = 〈〈1〉, 〈1〉〉.

According to the correct state transition diagram shown in
Figure 6(b) (the states and outputs have the same values),
the expected output sequence corresponding to this counter-
example is 〈〈y1

1 , y
2
1〉, 〈y

2
1 , y

2
2〉〉 = 〈〈1, 0〉, 〈0, 1〉〉. Therefore,

ΦC(s0, X, Y ) = s̄0
1 ∧ s̄0

2 ∧ x1
1 ∧ x2

1 ∧ y1
1 ∧ ȳ1

2 ∧ ȳ2
1 ∧ y2

2 . The
QBF-based design debugging formulation with N = 1, along
with its corresponding construction are shown respectively in
Equation 15 and Figure 9(b).

∃e1, e2, e3, s
0
1, s

0
2, s

1
1, s

1
2, s

2
1, s

2
2, x

1
1, x

2
1, y

1
1, y

1
2 , y

2
1 , y

2
2 ∀t1

∃s1, s2, s
′
1, s

′
2, x1, w1, w2, w3, y1, y2 |

Ten(〈s1, s2〉, 〈s
′
1, s

′
2〉, 〈x1, 〈w1, w2, w3〉, 〈e1, e2, e3〉〉, 〈y1, y2〉)

{

t̄1 → [(s1 = s0
1) ∧ (s2 = s0

2) ∧ (s′1 = s1
1) ∧ (s′2 = s1

2)]
}

∧
{

t̄1 → [(x1 = x1
1) ∧ (y1 = y1

1) ∧ (y2 = y1
2)]

}

∧
{

t1 → [(s1 = s1
1) ∧ (s2 = s1

2) ∧ (s′1 = s2
1) ∧ (s′2 = s2

2)]
}

∧
{

t1 → [(x1 = x2
1) ∧ (y1 = y2

1) ∧ (y2 = y2
2)]

}

∧

s̄0
1 ∧ s̄0

2 ∧ x1
1 ∧ x2

1 ∧ y1
1 ∧ ȳ1

2 ∧ ȳ2
1 ∧ y2

2 ∧ (e1 + e2 + e3 = 1)
(15)

Figure 9(b) shows the ΦC(s0, X, Y ) constraints applied
at the initial-state, inputs and outputs of the circuit. In
Equation 15, the only satisfying assignment to the select lines
is 〈e1, e2, e3〉 = 〈0, 1, 0〉, indicating that gate g2 is potentially
erroneous.

In [32], QBF is used in a debugging framework
for a different end, namely handling multiple counter-
examples using an ILA. In this sense, the work here and
that of [32] are complementary and non-overlapping.
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7 SEQUENTIAL ATPG
ATPG is the process of generating test vectors to detect
faults in a logic circuit. Traditional ATPG engines gener-
ate tests for single stuck-at faults. A circuit line is stuck-
at-0 (stuck-at-1) if it always assumes a constant value of
0 (1). A test vector that detects a stuck-at fault on some
circuit line must produce different values at one or more
outputs in the presence of that fault. Sequential ATPG
has been tackled with several approaches including SAT-
based ones that use the ILA representation [20].

7.1 Sequential ATPG using SAT

Let Tc(sc, s
′
c, xc, yc) (Tf (sf , s′f , xf , yf )) denote the transi-

tion relation of the fault-free (faulty) circuit. The sequen-
tial ATPG problem can be formulated as the following
SAT instance:

∃s0
c , s

1
c , . . . , s

k
c , s0

f , s1
f , . . . , sk

f , X, Yc, Yf | (s0
c = s0

f )∧

k
∧

j=1

[Tc(s
j−1
c , sj

c, x
j , yj

c) ∧ Tf(sj−1
f , s

j
f , xj , y

j
f )]∧

k
∨

j=1

(yj
c 6= y

j
f)

(16)

where Yc = 〈y1
c , . . . , yk

c 〉 (Yf = 〈y1
f , . . . , yk

f 〉) denotes the
output sequence of the fault-free (faulty) circuit.

Equation 16 searches for the common sequence of
inputs X feeding to both Tc and Tf , which causes at
least one primary output in Yc to be different from Yf .

7.2 Sequential ATPG using QBF

Using the ILA formulation of Equation 2, Equation 16
can be encoded in QBF using T = Tc ∧ Tf . However,
it is possible to further compress the encoding and
use a single transition relation by taking advantage of
universal quantification as follows.

