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Abstract—With the growing size of modern designs and more
strict time-to-market constraints, design errors can unavoidably
escape pre-silicon verification and reside in silicon prototypes.
Due to those errors and faults in the fabrication process, silicon
debug has become a necessary step in the digital integrated circuit
design flow. Embedded hardware blocks, such as scan chains
and trace buffers, provide a means to acquire data of internal
signals in real time for debugging. However, the amount of the
data is limited compared to pre-silicon debugging. This paper
presents an automated software solution to analyze this sparse
data to detect suspects of the failure in both the spatial and
temporal domain. It also introduces a technique to automate
the configuration process for trace-buffer based hardware in
order to acquire helpful information for debugging the fail ure.
The technique takes the hardware constraints into account and
identifies alternatives for signals not part of the traceable set so
that their values can be restored by implications. The experiments
demonstrate the effectiveness of the proposed software solution
in terms of run-time and resolution.

Index Terms—Silicon debug, post-silicon diagnosis, data acqui-
sition setup, test, Boolean satisfiability

I. I NTRODUCTION

Developing modern integrated circuits consists of several
synthesis stages before a silicon prototype is fabricated.To
ensure that each synthesis step does not introduce any errors
(e.g. timing, functional, power), a corresponding verification
stage is carried out to validate the design. During the pre-
silicon process, engineers test devices in a virtual environment
with sophisticated simulation [1], emulation [2] and formal
verification [3], [4] tools to check the correctness of the
RTL model against its functional specification. However, due
to the growing complexity of functionality and the size of
designs, it becomes infeasible to achieve 100% verification
coverage within the strict time-to-market constraints. Assuch,
functional bugs may escape pre-silicon verification and only
be discovered during in-system silicon validation where the
design is exercised at speed. Consequently, silicon prototypes
are rarely bug-free. For example, the work in [5] presents
several functional errors in processor designs that are found
after the designs are taped out. In fact, more than 60% of
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design tape-outs require a re-spin where more than half of
these re-spins are due to logical or functional errors not
discovered by the pre-silicon verification [6]. Each re-spin due
to design errors or faults that reside in the silicon dramatically
increases project costs and the time-to-market. Therefore, it is
important to develop a silicon debug flow that provides short
turn-around time when a silicon prototype fails.

A typical silicon debug process consists of several iter-
ative sessions, referred to asdebug sessions. Each session
can be divided into two stages:data acquisitionand data
analysis. In the data acquisition stage, test engineers set up
the environment to obtain appropriate data from the chip
under test while it is operated in real-time. Unlike pre-silicon
verification, where values of any signals can be obtained
through simulation, observability of internal signals in the
silicon prototype is restricted. SeveralDesign-for-Debug (DfD)
hardware components, such as scan chains or trace buffers, are
used to access the internal signals. Nevertheless, the amount
of acquired data is limited by the integrated DfD hardware
components. These limits greatly inhibit accurate and effective
debugging analysis. During data analysis, the sparse amount
of data acquired during the test is analyzed to prune the error
candidates and to set up the data acquisition environment
for the next debug session. This time-consuming and labor-
intensive cycle continues until the root cause of the failure is
determined. Clearly, the quality of the data analysis is affected
by the acquired data. Hence, software solutions for silicon
debug need to have the ability of identifying sets of signals,
as well as cycles during the execution, that are important and
helpful in narrowing down the suspects. Furthermore, this set
of signals should be concise to comply with the hardware
limitation.

This paper proposes an automated software-based debug
methodology that complements current data acquisition hard-
ware solutions. The proposed methodology is designed as a
post-processing step after the data has been acquired. This
methodology automates the data analysis process and aids the
engineer in discovering the root cause of the chip failure. It
identifies the potential locations of the error in a hierarchical
manner, and estimates the time interval where the error is
excited. When a debug engineer needs to manually investigate
the errors in a design, the proposed methodology facilitates a
focused approach on a smaller set of locations within more
concise windows of cycles. As a result, the amount of manual
work performed by the engineer can be reduced. In addition,
our methodology helps refine the debugging experiments by
setting up the data acquisition environment for the next debug
session. It utilizes UNSAT cores to identify registers thatmay
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contain useful information to prune the suspect candidates.
The new data acquired is fed to the subsequent automated data
analysis cycle to eventually determine the root cause. Although
the methodology is described in terms of diagnosing design
errors, it is later extended to handle physical defects as well.
This increases its applicability and its practicality.

When trace buffers are used, not all registers can be ac-
cessed in practice. To comply with these hardware constraints,
a search algorithm is presented to find alternatives such
that their value can restore the value of registers of interest
that cannot be traced by the hardware. The proposed search
algorithm is memory efficient because only a small window of
the complete test trace is analyzed. Finally, because only one
traceable register group can be traced in each debug session, a
simple ranking system is suggested to prioritize the traceable
register groups according to the result from the proposed
analysis.

Experiments on OpenCores.org and ISCAS’89 circuits are
conducted. Results show that our methodology successfully
determines the locations of the error or defect. It also spec-
ifies with accuracy the time interval in which the error is
excited. Even with the hardware constraints considered, the
methodology reduces, on average, 31% of suspects that the
engineer needs to investigates with only 8% to 20% of registers
traced. To the best of our knowledge, this is the first study that
presents a comprehensive analysis of the data acquired with
modern in-silicon hardware like trace buffers to reduce the
number of iterations during silicon debug.

The remainder of the paper is organized as follows. Sec-
tion II summarizes prior work on hardware and software
solutions for silicon debug, as well as the background material.
Section III presents the proposed software solution to silicon
debug, while Section IV illustrates the searching algorithm for
selecting alternatives for non-traceable registers, and presents
a simple ranking system of traceable register groups. The
extension of the proposed methodology to deal with physical
defects is explained in Section V. Finally, the experimental
results and conclusion are given in Sections VI and VII,
respectively.

II. BACKGROUND

As mentioned in the introduction, the main difficulty of
silicon debug is the lack of access to the internal signals. In
this section, two data acquisition hardware components used
to enhance the observability of internal signals in chips are
discussed. Next, previous automated data analysis algorithms
are reviewed. Finally, we summarize the background material
for the proposed methodology.

A. Design for Debug Hardware Solutions

The behavior of internal signals in a chip can only be
observed if they are routed to external pins. Since numbers
of available pins on a chip are limited, this approach may
not provide sufficient information to perform debugging. To
improve observability of internal signals, two DfD solutions
are mainly used in practice: scan chains and trace buffers.

a) Scan chains:provide a means to take a snapshot of
the registers at a specific cycle. In the test mode, values of all
scanned registers can be serially shifted out with a slower shift
clock. This operation is referred to asscan dump. However,
the scan dump operation interrupts the execution of the chip
because the functional clocks of the design are halted and
the values stored in the registers are destroyed. In order to
resume the execution from the same point, the environment
needs to be reset and restarted from the initial setup. Note
that although non-destructive scans (i.e., scan cells thatconsist
of an additional element for debugging purpose) provide
mechanism to resume the execution from the same point, a
new state capture cannot occur until previous scan dump has
been completed. Hence, it is not practical to acquire state
values for several consecutive cycles using scan chains [7].

b) Trace buffers: record internal signals in an on-chip
memory in real-time. The trace buffer size, which for today’s
designs typically ranges from a few kilobytes to a few hun-
dreds of kilobytes, is determined by itswidth and itsdepth.
The width constrains the number of signals to be probed,
while the depth limits the number of samples that can be
stored. A trace buffer contains control logic, called trigger
logic (e.g., embedded hardware assertions), employed for on-
line monitoring of circuit behavior. The logic values of the
selected signals are recorded when the trigger condition is
asserted. Subsequently, the recorded data is read via a low-
bandwidth interface, such as a boundary scan. The advantage
of trace buffers is that the values of signals can be collected for
consecutive cycles, while scan chains only provide the value
in a specific cycle. However, due to the limited size of the
embedded memory, only a small set of pre-selected signals can
be traced. Those pre-selected signals are divided into groups
and connected to the on-chip memory through a multiplexer.
During execution, only one group can be traced at a time.
The traceable signals are typically manually selected by the
designer. Recently, several algorithms have been developed to
automate the selection process [8], [9], [10], [11]. In those
works, the authors try to select a small set of signals such that
their values have a higher chance of restoring a significant
amount of untraceable states.