An enhanced circuit Ten is constructed by introducing
a MUX at the stuck-at-fault location that chooses between
the correct and faulty line using a select line l. Ten sim-
ulates Tc when l = 0 and Tf when l = 1. The sequential
ATPG problem is concerned with the existence of an
initial state s0, a common sequence of inputs X and
different outputs Yc and Yf , such that for both values
of l, there exist states s0, s1, . . . , sk, such that for a given
time-frame j, the primary outputs of Ten evaluate to yj

c

if l = 0 and y
j
f if l = 1.

This is formalized in the following QBF expression:

∃s0, X, Yc, Yf ∀l ∃s1, . . . , sk, Y ∀t ∃s, s′, x, y |

Ten(s, s′, {x, l}, y) ∧

k
∧

j=1

[(l → yj = yj
c) ∧ (l̄ → yj = y

j
f )]∧

k
∧

j=1

tk(j) → [(s = sj−1) ∧ (s′ = sj)]∧

k
∧

j=1

tk(j) → [(x = xj) ∧ (y = yj)] ∧

k
∨

j=1

(yj
c 6= y

j
f) (17)

0

x1

s2 g2

g1
s1 s′

1

s′
2

y1y2
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1
1

g3

(a) Enhanced circuit
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1
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1
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y1
2
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s0
1

s1
1

s0
2

s1
2

t1 x1
1

x2
1

s1
1

s2
1

s1
2
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2

l

1

0

1

0
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1 1

0

1

0

10 0 1

10 10100 1

1

1

0
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(b) Sequential ATPG construction

Fig. 10. Sequential ATPG example

Example 3 Consider the circuit in Figure 6(a) and a stuck-
at-1 at the output of gate g2. The corresponding enhanced
circuit Ten is given in Figure 10(a). The QBF encoding of the
sequential ATPG formulation for test sequences of k = 2 time-
frames, along with its corresponding construction are shown
respectively in Equation 18 and Figure 10(b).

∃s0
1, s

0
2, x

1
1, x

2
1, y

1
c1, y

1
c2, y

2
c1, y

2
c2, y

1
f1, y

1
f2, y

2
f1, y

2
f2 ∀l

∃s1
1, s

1
2, s

2
1, s

2
2, y

1
1 , y

1
2 , y

2
1 , y

2
2 ∀t1 ∃s1, s2, s

′
1, s

′
2, x1, y1, y2 |

Ten(〈s1, s2〉, 〈s
′
1, s

′
2〉, 〈x1, l1〉, 〈y1, y2〉)∧

{

t̄1 → [(s1 = s0
1) ∧ (s2 = s0

2) ∧ (s′1 = s1
1) ∧ (s′2 = s1

2)]
}

∧
{

t̄1 → [(x1 = x1
1) ∧ (y1 = y1

1) ∧ (y2 = y1
2)]

}

∧
{

t1 → [(s1 = s1
1) ∧ (s2 = s1

2) ∧ (s′1 = s2
1) ∧ (s′2 = s2

2)]
}

∧
{

t1 → [(x1 = x2
1) ∧ (y1 = y2

1) ∧ (y2 = y2
2)]

}

∧
{

l→[(y1
1 = y1

c1) ∧ (y1
2 = y1

c2) ∧ (y2
1 = y2

c1) ∧ (y2
2 = y2

c2)]
}

∧
{

l̄→[(y1
1 = y1

f1) ∧ (y1
2 = y1

f2) ∧ (y2
1 = y2

f1) ∧ (y2
2 = y2

f2)]
}

∧

((y1
c1 6= y1

f1) ∨ (y1
c2 6= y1

f2) ∨ (y2
c1 6= y2

f1) ∨ (y2
c2 6= y2

f2))
(18)

The variables of interest for the sequential ATPG problem
are the initial state 〈s0

1, s
0
2〉 and the common input sequence

〈x1
1, x

2
1〉. A satisfying assignment for Equation 18 is the test

sequence 〈s0
1, s

0
2, x

1
1, x

2
1〉 = 〈0, 0, 1, 1〉, for which y2

c1 = 0

differs from y2
f1 = 1.