B. Related Work on Data Analysis

Although DfD hardware enhancement increases the ob-
servability of internal signals, there is a lack of techniques
that automate the data analysis process on the acquired data.
Recently, there has been an effort to develop methodologies
to aid the engineer in this part of the silicon debug process as
summarized in the following.

The method proposed in [12] relies on scan dumps collected
at multiple consecutive cycles to determine failing registers at
each time frame. Next, it conducts back-tracing from those
failing registers to identify the fault propagation paths and
suspect registers at each cycle. Finally, it performs a forward-
tracing from the suspect registers to further narrow down the
root cause candidates.

Yen et al. [13] propose an approach that isolates the critical
cycles using a binary search paradigm based on the compar-
ison between the observed data and the simulation results. A
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critical cycle is the first cycle in which the state elements
show a discrepancy between the expected responses and the
actual ones. Then, this method identifies suspect registerswith
a simple path-tracing method [14] and simulating the golden
model with faulty values injected at each suspect candidates.

A formal approach that restores state values of a design in
a failing trace is proposed in [15]. It starts from the crash
state and computes backward in time. Signatures, computed
with additional hardware structures, are captured during the
chip execution and stored in the trace buffer. Later, those
signatures are used to determine a unique or a small set of
possible predecessor states that lead to the crash state.

C. Boolean Satisfiability and UNSAT Cores

This work models the debugging problem into a Boolean
Satisfiability (SAT) instance and utilizes the use of UNSAT
cores extracted from it to guide the silicon debug data acqui-
sition setup. A brief overview of these methods are given in
this section.

SAT proves or disproves whether a Boolean formulaΦ has
a satisfiable assignment, i.e., the formula is evaluated totrue.
If such an assignment exists, the formulaΦ is said to be
satisfiable; otherwise, it is unsatisfiable. For most modernSAT
solvers, Boolean formula is presented inConjunctive Normal
Form (CNF), which consists of a conjunction ofclauseswhere
each clause is a disjunction of literals. Aliteral is an instance
of the variable or its negation.

If the formula is unsatisfiable, any subset of clauses in the
instance that is also unsatisfiable is referred to as anUNSAT
core. Modern SAT solvers [16], [17], [18] can produce UNSAT
cores as a result of proving unsatisfiability. For example, an
UNSAT core of the formula,Φ = (a+b) ·(a+c) ·(b+c) ·(a) ·
(c), is {(a+c),(a),(c)}.

An unsatisfiable SAT instance can have multiple UNSAT
cores. Each represents a situation where the instance is unsat-
isfied. Additional UNSAT cores can be obtained by eliminating
a previously found UNSAT core, as described in [19]. In
summary, each clauses in an UNSAT core is augmented with a
distinct relaxation variable. Additional clauses are added to the
CNF formula to ensure one and only one relaxation variable
is true. Consequently, this additional formulation removes
the constraints applied to Boolean variables and breaks the
unsatisfied condition.

D. SAT-based Diagnosis

Modelling the problem of logic and fault diagnosis in SAT
is first presented in [20]. Given a circuit and a set of test traces
that cause the design to fail, the problem is formulated in a
CNF instance such that the SAT solver returns solutions that
correspond to error location(s). This is achieved by inserting
a multiplexer at every gate (and primary input) such that
when the select line (s) of the multiplexer is inactive, the
original design is maintained; otherwise, a new unconstrained
primary input variable (w) drives the output of the multiplexer.
Next, the design is translated into a CNF formula [21] and
duplicated for each vector sequence and for each cycle of the
test sequence. Note that multiplexers that are driven by the
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Fig. 1. Hierarchical diagnosis

same gate in each unrolled copy of the circuit share the same
select line. This is because these gates represent the same
gate in the original sequential circuit. If one of them is the
error source, all the remaining should be selected as well. This
construction is later constrained with the input vector andthe
expected output response. Readers can refer to [20] for more
information on this SAT-based debugging methodology.

The SAT-based diagnosis algorithm from [20], also used
here, performsmodel-freediagnosis [22]. That is, it does not
make any assumption on the behavior of the fault/error. This
is a desirable fit to silicon debug since silicon prototypes can
fail test for various reasons. The engineer can utilize the values
of the unconstrained variablesw to determine the type of the
fault that has occurred.

More recently, unsatisfiability is also used for debugging.
In [23], authors utilize UNSAT cores to determine suspects in
an erroneous gate-level design. The work in [24] uses MaxSAT
to identify the time in which the bug is activated in a trace.

E. Hierarchical Diagnosis

Ali et al. [25] extend the SAT-based diagnosis to debug
designs in a hierarchical manner to improve the performance
and resolution of logic debugging. The debug process consists
of several iterations. In each iteration, the method only con-
siders modules in the same hierarchical level. The procedure
starts from the top-level of the design and goes deeper into
the design hierarchy. Suspect candidates for debugging in each
iteration are sub-modules of the modules that are determined to
be suspects in the previous iteration. The procedure is repeated
until the lowest level of the design hierarchy is reached.

The formulation of hierarchical diagnosis in SAT is the same
as the basic construction of SAT-based diagnosis describedin
the previous section except that multiplexers are insertedat
the output of coarse-grain modules rather than simple gates.
Additionally, all multiplexers at the output of the same module
share the same select line. Consequently, the SAT solver
selects a module as a suspect if it can assign values to some
outputs of this module such that the behavior of the design
matches the constrained output response for the particulartest
vector.

Figure 1 illustrates the concept of debugging using hierar-
chical information. Figure 1(a) shows the hierarchical structure



4

of a design. A situation in which hierarchical diagnosis is ap-
plied to this design with two iterations is shown in Figure 1(b).
Diagnosis starts with three top modules. In the first iteration,
moduleC (grey box) is diagnosed to be the suspect. Hence,
diagnosis, in the second round, only considers the sub-modules
of C, namely,C1, C2, andC3, as candidates. At that round,C2

is identified as the suspect. As a result, the suspect candidate
list for the third round consists ofCa andCb only.

With the hierarchical information of the design, diagnosis
can start with a coarse-grain global analysis and the searchcan
be directed to local areas after each iteration. Such a procedure
reduces the runtime and memory requirement, since there are
fewer candidates that need to be analyzed.

III. A UTOMATED DATA ANALYSIS

A silicon debug process is different from an RTL debug pro-
cess in many important aspects. First, silicon debug needs to
utilize the DfD hardware components in the design to acquire
values of internal signals, whereas, in RTL diagnosis, values of
internal signals can be obtained through simulation. Second,
due to the vast complexity of the silicon debug problem, a
software solution should be designed appropriately to take
advantage of the debug hardware available to the engineer to
reduce the iterations of the process. Finally, because silicon
prototypes are operated at-speed during test, the test trace for
debugging can be orders of magnitude longer compared to
the one usually available during RTL diagnosis. As such, it
is important to identify the segment of the trace that really
matters to aid the future iterations of the debug process and
simplify the analysis.

A. Assumptions

In this work, the following assumptions are used to make
the silicon debug problem more feasible to solve, while still
reflect realistic practice concerns.
• The erroneous silicon behavior is deterministic. That is,

errors replicate their behavior with the same set of test
vectors. This is the case if the circuit is debugged on
the tester or on an application board where the input is
controlled synchronously. This assumption is necessary
to replicate experiments and to obtain the values of
multiple state elements at different cycles. It is also the
fundamental underlying assumption of a silicon debug
environment described in the introduction.

• Scan chains and trace buffers (Section II-A) are utilized
to obtain the values of internal states. In this scenario,
the design is fully scanned and trace buffers can be pro-
grammed to capture the value of specific state elements.
Those values are compared with the expected values to
determine whether the error is observed.

• The golden model, such as a high-level behavioral model,
is available to provide the correct responses of the design.
Note that although this behavioral model may not provide
access to the data on every single net in the implemen-
tation, the important information on the data and address
buses, as well as the essential control signals that steer
the data through the data-path, can be monitored.

n−level Hierarchical Diagnosis

Timeframe Diagnosis

Data Acqusition Setup

* Identify suspect modules

* Identify critical interval

* Identify signals to be traced

Fig. 2. A single debug analysis session

• All discrepancies are due to a single error present in the
RTL representation. Since most test vectors target specific
functionality of the design, it is realistic to conclude that
a failing test vector is due to a single error [26].

B. Proposed Methodology Overview

The methodology in the following discussion deals with
functional errors (bugs) in the design. Examples of functional
bugs that escape to silicon can be found in [5]. The extension
of the methodologies on physical defects is discussed later.

An overview of the methodology is given here with the
details of the implementation described in the remaining sub-
sections. The complete flow of the methodology is summarized
in Figure 2. The objective of the proposed methodology has
three main goals: to identify the suspect modules that contain
the error, to find the critical interval of the error, and to find
the registers that may contain helpful information about the
error. A critical interval is a window of cycles that contains
the critical cycle. Unlike for RTL debug, the above objective
must be achieved with a conscious usage of the on-chip debug
hardware resources. This objective is unique to silicon debug
and it motivates the key contributions in this work.

The objectives are achieved in three steps. First, it diag-
noses the circuit in a hierarchical manner as described in
Section II-E. The algorithm takes in the RTL representation
of the erroneous design, failing input test vectors and the
expected (i.e., correct) output responses to build the Boolean
satisfiability instance. Here, only test vectors that can excite
the error and cause discrepancies observed at some primary
outputs are examined. Hence, the algorithm identifies design
components that are potentially responsible for the functional
failure observed during functional test. It has been shown that
it is effective to use the design hierarchy information when
searching between different components of a design [25].
Unlike in [25] where the debugging algorithm iterates the
procedure until the lowest hierarchical level is reached, the
algorithm in the proposed flow would only expand at mostn
hierarchy levels from the level ended in the last session during
each debug session. This is referred to asn-level hierarchical
diagnosis. For example, ifn = 2 and the maximum hierarchy
depth of the design is 10, the algorithm goes deeper in the
hierarchy by two levels. As a result, at most five sessions will
be performed. Then, timeframe diagnosis is carried out to find
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Algorithm 1 Timeframe Diagnosis

1: M̂List := list of suspect modules
2: k := size of time interval
3: Tb(Te) := beginning(end) cycle of the trace

4: procedure TIMEFRAMEDIAGNOSIS(M̂List, k, Tb, Te)
5: T̂Msol := the timeframe diagnosis solutions
6: for all M ∈ M̂List do
7: T̂MList := the new list containing timeframe modules
8: for t = Tb to Te incremented byk do
9: TMnew := A new timeframe module consists of

{Mt · · ·Mt+k}

10: Add TMnew to T̂MList
11: end for
12: Debug with candidates from̂TMList and add solutions to

T̂Msol
13: end for
14: Critical interval (T ′b,T ′e)←

S

TMi∈T̂Msol
(Tbi,Tei) where TMi

is defined over the interval(Tbi,Tei)
15: return (T ′b,T

′
e)

16: end procedure

a greater precision estimate for the window of clock cycles
in which the error may be excited. This interval can further
reduce the time interval where the design needs to be analyzed
in the next debug session. The trace can also be truncated to
start at the same cycle as the begin of the returned interval.The
idea is that the segment of the trace before the critical cycle
can be safely removed for debugging analysis since it does
not contain information related to the error observed (which
is excited at the critical cycle). The value of state elements
w.r.t. the truncated trace can be initialized with the valueof
scan dump at this new starting cycle. Moreover, during the
test, signals only need to be traced within the new reduced
window. Finally, the design with the location of the potential
suspects is analyzed to determine a set of registers that can
provide more information about the actual bug. The above
information feeds back to the proposed analysis flow which
iterates the three steps in Figure 2 in the next debug session
to aid in further root cause analysis.

Note that, after debugging, engineers still need to inspect
each suspect to determine which one is the real error source
and fix it. This process can be time-consuming. Hence, the
final suspects that require manual inspection should be as few
as possible. Furthermore, to ease this process for the engineer,
the algorithm should also indicate the time interval wherein
the error is excited. In such a way, the test engineer can study
a much smaller segment of the complete trace to determine
the actual cause of the failure and, consequently, rectify the
error. The first step, hierarchical diagnosis, only provides the
location but it gives no information about this time frame. For
this reason, the second and third steps of the proposed flow
are used to improve the resolution of the debugging result in
terms of further screening of the error locations and the time
frames that they are excited.

The details of timeframe diagnosis and data acquisition
setup are discussed in the following subsections.

C. Timeframe Diagnosis

In silicon debug, the depth of the trace buffer limits the
number of samples that are acquired in one debug experiment.
Once the buffer is full, the older data is overwritten by the new
samples. Hence, if the cycle in which the error is exercised
can be estimated, the buffer can be utilized more effectively.
This unique constraint motivates timeframe diagnosis.

A timeframe diagnosis pass narrows down the critical inter-
val. This result can help to set up the next debug experiment,
such that data acquisition starts at the right cycle(s), i.e., the
one(s) as close to the critical cycle as possible. Note, the test
still runs from the beginning of the test vector sequence. The
trace buffer is programmed to begin the capture at a later cycle.

In this work, sequential circuits are modelled in theIterative
Logic Array (ILA) representation. The design is unfolded over
time to maintain the combinational functionality. Throughout
this paper, the superscript of a symbol refers to the cycle of
the unfolded circuit. For instance,X 2 represents the set of the
primary inputs in the second cycle. Furthermore,INPUT(M)
(OUTPUT(M)) denotes the input (output) nets of moduleM.

Definition 1: Consider an ILA representation of a sequen-
tial design. Atimeframe module TM for a single moduleM
over a set of cycles{Tn · · ·Tn+k} is a conceptual entity that
contains the instancesMTn · · · MTn+k of moduleM over this
set of cycles such thatINPUT(TM) =

STn+k
t=Tn

INPUT(Mt) and

OUTPUT(TM) =
STn+k

t=Tn
OUTPUT(Mt )

Timeframe diagnosis is a SAT-based algorithm as described
in Section II-D. Recall, in basic SAT-based diagnosis the same
gates in each unrolled time frame form one suspect candidate
(since their multiplexers share the same select line). One may
think that it is a timeframe module defined over the complete
trace. Hence, instead of considering suspects in one timeframe
module that is defined over the complete trace, timeframe
diagnosis examines suspects in timeframe modules that are
sets-of-cycles.

Pseudo-code to identify the critical interval is described
in Algorithm 1. Timeframe diagnosis divides the trace into
several intervals of widthk and constructs a timeframe module
for each suspect module returned by hierarchical diagnosis
in each interval. That is, the suspect modules in each cycle
of the interval are collectively considered as a single suspect
by timeframe diagnosis (lines 8–11). Consequently, timeframe
diagnosis selects suspects from this new set. In this scenario,
a timeframe module is selected if the SAT solver can assign
values to the outputs of the timeframe module such that the
applied constraints are satisfied (line 12). The final critical
interval is the union of intervals wherein all selected timeframe
modules are defined (line 14). The union of two time intervals,
(Tb1,Te1)∪ (Tb2,Te2), is a new time interval,(T ′b,T

′
e), where

T ′b = min(Tb1,Tb2) andT ′e = max(Te1,Te2).
The formulation of the timeframe diagnosis problem is

similar to the one described in Section II-D, except the
insertion of multiplexers. In timeframe diagnosis, multiplexers
are inserted at the outputs of each timeframe module and share
one select line. Timeframe modules are selected as suspectsif
timeframe diagnosis can assign values at the outputs of those
timeframe modules such that the output response of the design
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matches the expected response. The following theorem states
that one of the selected timeframe modules must be defined
over the interval that contains the critical cycle.