8 EXPERIMENTAL RESULTS

A C++ software module is implemented for each of
the BMC, design debugging and sequential ATPG ap-
plications, that encodes problem instances in QBF as
discussed in this work. The generated instances are
solved using sKizzo [24], a state-of-the-art hybrid QBF
solver based on symbolic skolemization. Table 2 shows
the circuit characteristics of nine industrial designs from
OpenCores.org [33] used to construct these instances.
The columns in Table 2 show the name of the design, its
gate-count, its number of DFFs (b), and the number of
literals in its transition relation (lit(T )). All experiments
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TABLE 1
BMC using QBF

SAT (QBF,τ = 1) (QBF,τ = 16) (QBF,τ∗)
Circuit
Name

# time mem # time mem # time mem avg # time mem
solved (sec) (MB) solved (sec) (MB) solved (sec) (MB) τ∗ solved (sec) (MB)

AC97 8/12 670.9 295.4 6/12 1 196.8 145.0 12/12 129.9 20.6 14.0 12/12 120.2 17.2
Divider16 8/12 772.7 108.4 8/12 853.4 33.6 10/12 771.9 6.4 12.0 8/12 809.9 4.9
ERP 10/12 347.2 45.3 12/12 67.3 29.9 10/12 385.5 3.5 16.7 10/12 382.3 3.0
ReacTimer 12/12 0.5 3.3 12/12 8.8 1.6 12/12 0.5 0.2 14.0 12/12 0.5 0.2
RSDecoder 2/12 1 666.8 244.1 2/12 1 667.6 52.0 2/12 1 668.7 13.6 8.3 2/12 1 667.4 9.0
SPI 11/12 249.3 34.5 12/12 36.6 7.7 12/12 3.5 2.0 9.0 12/12 3.1 1.4
Aqu 6/12 1 001.9 514.6 11/12 300.0 148.9 12/12 120.3 30.1 12.0 12/12 112.0 24.0
Fibonacci 12/12 0.6 11.0 12/12 24.4 2.6 12/12 1.0 0.6 12.0 12/12 0.9 0.5
AE18 4/12 1 358.3 48.9 6/12 1 194.3 10.0 4/12 1 429.3 2.7 9.0 4/12 1 412.0 1.9

are conducted on a Pentium IV 2.8 GHz Linux platform
with 2 GB of memory and a time limit of 2000 seconds.

8.1 BMC and Time-Frame Windowing

BMC problems for safety properties of the form of Equa-
tion 7 are considered. For each circuit, six exponentially
increasing bounds k of size 32, 64, 128, 256, 512 and
1024 are examined and two manually generated “bad”
states are checked for each k: One that is reachable (SAT)
and one that is not (UNSAT). The proposed QBF-based
formulations are evaluated against a traditional SAT-
based encoding solved by MINISAT V1.14 [16], a state-
of-the-art SAT solver.

Table 1 compares the results with SAT for three QBF-
based BMC encodings with different time-frame win-
dowing schemes. The (QBF, τ = 1) encoding does not
use time-frame windowing, (QBF, τ = 16) uses a fixed
window of size τ = 16 irrespective of k, while (QBF, τ∗)
uses the window size τ∗ which minimizes the number of
literals in the formulation according to Equation 6. For
each approach, columns # solved, time and mem respec-
tively show the number of solved problem instances out
of 12, the average run-time in seconds, and the average
memory footprint of the files containing the problem
instances in MBs. When averaging the run-times, an
unsolved instance is counted as 2000 seconds, which is
the time limit. Moreover, under (QBF, τ∗), column avg τ∗

gives the average value of τ∗ for each circuit.
SAT solves a total of 73 BMC instances, whereas

the three different QBF-based windowing schemes

TABLE 2
Circuit Characteristics

Circuit
Name

Number of Number of lit(T )
Gates DFFs

AC97 15 601 1 452 96 872
Divider16 5 248 388 37 505
ERP 2 449 347 16 248
ReacTimer 265 22 1 360
RSDecoder 12 041 521 74 952
SPI 2 012 90 12 454
Aqu 22 319 1 504 158 360
Fibonacci 652 36 4 062
AE18 2 520 116 17 328
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(QBF, τ = 1), (QBF, τ = 16) and (QBF, τ∗) respectively
solve 81, 86 and 84 instances out of 108. The most
common aborting reason is running out of memory
for the SAT approach, and timing-out for the QBF ap-
proach. The QBF encodings are respectively 65%, 94%
and 95% smaller than the SAT-based formulations on
average. Although all three QBF options outperform SAT
in the number of solved instances, the effect of time-
frame windowing is vital in terms of memory, run-time
and the number of problem instances solved. In fact,
(QBF, τ = 16) solves 5 more instances than (QBF, τ =
1), and (QBF, τ∗) uses 85% less memory compared to
(QBF, τ = 1).
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Figure 11 plots the number of solved BMC instances
using each encoding as a function of run-time given in
a logarithmic scale. It clarifies the QBF versus SAT com-
parison and it highlights the positive influence of time-
frame windowing. Focusing on the QBF solver sKizzo
which is used to generate the numbers in Table 1, it can
be seen that SAT has an initial advantage on smaller
instances taking less than 30 seconds to solve. Both
(sKizzo, τ = 16) and (sKizzo, τ∗) outperform SAT
within 80 seconds, while (sKizzo, τ = 1) outperforms
SAT within 300 seconds. All three QBF formulations take
advantage of the declining slope of the SAT curve in
Figure 11 as soon as the problem instances grow in com-
plexity. Figure 12 compares the problem sizes generated
by each encoding. As expected, all three QBF encodings
require considerably less memory than SAT encodings,
while (sKizzo, τ∗) achieves maximum compression.