Theorem 1:Timeframe diagnosis is guaranteed to select the
timeframe module with the respective interval that contains the
critical cycle.

Proof: Timeframe diagnosis divides the trace into consec-
utive intervals of cycles. As such, the cycle when the actual
error is triggered must be in one of the intervals. This implies
that one of the timeframe modules must contain the critical
cycle. Assume, toward contradiction, that the timeframe mod-
ule that contains the critical cycle (TMc) is not selected by
timeframe diagnosis. This means that the SAT solver cannot
re-adjust the value atOUTPUT(TMc) to make the design
comply with the expected output response for the given input
vector. However, because the error is excited during the time
interval defined byTMc, the outputs ofTMc must contain
erroneous values and, correspondingly, there must be correct
values. It follows that the SAT solver can assign the correct
values atOUTPUT(TMc) to eliminate the error effect and
make the instance satisfied. Hence, by construction,TMc must
be one of the solutions returned by timeframe diagnosis.�

It is worth to note that the suspects returned by hierarchical
diagnosis may not be the actual error source. They can be
modules driving the actual error source or propagating the
error effect to the primary outputs. To be more accurate, in
addition to the timeframe module containing the critical cycle,
the solution also includes timeframe modules defined over the
intervals that are (a) before the critical cycle and (b) between
the critical cycle and the cycle in which the erroneous effects
are observed. In the former cases, the timeframe module is
selected because the condition to excite the error can be
eliminated, whereas, in the latter cases, the error effect can be
masked. Therefore, the resulting critical interval is the union
of time intervals in which selected timeframe modules are
defined. The following example demonstrates the behavior of
timeframe diagnosis.

Example 1:Consider a test vector interval between cycles
Tn andTn+5, as shown in Figure 3. From hierarchical diagno-
sis, it is known that modulesA andB, shown in that figure as
grey boxes, are suspects. To improve the estimate for the time
interval where the error is excited, timeframe modules that
consider two cycles at a time (i.e.,k = 2) are created. These
timeframe modules are shown in dotted rectangles (e.g.,TMA1

consists of{ATn,ATn+1}). Assume that the error is excited in
moduleA at cycleTn+3, that is, the grey box marked with an
×. As such, timeframe diagnosis returns solutions consisting

of TMA2 and TMB3. Hence, timeframe diagnosis can deduce
that the critical interval is(Tn+2,Tn+5) as defined byTMA2

andTMB3.
Since the algorithm guarantees that one of the selected

timeframe modules contains the critical cycle, the subsequent
analysis can focus on the trace within the critical interval
returned by timeframe diagnosis. In Example 1, becauseTMA2

and TMB3 are selected, cycles betweenTn+2 and Tn+5 are
analyzed in the next debug session. The value ofk defines
a trade-off between performance and resolution. The more
timeframe modules one has to examine, the more candidates
that need to be considered at every iteration of the algorithm.
In early debugging sessions, a larger value fork may be more
preferable for some coarse-grain analysis. Since failing test
vectors can contain many cycles, short timeframe modules will
introduce a lot of candidates that take more time to screen. On
the other hand, having excessively long timeframe modules
intervals may not always be a good practice at later stages.

D. Data Acquisition setup

Due to the insufficient observability of internal signals,
determining which set of signals to observe is a key step in
the silicon debug process. Trace buffers provide the engineer
great flexibility in the choice of traced signals. However, the
buffers can only trace a limited subset of signals. In most real-
world designs, only a small set of hard-wired signals can be
traced during the execution.

Among all traceable registers, the engineer wants to select
ones that are related to the error source or provide valuable
information to aid in pruning suspects. A simple approach
to identify those registers is using X-simulation [22], which
simulates the design with logic unknown at the output of the
suspects to capture all possible paths for error propagation.
Then, any registers that store logic unknown are the candidates
for tracing. Because X-simulation is a pessimistic process,
it may return too many registers to make the information
useful. To improve resolution and accuracy, another selection
algorithm that utilizes the proof of unsatisfiability generated
by SAT solvers is presented.

As discussed in Section II-C, an UNSAT core of an un-
satisfiable SAT problem is a subset of clauses that is also
unsatisfiable. Given an erroneous circuit,C, the input vector
sequence,v, and the correct output response,y, the CNF
formula of the ILA representation of the circuit∪L

i=1(C
i ·vi ·yi),

where L is the length of the sequence, is unsatisfiable due
to the contradiction between the erroneous output response
and the correct output response. Intuitively, the contradiction
can occur at any signals along the paths from the actual
fault location to the output where discrepancies are observed.
Therefore, signals associated with clauses in the UNSAT cores
can be potential locations for tracing and provide information
about the behavior of the failure.

Example 2:Consider the circuit shown in Figure 4(a).
Assume the error is ati, where the correct implementation
is i=AND(a,b). The test vector and the correct/erroneous re-
sponse are shown in Figure 4(b). Since the circuit is erroneous,
the CNF formula,Φ = ∪4

i=1(C
i · vi · yi), is unsatisfiable. Due
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Cycle {abc} Correct Erron.

(v) (ycorr) (yerr)
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(b) Test vector sequence and re-
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f} is 000

Fig. 4. Example erroneous circuit. The correct implementation of gate
i=OR(a,b) is i=AND(a,b)

to the space limitation, the formulation ofΦ is not shown.
However, the construction can be done in linear time as shown
in [21]. Given Φ to the SAT solver (e.g., MiniSAT [18]), an
UNSAT core of the instance can be extracted from the proof
of unsatisfiability provided by the solver as shown below.

{( j3 +e4) · (c4 +e4+g4) · (d3+ j3)·

(i2 +d3) · (b2 + i2) · (c4) · (g4) · (b2)}

By examining the UNSAT core, variables that represent
registers can be extracted:d3 ( from the clause(i2 +d3)) and
e4 (from the clause( j3 +e4)). Therefore, signals that should
be traced ared at cycle 3 ande at cycle 4.

The overall algorithm is shown in Algorithm 2. The goal
is to identify as many UNSAT cores as possible and extract
registers from each UNSAT core. Since each UNSAT core is
one potential error propagation path, registers involved with
these UNSAT cores are potentially on the error propagation
paths. To obtain multiple UNSAT cores, the algorithm itera-
tively eliminates UNSAT cores until the problem is satisfied.

The procedure of the algorithm is as follows. It starts by
obtaining the initial UNSAT core (U init in line 7). Then,
the algorithm tries to obtain more UNSAT cores through
relaxation, as summarized in Section II-C. First, it relaxes
clauses inU init that represent input vectors (line 10) until
the problem is satisfied. Next, it repeats for clauses inU init

that represent output responses (line 16). Since each UNSAT
core can represent different error propagation paths, different
signals can be included. To ensure that all paths are considered,
the union of all UNSAT cores is taken, as shown in line 12 and
line 17 in the algorithm. Finally, if the corresponding variables
of registers appear in any UNSAT cores, these registers are the
potential locations for tracing.

Example 3:Continue from Example 2, another UNSAT
core can be obtained by relaxing(g4), which is an output
constraint. Letr1 be the new relaxation variable. To relax
the constraint,(g4) is replaced with(g4 + r1). Moreover, an
additional clause(r1) is added to the originalΦ. This results
in a new formula which is still UNSAT and a new UNSAT
core can be obtained as follows:

Algorithm 2 UNSAT-core-based register selection
1: C := The erroneous design
2: V := Input vectors
3: O := Output vectors
4: Φ := C ·V ·O
5: procedure IDENTIFYTRACEDSIGNALS(Φ)
6: Φinit ←Φ
7: U init := SolveΦ and extract the UNSAT core
8: U ← U init
9: while Φ is unsatisfiabledo

10: relax on clauses{c|c∈U init andc is an input vector unit
clause}

11: U new← solve Φ and extract the UNSAT core
12: U ← U∪ U new
13: end while
14: Φ←Φinit
15: while Φ is unsatisfiabledo
16: relax on clauses{c|c∈U init andc is an output response

unit clause}
17: U new← solve Φ and extract the UNSAT core
18: U ← U∪ U new
19: end while
20: R ← extract registers inU
21: return R
22: end procedure

{(a1 + i1) · (i1 +d2) · (d2+ j2) · ( j2 +e3) · (b2+ i2)·

(i2 +d3) · (d3+ j3) · (e3 + j3 +k3) · (c4 +h4+ f 4) ·

(k3 + f 4) · (a1) · (b2) · (c4) · (h4)}

In the new UNSAT core, variables that represent registers
are {d2,d3,e3, f 4}. Hence, the new list of registers-to-be-
traced containsd at cycles 2 and 3,e at cycles 3 and 4, and
f at cycle 4.