8.1.1 Impact on QBF Reasoning Strategies

In order to investigate the effect of the choice of the
QBF solver in achieving these results, the (QBF, τ∗)
instances are also run using two other contemporary
QBF solvers with different reasoning strategies: quan-
tor [23] which is based on Q-resolution and expansion,
and yQuaffle [22] which is a search-based QBF solver.
Table 3 shows the results of these experiments. The
first two columns under each of (quantor, τ∗) and
(yQuaffle, τ∗) show the numbers of solved SAT and
UNSAT instances out of six using the respective QBF
solver. The time column gives the average run-time for
each circuit in seconds. quantor solves 85 instances
out of 108, which is one more than sKizzo using a
window of size τ∗, while yQuaffle solves only 48 out of
108, considerably less than the SAT approach. Figure 11
includes the plots of the number of solved instances by
quantor and yQuaffle. The search-based QBF solver
yQuaffle is dominated by both other QBF solvers, as
well as the SAT solver. We also observed this trend with
other search-based QBF solvers, such as SQBF [25].

We give two complementary explanations for this be-
havior. First, the reason why a resolution-based approach
becomes so competitive may be based on the structure of
the interaction graphs of the matrices for our QBF encod-

TABLE 3
Search-based and resolution-based QBF for BMC

(quantor,τ∗) (yQuaffle,τ∗)
Circuit
Name

# solved time # solved time
SAT UNSAT (sec) SAT UNSAT (sec)

AC97 6/6 6/6 86.8 0/6 6/6 1 008.1
Divider16 3/6 6/6 536.9 0/6 0/6 −

ERP 4/6 6/6 347.9 0/6 6/6 1 000.1
ReacTimer 6/6 6/6 1.1 5/6 5/6 411.8
RSDecoder 1/6 1/6 1 667.4 0/6 0/6 −

SPI 6/6 6/6 25.8 2/6 6/6 826.9
Aqu 4/6 6/6 392.2 0/6 6/6 1 001.0
Fibonacci 6/6 6/6 1.9 6/6 6/6 326.6
AE18 3/6 3/6 1 143.7 0/6 0/6 −

(a) QBF matrix for τ = 8, k = 64 (b) Transition relation

Fig. 13. Interaction graphs for QBF-based BMC of bench-
mark ReacTimer

ings. The interaction graph of a CNF formula is defined
as a graph that contains a node for each variable and
an edge connecting any two nodes whose correspond-
ing variables appear in the same clause [34]. Our QBF
encodings produce sparse interaction graphs, where each
node is only connected to a very small percentage of the
total set of nodes. This sparseness enables skolemization,
resolution and expansion to proceed without immediate
memory explosions.

Figure 13(a) shows the interaction graph of the QBF
matrix in the BMC encoding of ReacTimer with k = 64
and τ = 8, drawn using DPvis [34]. The cluster of
nodes at the bottom of Figure 13(a) corresponds to the
two MUXes shown in Figure 4. The remaining 8 clusters
correspond to the 8 copies of the transition relation T

in the window. Each of these copies is only connected
to the previous and next copy of the transition relation,
and the MUX circuitry is only connected to the first and
last copies of T , as shown in Figure 4. Furthermore,
the interaction graph of each copy of the circuit itself
(i.e., of each cluster in Figure 13(a)) is usually sparse
because internal gates typically have a limited fan-out.
For example, Figure 13(b) shows the interaction graph
of one copy of the transition relation T for ReacTimer.
Note that these interaction graphs represent the problem
before the solving procedure begins.