Note that the proposed algorithm may not explore all
propagation paths. If an error is propagated to a primary output
by following various paths, it is possible that only some of
the paths are explored by the algorithm. However, since the
purpose of this step is to help the engineer to select registers
for tracing during the data acquisition stage, a complete set of
solutions may not be necessary.

IV. A LTERNATIVE SIGNAL SEARCHING

The algorithm IDENTIFYTRACEDSIGNALS from Sec-
tion III-D selects a list of registers that may contain useful
information about the behavior of the faulty chip. One way to
obtain the values of those registers is through the use of scan
dumps, if they are scannable. Nevertheless, this approach can
be impractical. As explained in Section II-A, to acquire data
at different cycles with the scan dump operation, test needs
to be reset and started over again after each dump, a process
that can be time inefficient.

Another approach is tracing these registers with trace
buffers. Recall, not all registers can be traced with the trace
buffer. In this case, one can try to obtain the value of
non-traceable registers indirectly by implication using other
traceable registers.
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Fig. 5. An unfolded circuit fromTp−w to Tp+w

Consider a circuit modelled in the ILA representation shown
in Figure 5. Letsp

g denote the untraceable registersg at cycle
Tp of which the values are desired.

Given a set of traceable registers,S t , referred to ascandidate
registers, the goal is to find a subset of traceable registers,
{S ′t ⊆ S t}, such that the values of the registers inS ′t can imply
the value ofsp

g. Therefore, instead of tracingsg, registers in
S ′t are traced. Then, the value ofsp

g is restored with the values
of the registers inS ′t . The restoration can be due to forward
implications, backward justifications or both.

A SAT instance is formulated to identify these implications.
The instance is satisfied if the SAT solver can assign values
to a subset of candidate registers that, together with the input
and output trace, imply the value of the target register. Conse-
quently, the alternative for the target register consists of those
selected candidate registers. The details of the formulation are
given in the following subsections.

A. Problem Formulation

The basic problem formulation is presented in this section.
The formulation consists of two components. The first com-
ponent models the circuit between{Tp−w · · ·Tp+w}. Variablew
is user-defined and referred to aswindow size. This interval
constrains the search space where the SAT solver can search
for implications to the target register. The second component
of the formula limits the number of candidate registers used
for generating implications.

Candidate registers are traceable registers within the interval
{Tp−w · · ·Tp+w}. In order to indicate whether a candidate
register is selected for generating an implication, new vari-
ables, calledselect variablesand denoted asL = {l1, l2, · · · },
are added for every candidate register at each cycle. When
a select variable is assigned with logic 1, it indicates that
the corresponding candidate register is used to produce the
implication.

If the formula is satisfied, each solution to the problem is
one possible implication for the target register under the given
input vector. Candidate registers wherein the select variable, l ,
is active are the necessary registers to generate the implication.
Because traceable registers in each cycle have one unique
select variable, the algorithm identifies not only the registers,
but also cycles where those registers are located in order to
generate the implication.

In detail, the SAT instance can be expressed as follows:

Φ =

[

p+w

∏
j=p−w

Φ j
c(L

j ,V j ,Y
j

obv,S
j

known)

]

·EN(
p+w
[

j=p−w

L
j) (1)

QD
s a

(a) Schematic

1: cond1 := (s 6= X) OR (a 6= X)
2: cond2 := (s = a) OR (s = X) OR (a = X)
3: cond1 AND cond2 is TRUE

(b) Model syntax

Fig. 6. The model of target registers

QD
s a

l

(a) Schematic

1: if l then

2: (s = a) is TRUE
3: else

4: cond1 := (s 6= X) OR (a 6= X)
5: cond2 := (s = a) OR (s = X) OR (a = X)
6: cond1 AND cond2 is TRUE
7: end if

(b) Model syntax

Fig. 7. The model of candidate register

The first component, ∏p+w
j=p−wΦ j

c(L j ,V j ,Y
j

obv,S
j

known),

models the design from cycleTp−w to Tp+w. Each Φ j
c rep-

resents a copy of the erroneous design at cyclej with input
vectorV j and observed responseY j

obv enforced at the primary
inputs and the primary outputs, respectively. Previously traced
register values (S j

known) are also used to constrain the problem,
since they may be helpful in generating implications. As will
be explained in the next subsection, special CNF models are
required for the target register and candidate registers.

Although the valuew is user-defined, it also depends
on the size of the trace buffer. One can setw such that
2w+1= buffer depthto fully utilize the memory space of the
trace buffer. However, largerw’s can increase the computation
complexity and memory consumption, since there are more
candidate registers for selection and a larger portion of trace
is analyzed. The flexibility ofw allows the user to adjust it
according to the available resources.

The second component,EN(
Sp+w

j=p−wL
j), constrains the

number of selected candidate registers. It is an adder that
sums up the value of select variables. The details of the
construction can be found in [20]. To find the minimum
number of candidate registers required for implications, the
output of the adder is constrained to allow one active select
variable, and the value is incremented until a solution is found
or the total number of the select variables is reached.

The search algorithm is carried out to find alternatives
for each untraceable register selected by the UNSAT core
selection algorithm. Since each untraceable register may have
different required sets of traceable registers and becauseonly
one group of traceable registers can be traced in a single debug
session, a simple ranking system is discussed later to prioritize
each group. Then, the group with the highest priority is traced.

In the next subsection, the models for target registers and
candidate registers are described.

B. Register Modelling

Target registersandcandidate registersneed to be encoded
specially in the CNF formula in order to solve the searching
problem described above. In this section, models applied to
these two types of registers are discussed.

Target Register: The goal of the target registersk
g is to

have a logic 0 or logic 1. The implication can come from two
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Fig. 8. ILA of the example circuit in Figure 4(a)

directions: forward propagation from assignments in the earlier
time frame, or the backward justification from assignments
in a later time frame. To allow the SAT solver to consider
implications from both directions, the target register is mod-
elled, as shown in Figure 6. An extra signal is introduced to
disconnectsk

g from its fanouts. If either variables have a logic
0 or a logic 1 value, there exists an implication. This is stated
ascond1 (line 1) in Figure 6(b). Conditioncond2 enforces that
the implication only needs to be satisfied from one direction.
Furthermore, if there are implications from both directions,
the implied values have to be the same.

Candidate Register: Candidate registers are traceable reg-
isters that are available for the SAT solver to select in order
to generate implications. For each candidate register, two
variables are introduced as shown in Figure 7(a). The select
variable, l , determines whether the register connects to its
fanout. Whenl equals 0, the network remains the same (line 1-
2 in Figure 7(b)). Whenl equals 1, the register is disconnected
from its fanout, and the SAT-solver can assign 0 or 1 to
the either end of the break. This enables the possibility to
identify forward and backward implications. Similar to the
model for target registers, at least one of the two variablesat
the disconnected ends must be either logic 0 or logic 1. If both
ends are not unknown, the values must be the same.

Example 4:Figure 8 shows a portion of the ILA of the
example circuit in Figure 4(a). Assume that traceable registers
are d and f , and the target register ise6. Let the value of
the input/output trace as shown in the brackets next to the
variables. The candidate registers are{d5, f 5, d6, f 6, d7, f 7},
which are modeled as shown in Figure 7 with six additional
select variables,{l1 · · · l6}. One can verify that the value ofe6

can be restored if the value ofd5 is known.

C. Formulation Improvements

As discussed in Section II-A, traceable registers are typi-
cally divided into groups. When configuring the trace buffer,
one group of the traceable registers is selected and traced
for several time frames. With this observation, the number
of select variables for the candidate registers can be reduced.
Instead of introducing one distinct select variable for each
candidate register, all registers in the same group can share
the same select variable. Furthermore, the same register in
different time frames can share one select variable as well.
In Example 4, assumingd and f are in different groups,

the number of select variables can be reduced to two, e.g.
d5,d6,d7 share one, whilef 5, f 6, f 7 share another one.

The second optimization is to find implications for a group
of target registers. As mentioned in Section III-D, target
registers identified by the proposed method are correlated to
each other. Hence, if there exists an implication for one of
the target registers, the same implication may as well imply
the value of other target registers. By grouping several target
registers together, the number of executions of the searching
algorithm can be reduced. As a result, the overall runtime is
reduced. However, it is a trade-off between the runtime and the
precision of solutions, because more traceable registers may
need to be selected when multiple registers are targeted.

D. Group Ranking

The algorithms described in previous sections identify reg-
isters that should be traced to provide more information on
the error. Since registers are selected by groups at the end
when configuring the trace buffer, a simple ranking system is
described to prioritize the traceable register groups according
to the results from the proposed algorithms.

• Rule 1: The group that contains the most registers re-
turned by the algorithm IDENTIFYTRACEDSIGNALS has
the highest priority. This is because those registers are
directly related to the error source. Their values may
contain most useful information.

• Rule 2: When searching alternatives for non-traceable
registers, different target registers may require different
traceable groups. If a group is being selected at higher
frequency than other groups, it gets a higher rank. In-
tuitively, this group contains registers that have a higher
chance to provide implications to non-traceable registers.

• Rule 3: A higher rank is assigned to the group that needs
to be traced for more time frames. This is simply done to
efficiently utilize the memory space of the trace buffer.

V. A PPLICATION TO PHYSICAL DEFECTS

Although the presented methodology assumes that errors in
the silicon prototype are functional errors, it can also apply
to debug physical defects with minor modifications. This is
possible because the underlying debug algorithm is a model-
free one that works with both errors and faults [20]. It is also
because most physical defects can be modeled in terms of
design errors as extensively discussed in [27], [28].

When debugging functional errors as shown here, the input
to the methodology is an erroneous RTL model that is imple-
mented in an erroneous silicon prototype. In this scenario,the
methodology tries to identify these error locations in the RTL
model such that when corrected, the model complies with the
golden RTL reference available. In contrast, when debugging
physical defects, the RTL model is assumed to be correct.
In this case, the algorithm identifies the source of the error
by insertingincorrect faulty values at locations in the correct
RTL model so that its behavior matches this of the failing
silicon [20]. This is achieved by constraining the SAT instance
of the correct RTL with the observed failed responses from the
silicon. Once candidate fault locations are identified, thetest
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TABLE I
PERFORMANCE WITH LIMITED HARDWARE CONSTRAINTS

Circ. Gate # of # of # of Total Total # of init. trace length % of critical
count reg. modules sessions time (sec) groups traced final susp. (# time frames) interval

divider 6419 510 31 4 123.1 7 11 38 12%
spi 2832 162 79 4 351.5 6 12 213 11%
wb 5283 110 94 3 101.4 3 6 187 14%

rsdecoder 11353 521 481 4 162.2 5 15 136 10%
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Fig. 9. Impact of parametern in performance

engineer can use the available mapping information with the
silicon prototype to probe further and analyze their source.

VI. EXPERIMENTS

In this section, experiments on OpenCores.org designs and
ISCAS’89 benchmarks are presented. Minisat [18] is used
as the underlying SAT-solver. Experiments are conducted on
Core 2 Duo 2.4GHz process with 4 GB of memory. All
runtimes are reported in seconds. In each testcase, a single
random functional error (e.g., wrong assignment, incorrect
case state, etc) is inserted into the RTL code. For designs from
OpenCores.org, test vectors are extracted from the test-bench
provided by OpenCores.org. Test vectors for ISCAS’89 are
generated randomly. In both cases, the trace length is between
100 to 300 time frames. Finally, to fully take advantage of
hierarchical diagnosis, building blocks of HDL code, such as
a case statement or an if-statement, are parsed as a module.

A. Performance of the Methodology

This set of experiments first shows the performance of
the methodology. Here the algorithm is configured such that
during hierarchy diagnosis, it analyzes two levels in the
hierarchy structure (n = 2) in each debug session. During
timeframe diagnosis, the trace is divided into four timeframe
modules of an equal number of cycles each. X-simulation is
used to determine registers that should be traced in the next
debug session. The size of the trace buffer is assumed to be
16*128 bits. It is assumed that 80% of registers in each design
are traceable and they are divided into groups of at most 16. In
each debug session, the buffer can store values of one group
for at most 128 cycles or two groups for at most 64 cycles.

Table I outlines performance metrics for the methodology.
Each experiment contains the average of five runs. The test-
bench used is listed in the first column. The size of each test-
bench in terms of the number of primitive gates is reported in

the second column. The next two columns record the number
of registers in the design and the number of the modules at
the lowest level of hierarchy. This is also the total number
of suspects one needs to examine in a brute-force manual
silicon approach. The number of debug sessions and the total
runtime for all sessions are shown in the fifth and columns,
respectively. The total number of groups that are traced is
shown in the seventh column. The eighth column has the
number of final suspects in the lowest level of hierarchy that
the engineer needs to investigate. The final two columns show
the initial trace length in terms of the number of time frames
and the ratio of the final critical interval compared to the initial
trace length, respectively.

Overall, comparing the number of final suspects to the
number of modules shown in the third column, on average, an
85% improvement in resolution is observed. The experimental
results also show that the critical interval can be narrowed
down to only 10% to 15% of its initial length after the
last debug session. Furthermore, as mentioned earlier, one
or two groups of registers can be traced in each session.
Takingdivider as an example, seven groups are traced during
debugging: one group is traced during the first session and two
groups are traced in each of the remaining three sessions. Be-
cause timeframe diagnosis often reduces the critical intervals
to more than half in the first one to two sessions, two register
groups can be traced in one hardware run in many sessions.

Next, the impact of two parameters of the diagnosis method-
ology is examined, namely the level of hierarchy that hi-
erarchical diagnosis examines at each session (n), and the
timeframe module interval sizes used in timeframe diagnosis
(k). Figure 9(a) shows the total numbers of modules returned
by each hierarchical diagnosis round when various numbers of
hierarchy levels are examined in one debug session. In general,
the numbers are increased as hierarchical diagnosis runs more
rounds in one debug session. This is because fewer state values
are available and the diagnosis algorithm cannot distinguish
some of the suspects. The runtime is plotted in Figure 9(b)
and is normalized by comparing it to the runtime ofn = 1
for each benchmark. As shown, the runtime increases asn
increases. This is because more suspects need to be analyzed
when more hierarchical diagnosis runs are executed in one
debug session. Recall that timeframe diagnosis is carried out
after the completion of n-level hierarchical diagnosis. Hence,
with smaller values ofn, although there are fewer numbers
of suspects, a greater overhead due to timeframe diagnosis is
required. As the result, in some cases the best runtime happens
whenn = 2.

Figure 10(a) shows the ratio of the size of the critical
interval after the last debug session compared to the original
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trace length when various numbers of intervals are used in
timeframe diagnosis. Four cases are considered: 2, 4, 8 and
16 intervals. As expected, greater reductions are achievedwith
finer-grain intervals. The only exception iswb in the case
where the interval size is 16. In this case, the error happens
to be excited across two intervals, which results in a wider
range. In all cases, over 50% of reduction is achieved. The
normalized runtime is depicted in Figure 10(b). In general,
as discussed in Section 3, it requires more computation if
smaller intervals are used, since timeframe diagnosis has more
candidates to screen. However, usingspi as example, its
runtime is reduced as the number of intervals increases. This is
because approximately 90% of the trace interval is truncated
after the first few sessions when the number of intervals is
over eight. As a result, timeframe diagnosis in the latter debug
sessions has a much smaller trace window to analyze and it
requires less computation.