On the other hand, the pessimistic results for yQuaf-
fle and search-based QBF solvers in general can be
attributed to the excessive trial-and-error in “guessing”
correct ILA state transitions. This is caused by the restric-
tion on the variable decision order to follow the prefix
scope order, which forces a search-based QBF solver to
first decide on all outermost state variables {si} before
decisions can be made on variables of inner scopes. This
can become a recipe for conflicts and severely impede
the search process when compared to SAT where solvers
can branch on any variable at any given time.

To demonstrate this theoretical observation, we com-
pare the number of conflicts and the number of decisions
in yQuaffle to those of the zChaff SAT solver [15],
for five BMC instances on ReacTimer with increasing
bounds k. As shown in Figure 14(a), as k increases,
yQuaffle produces significantly more conflicts due to
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Fig. 14. Search-based SAT and QBF solver statistics for
BMC of ReacTimer

the increasing number of outermost states. Meanwhile,
zChaff produces almost no conflicts irrespective of k,
by propagating the initial state constraints I(s0) forward
and bad state constraints B(sk) backwards. Figure 14(b)
shows the number of decisions in a logarithmic scale for
each of yQuaffle and zChaff to solve these instances
as k increases. Clearly, yQuaffle requires at least two
orders of magnitude more decisions than zChaff to
solve the same set of problems.

8.1.2 k-Induction

Instances of k-induction problems for safety properties
of the form of Equation 11 are considered. For each
circuit, bounds of size 32, 64, 128 and 256 are examined
and bad states that are unreachable within those bounds
(produced UNSAT using BMC) are used. The QBF-based
approach is compared to a traditional SAT-based encod-
ing solved by MINISAT V1.14.

Table 4 compares the QBF-based and SAT-based
schemes. τ = 1 is used in the QBF encodings. For each
approach, columns # solv., time and mem respectively
show the number of solved problem instances out of
4, the average run-time in seconds, and the average
problem size in MBs. Both approaches solve 24 out of 36
instances, while the QBF encodings are 97% smaller on
average. Run-times are comparable when disregarding

TABLE 4
k-induction using QBF

SAT QBF

Circuit
Name

# time mem # time mem
solv. (sec) (MB) solv. (sec) (MB)

AC97 2/4 1 003.0 1 113.0 4/4 73.7 68.7
Divider16 3/4 581.5 621.5 0/4 − 16.2
ERP 3/4 500.1 599.0 4/4 3.7 14.2
ReacTimer 4/4 2.8 22.5 4/4 0.8 0.8
RSDecoder 1/4 1 502.3 1 048.2 0/4 − 25.0
SPI 4/4 2.9 109.7 4/4 1.3 3.7
Aqu 1/4 1 500.1 1 529.0 4/4 11.5 71.2
Fibonacci 4/4 1.8 40.7 4/4 1.6 1.3
AE18 2/4 1 201.0 538.0 0/4 − 4.8

unsolved instances. The slight deterioration in the per-
formance of the QBF-based method compared to BMC is
likely due to the increased search-space of the inductive-
step compared to the base-case.

8.2 Design Debugging

For the debugging problems, sKizzo has been pur-
posely modified to an all-solution QBF solver that re-
turns all the valid assignments to e in Equation 14,
or equivalently, all possible error sites. The erroneous
circuits are created by manually changing the function-
ality of certain modules to introduce an error. Counter-
example sequences are obtained by pseudo-random sim-
ulation. For each circuit, six different design debugging
problem instances with eight counter-examples for each
instance are generated. All solutions are found using
N = 1, i.e., there is a single erroneous module in
each instance. Final results are averaged out over the
number of instances. In order to deal with multiple
counter-examples, the ideas in [32] are integrated in
the approach. The results of the proposed QBF-based
formulation using a unit-size window are compared to
the SAT-based approach [21] that uses circuit replication
with zChaff being the underlying SAT solver. Since
sKizzo internally uses zChaff to solve propositional
subproblems related to the QBF instance, this provides
a fair comparison metric.

Table 5 presents the results of the proposed QBF
formulation for design debugging. The second, third and
fourth columns respectively show the average counter-
example length, the maximum counter-example length
and the average number of potentially erroneous mod-
ules in the circuit. For each formulation (SAT and QBF),
columns # solved, time and mem respectively show the
number of solved instances, the average run-time in
seconds and the average memory usage of the problem
formulation in MBs.