B. Performance with Hardware Constraints

This part of the experiment section demonstrates the effec-
tiveness of the UNSAT-core register selection, as well as the
searching algorithm. To emulate the real trace buffer hardware
structure, a subset of registers of each design is selected
randomly, or byState signal selection[8], [9], as traceable
by the trace buffer. These registers are divided into groups.
The grouping configuration is summarized in Table II. The
first column lists the circuits used in the experiments; the size
of each circuit in terms of the number of primitive gates is
reported in the second column. The third column of the table
shows the total number of registers in each design. The fourth
and fifth columns have the number of the register groups and
the number of registers in each group, respectively. The sixth
column shows the percentage of total registers that can be
traced.

Similar to the experiments in the previous subsection, a
single random functional error is inserted into the RTL code.
The algorithm is configured to perform one-level hierarchical
diagnosis (n = 1) and timeframe diagnosis divides the time
interval into two timeframe modules. For the searching algo-
rithm, the window size (w) is set to be six time frames and, as
mentioned in Section IV-C, the target registers in every four
time frames are targeted together.

Table III summarizes the performance of debug analy-
sis under two situations: debug without values of registers
(columns 2 – 4) and debug with values of registers selected

TABLE II
TRACEABLE REGISTER GROUP INFORMATION

Circ. Gate Total # of # of Perc.
count reg. groups reg./group

spi 2832 162 8 8 40%
hpdmc 20536 453 16 8 28%

usb 39179 2054 32 16 25%
s1423 753 74 6 6 49%
s5378 3042 179 7 8 31%
s9234 5883 211 8 8 30%

by the UNSAT core-based selection procedure (columns 5 –
11). Experiments in the former situation are cases where the
values of internal states are not used in debugging analysis.
The debugging problem is solved with constraints on the
primary inputs and primary outputs. As in the latter situation,
debugging analysis utilizes the values of internal states that
were selected by the proposed state selection procedure as
well. Each row is one individual case that contains a different
bug in the design. The final row is the geometric mean of
the data in the columns. The sum of the number of modules
returned at the end of each debug session is shown in the
second and fifth columns. This is the total number of modules
that the engineer needs to investigate. As shown in the table,
with state values, the debugging tool can effectively eliminate
more false candidates in all cases. The percentage reduction
in the number of suspects, the ratio of the fifth column to the
second column, is listed in the sixth column. The reduction
can be as high as 78% (i.e., case 1 ofs1423).

The third and seventh columns show the number of debug
sessions performed. About one third of cases require fewer
debug sessions to find the root cause of the failure, for
example, the second case ofspi, hpdmc and both cases
of usb. The number of registers traced by the trace buffer
is shown in the eighth column. Those numbers are small
compared to the total number of registers shown in Table II.
The benefit of the UNSAT-core-based technique is shown
when one considers the reductions in both the number of
suspects and the number of debug sessions. Furthermore, the
results indicate that the proposed register selection technique
is capable to support data acquisition, although the technique
is not a complete solution.

Finally, the runtime of the diagnosis procedure in both
situations is reported in the fourth and ninth columns. In
the case of the proposed methodology, the additional runtime
for searching the registers for tracing is recorded in the 10th

column and the total runtime is shown in the 11th column.
Because of the reduction of suspects and debug sessions, the
runtime for diagnosis is reduced in the cases of the proposed
methodology. However, the proposed methodology requires
additional computation for the searching algorithm. As shown
in the table, the additional runtime can be significant in cases
such ashpdmc. This is because the algorithm has a higher
failing rate on finding the recommendation for non-traceable
registers in those cases.

Overall, an average of 31% reduction in the number of
suspects and 12% reduction in the number of sessions (from
9.5 down to 8.4) are achieved. The runtime for diagnosis is
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TABLE III
PERFORMANCE OF DEBUGGING WITH PROPOSED TECHNIQUES

Circ.
No state value used With UNSAT-core-based register selection

# of # of Runtime (s) # of % # of # of Runtime(s)
susp. sessions Diag. susp. reduction sessions traced sig. Diag. Search Total increased

spi 146 11 1990 73 50% 11 24 828 1011 0.92
144 11 179 76 48% 9 32 101 94 1.09

hpdmc
213 17 3817 170 21% 17 40 2323 15734 4.73
167 16 2321 131 22% 15 40 1963 14233 6.98

usb
103 15 3795 38 74% 11 64 1609 9218 2.85
224 14 7091 138 39% 7 128 4245 18519 3.49

s1423 438 6 847 13 78% 6 6 19 28 0.06
506 6 768 148 71% 6 18 452 36 0.64

s5378 103 6 549 92 11% 6 16 456 288 1.36
191 6 1577 164 25% 6 32 1505 634 1.36

s9234 83 6 1042 74 11% 6 16 1011 1553 2.46

average 179 9.5 1426 83 31% 8.4 28 684 1012 1.43

52% less on average (from 1426s down to 684s). Due to
the searching algorithm, the total runtime of the proposed
methodology is about 1.43 times longer than the runtime when
no register data is used. However, since the number of the final
suspects is reduced significantly, this additional runtimemay
be acceptable if there is a greater amount of time saved by
manually inspecting fewer suspects.

The next experiment examines the performance of the
alternative searching algorithm. Clearly, the performance of
the algorithm depends on the availability of traceable signals.
Some signals may not be able to be restored at all if the
necessary registers are not traced. Hence, in addition to se-
lecting the traceable registers randomly,state signal selection
is also used.State signal selectionselects registers with values
that are more likely to restore other registers of which values
are unknown. The results are summarized in Table IV. Due
to the technical implementation,state signal selectiononly
handles ISCAS benchmarks. Hence, there is no result for all
OpenCores.org designs, as indicated by “–”.

The second and fourth columns of Table IV show the
percentage of non-traceable registers for which the search
algorithm successfully finds alternative recommendations. The
number of traceable register groups selected in order to
generate implications is shown in the third and fifth columns.
In the case of the random selection, the algorithm is, on
average, able to find an alternative for almost half of the
targets. The performance of the searching algorithm in the
cases where pre-selected traceable registers are chosen bystate
signal selectionand by the random selection is similar. This is
possible because the main goal ofstate signal selectionis to
restore as many registers as possible over the whole design [8],
[9]. The procedure does not target a specific region of the
design.

The next set of experiments investigates the performance
of debugging when various state values are available. The
experimental results are summarized in Table V. All numbers
are the average of the 11 erroneous benchmarks discussed
in Table III. The reference case for comparison is the case
wherein no state value is used (columns 2 – 4 of Table III).
The first column lists the four considered cases. The next two
columns summarize the reduction of the number of suspects
and the number of sessions. The fourth column is the ratio of

TABLE IV
PERFORMANCE OF THE SEARCH ALGORITHM

Circ.
Random State signal selection

succ. rate # cand. sel. succ. rate # cand. sel.

spi 100% 6.8 - -
100% 4 - -

hpdmc
25% 11 - -
40% 11 - -

usb
13% 8 - -
6% 8 - -

s1423 100% 1 100% 2
100% 3.5 100% 4

s5378 100% 6.3 100% 7
100% 6.3 100% 7

s9234 50% 1 50% 1

average 49% 4.7

TABLE V
IMPACT OF STATE VALUES ON THE DIAGNOSIS

Cases Susp. Sess. Traced Diag.
reduc. reduc. signals runtime reduc.

X-sim with 82% 21% 56% 77%
no constraint
UNSAT with 85% 26% 16% 89%no constraint
UNSAT with

27% 10% 8% 15%no search
UNSAT with

31% 11% 10% 26%search

traced registers to the total number of registers, followedby
the reduction in the diagnosis runtime.