As clearly seen in Table 5, the design debugging results
are even more favorable to QBF when compared to SAT.
Along with an average of 89% reduction in the memory
footprint of the formulation, the run-time performance is
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TABLE 5
QBF-based Design Debugging

Design Debugging Info SAT QBF
Circuit
Name

avg max # # time mem # time mem
k k locations solved (sec) (MB) solved (sec) (MB)

AC97 32.3 60 2.0 4/6 702.9 272.7 6/6 111.4 30.1
Divider16 27.5 111 2.8 0/6 − 198.8 5/6 618.3 14.6
ERP 89.3 449 2.3 3/6 1001.4 350.6 5/6 517.5 64.7
ReacTimer 365.1 931 3.0 6/6 757.6 125.0 6/6 196.8 22.2
RSDecoder 2.5 8 3.5 6/6 5.1 27.0 6/6 5.0 2.1
SPI 21.5 56 2.0 6/6 145.4 56.3 6/6 13.7 3.2
Aqu 2.0 2 3.0 6/6 3.3 41.6 6/6 8.0 3.1
Fibonacci 3.0 4 2.0 6/6 0.2 1.1 6/6 0.1 0.1
AE18 156.1 504 5.0 0/6 − 580.1 6/6 464.7 68.6

improved by 39% on average. The QBF-based approach
solves a total of 52 instances, while the SAT-based one
solves 37. This amounts to a 41% increase in the number
of solved instances with QBF.

Figure 15 plots the number of solved design debug-
ging instances as a function of run-time for SAT-based
and QBF-based formulations. Clearly, QBF has a run-
time advantage over SAT. In fact, after less than ten
seconds, the performance of the QBF solver remains
invariably superior and SAT begins to plateau after 200
seconds because of excessive memory problems.

8.3 Sequential Test Generation

To generate sequential ATPG instances, three random
stuck-at-faults are introduced in each circuit, for bounds
of 10, 100 and 500 time-frames. The SAT and QBF for-
mulations are given as described in Equations 16 and 17.

The results are shown in Table 6. zChaff is used
to evaluate the SAT instances. For each approach, the
columns # solv., time and mem respectively show the
number of solved problem instances out of three, the
average run-time in seconds, and the average memory
footprint of the files containing the problem instances in
MBs. The QBF-based sequential ATPG approach solves
20 out of 27 instances, while the SAT approach solves
19. Furthermore, the QBF problem sizes are 84% smaller
than their SAT counterparts. It should be noted that most
of the solved instances returned UNSAT, which means

TABLE 6
QBF-based Sequential ATPG

SAT QBF
Circuit
Name

# time mem # time mem
solv. (sec) (MB) solv. (sec) (MB)

AC97 2/3 673.3 739.3 3/3 67.3 133.2
Divider16 2/3 668.7 304.2 3/3 59.1 60.8
ERP 3/3 10.3 79.1 3/3 30.5 12.7
ReacTimer 3/3 2.3 10.2 3/3 22.8 1.5
RSDecoder 1/3 1369.1 613.1 1/3 1376.7 113.0
SPI 3/3 7.6 70.9 3/3 25.2 9.6
Aqu 1/3 1652.2 1 236.0 1/3 1716.0 205.9
Fibonacci 3/3 4.2 29.7 3/3 10.9 5.0
AE18 1/3 1420.8 148.0 0/3 − 18.8

that the introduced faults could not be detected using a
test sequence within the given bounds. Finally, as shown,
run-times are comparable between the two techniques.

9 CONCLUSION

This work presents a QBF-based ILA encoding and
a robust hardware implementation for it to model
the sequential behavior of a circuit. The encoding is
parametrized using time-frame windowing, and the re-
sulting family of logically equivalent encodings is shown
to contain a non-trivial minimal-size member. A set of
applications are encoded using the proposed formalism,
namely BMC, design debugging and sequential test gen-
eration, to demonstrate its robustness and practicality.
An extensive suite of experiments on publicly available
industrial circuits confirms the expected memory gains
and demonstrates the run-time competitiveness of the
proposed techniques compared to state-of-the-art SAT-
based approaches in all cases.

Admittedly, the theory and results of this paper em-
phasize the need for further research in QBF solvers
and QBF-based CAD for VLSI solutions. Since the first
complete QBF solver was presented decades after the
first complete engine to solve SAT, research in this field
remains at its infancy. This lures us into the fundamental
research opportunities and multi-disciplinary contribu-
tions that still lie ahead.
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