To demonstrate the advantage of the proposed UNSAT core
approach, we compare it with X-simulation as shown in the
first two cases of the table. In these two cases, no hardware
constraints are considered; that is, all registers are assumed
to be traceable. The table shows that the UNSAT core ap-
proach outperforms the X-simulation approach in all columns,
particularly with respect to the number of traced registers.
This demonstrates that the UNSAT core approach can achieve
better performance with fewer register values. For the second
two cases, only debugging with the UNSAT core approach
is considered, as well the trace buffer hardware constraints.
However, in the third case, the searching algorithm is not
executed to find alternatives for non-traceable registers.This
means that none of those registers, or any other alternatives,
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Fig. 11. Performance of the search algorithm with three trace buffer group
configurations. All have the same number of groups, but the number of
registers per group is 4:2:1

are traced. Comparing the results of the case 3 and the case
4, it shows that, with the help of the searching algorithm, the
debugging process performs better. For example, the reduction
of suspects increases from 27% to 31%. This implies the
effectiveness of the searching algorithm.

In the last set of the experiments, we investigate the perfor-
mance of the searching algorithm when three different hard-
ware group structures are used.Config 1 is the configuration
in Table II.Config 2 andConfig 3 have the same number of
traceable groups asConfig 1 does, but the number of registers
in each group is only half and quarter of the size inConfig 1,
respectively. For instance,Config 1 of hpdmc has 16 groups
of the size of eight registers;Config 2 has 16 groups of the
size of four registers, whileConfig 3 has 16 groups of the
size of two registers.

The success rate on finding an alternative of non-traceable
registers is plotted in Figure 11(a). As expected, since there are
fewer traceable registers, more non-traceable registers cannot
be replaced. Hence, the success rate drops as the number of
candidates is reduced.

Figure 11(b) depicts the average number of selected trace-
able groups for generating implications. When the searching
algorithm is executed with a trace buffer configuration where
each group contains fewer traceable registers, two situations
can happen: (i) more groups are required since each group
contains fewer registers, (ii ) the algorithm fails to find the
alternatives because the crucial registers are not traceable
anymore. In general, more traceable groups are required due
to the situation (i), for instance,Config 3 of spi andConfig
2 of s1423. However, because the reported number is the
average number of selected groups for target registers thatthe
algorithm can find an alternative recommendation, the average
can decrease if the situation (ii ) occurs and cases where the
search algorithm fails to find an alternative require a greater
number of groups previously. This is what is observed in
Config 2 of spi and inConfig 3 of s1423.

C. Performance on Physical Defects

The last experiment applies the methodology to single
stuck-at faults. Its performance is summarized in Table VI.
Columns two and three show the reduction of returned sus-
pects and debug sessions with the proposed flow. The total
runtime comparison is reported in the last column. Overall,the

TABLE VI
PERFORMANCE OF DEBUGGING STUCK-AT FAULTS

Circ. Suspects Debug Total runtime
reduced sessions reduced increased

spi
26% 0% 1.64
69% 0% 0.72

hpdmc 0% 0% 1.63
41% 57% 6.60

usb 48% 82% 0.69
37% 44% 1.37

algorithm can successfully identify the location of the stuck-
at fault in all cases. Similar results as shown in Table III are
observed in Table VI. Fewer suspects are returned and fewer
debug sessions are required due to the availability of values
of internal states. The total runtime increases because of the
overhead of the searching algorithm. However, in some cases,
such as case 2 ofspi and case 1 ofusb, the total runtime is
reduced as the result of fewer suspects or debug sessions.

VII. C ONCLUSION

Automated software silicon debug solutions are the ne-
cessity today to ease the task of the test/design engineer
during chip failure analysis. In this paper, we propose a novel
debugging methodology that comprises of multiple iterative
debug sessions. In each session, the methodology uses the
circuit hierarchy to debug the failure and also narrows down
the window of cycles wherein the error or fault is exercised.
Since the debug analysis relies on the data acquired during
the test run, two techniques are proposed to aid in selection
of traceable registers to be traced in the next debug session
such that the diagnosis can benefit from the new data. The
experimental results confirm the effectiveness of the approach.
It also demonstrates that the methodology maintains good
performance under the constrains presented by the data ac-
quisition hardware.

As future work, several techniques can be investigated to
increase the scalability of the proposed methods. For example,
abstraction and refinement [29] reduces the problem size by
abstracting the implementation of portions of the design. Later,
it refines the model to improve the resolution of the result.
Another example is to use vector compression [30], [31]
to shorten the erroneous traces, which results in a smaller
problem for debugging. Those techniques and the generation
of tests that exercise specific portions of a design can aid the
silicon debug step to localize the errors in a more effective
manner.

REFERENCES

[1] A. Gupta, S. Malik, and P. Ashar, “Toward formalizing a validation
methodology using simulation coverage,” inDesign Automation Conf.,
June 1997, pp. 740–745.

[2] J. Kumar, N. Strader, J. Freeman, and M. Miller, “Emulation verification
of the Motorola 68060,” inInt’l Conf. on Comp. Design, Oct. 1995, pp.
150– 158.

[3] J. Jan, A. Narayan, M. Fujita, and A. S. Vincentelli, “A survey of
techniques for formal verification of combinational circuits,” in Int’l
Conf. on Comp. Design, Oct. 1997, pp. 445–454.

[4] G. Parthasarathy, M. K. Iyer, K. T. Cheng, and L. C. Wang, “Safety
property verification using sequential SAT and bounded model check-
ing,” IEEE Design& Test of Comp., vol. 21, no. 2, pp. 132–143, March
2004.



14

[5] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas, “Patching processor design errors with programmable
hardware,”IEEE. Micro, vol. 27, no. 1, pp. 12–25, Feb. 2007.

[6] J. Jaeger. (2007, Dec.) Virtually every ASIC ends up an FPGA.
EETimes. [Online]. Available: http://www.eetimes.com/showArticle.
jhtml;jsessionid=JRHN5OJ1CLD2SQSNDLPSKH0CJUNN2JVN?
articleID=204702700

[7] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan architecture
with mutually exclusive scan segment activation for shift-and capture-
power reduction,”IEEE Trans. on CAD, vol. 23, no. 7, pp. 1142–1153,
July 2004.

[8] H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
in Proc. of Design, Automation and Test in Europe, 2008, pp. 1298 –
1303.

[9] ——, “Algorithms for state restoration and trace-signalselection for data
acquisition in silicon debug,”IEEE Trans. on CAD, vol. 28, no. 2, pp.
285 – 297, Feb. 2009.

[10] J.-S. Yang and N. A. Touba, “Automated selection of signals to observe
for efficient silicon debug,” inVLSI Test Symp., May 2009, pp. 79 – 84.

[11] X. Liu and Q. Xu, “Trace signal selection for visibilityenhancement
in post-silicon validation,” inProc. of Design, Automation and Test in
Europe, 2009, pp. 1338 – 1343.

[12] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon
debug based on failure propagation tracing,” inProc. of Int’l Test Conf.,
Oct. 2005, pp. 284–293.

[13] C. C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y. C. Hsu, “Diagnosing
silicon failures based on functional test patterns,” inInt’l Workshop on
Microprocessor Test and Verification, Dec. 2006, pp. 94–97.

[14] S. Venkataraman and W. K. Fuchs, “A deductive techniquefor diagnosis
for bridging faults,” inProc. of Int’l Conf. on CAD, Nov. 1997, pp. 562–
567.

[15] F. M. D. Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “BackSpace:
Formal analysis for post-silicon debug,” inInt’l Conf. on Formal
Methods in CAD, 2008, pp. 1–10.

[16] M. W. Moskewicz, C. F. Madigan, and S. Malik, “Chaff: Engineering an
efficient SAT solver,” inDesign Automation Conf., 2001, pp. 530–535.

[17] J. P. Marques-Silva and K. A. Sakallah, “GRASP: a new search
algorithm for satisfiability,”IEEE Trans. on Comp., vol. 48, no. 5, pp.
506–521, May 1999.
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