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Abstract—With the growing size of modern designs and more design tape-outs require a re-spin where more than half of
strict time-to-market constraints, design errors can unawidably  these re-spins are due to logical or functional errors not
escape pre-silicon verification and reside in silicon prottypes. iscovered by the pre-silicon verification [6]. Each rerspiie

Due to those errors and faults in the fabrication process, §icon . L - .
debug has become a necessary step in the digital integrateiiait to design errors or faults that reside in the silicon draoadit

design flow. Embedded hardware blocks, such as scan chainsinCreases project costs and the time-to-market. Thergtaee
and trace buffers, provide a means to acquire data of internb important to develop a silicon debug flow that provides short
signals in real time for debugging. However, the amount of te  tyrn-around time when a silicon prototype fails.

data is limited compared to pre-silicon debugging. This papr A typical silicon debug process consists of several iter-
presents an automated software solution to analyze this spse . . . .

data to detect suspects of the failure in both the spatial and ative SESS.I(.)nS, r.eferred to aebug se55|o-n§F._ach session
temporal domain. It also introduces a technique to automate €an be divided into two stagestata acquisitionand data

the configuration process for trace-buffer based hardware i analysis In the data acquisition stage, test engineers set up
order to acquire helpful information for debugging the failure.  the environment to obtain appropriate data from the chip
The technique takes the hardware constraints into account rad under test while it is operated in real-time. Unlike preesih

identifies alternatives for signals not part of the traceabé set so ificati h | f . | b btained
that their values can be restored by implications. The expements verincation, where values of any signais can be obtaine

demonstrate the effectiveness of the proposed software stibn ~through simulation, observability of internal signals inet

in terms of run-time and resolution. silicon prototype is restricted. Seveiasign-for-Debug (DfD)
Index Terms—Silicon debug, post-silicon diagnosis, data acqui- hardware components, such as scan chains or trace buffers, a
sition setup, test, Boolean satisfiability used to access the internal signals. Nevertheless, therdamou

of acquired data is limited by the integrated DfD hardware
components. These limits greatly inhibit accurate andcéffe
debugging analysis. During data analysis, the sparse amoun

Developing modern integrated circuits consists of severg data acquired during the test is analyzed to prune the erro
synthesis stages before a silicon prototype is fabricaled. candidates and to set up the data acquisition environment
ensure that each synthesis step does not introduce an erfer the next debug session. This time-consuming and labor-
(e.g. timing, functional, power), a corresponding verifiea intensive cycle continues until the root cause of the failisr
stage is carried out to validate the design. During the prgetermined. Clearly, the quality of the data analysis isciéfd
silicon process, engineers test devices in a virtual envilent by the acquired data. Hence, software solutions for silicon
with sophisticated simulation [1], emulation [2] and foimadebug need to have the ability of identifying sets of signals
verification [3], [4] tools to check the correctness of thas well as cycles during the execution, that are importadt an
RTL model against its functional specification. Howevere duhelpful in narrowing down the suspects. Furthermore, thts s
to the growing complexity of functionality and the size obf signals should be concise to comply with the hardware
designs, it becomes infeasible to achieve 100% verificatififmitation.
coverage within the strict time-to-market constraints.séish, This paper proposes an automated software-based debug
functional bugs may escape pre-silicon verification and/ onfnethodology that complements current data acquisitiod-har
be discovered during in-system silicon validation where thyare solutions. The proposed methodology is designed as a
design is exercised at speed. Consequently, silicon ymest post-processing step after the data has been acquired. This
are rarely bug-free. For example, the work in [5] presentfiethodology automates the data analysis process and aids th
several functional errors in processor designs that aradouengineer in discovering the root cause of the chip failure. |
after the designs are taped out. In fact, more than 60% igkntifies the potential locations of the error in a hierizah
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contain useful information to prune the suspect candidates a) Scan chains:provide a means to take a snapshot of
The new data acquired is fed to the subsequent automated dlagaregisters at a specific cycle. In the test mode, value# of a
analysis cycle to eventually determine the root cause oiitin  scanned registers can be serially shifted out with a slohiér s
the methodology is described in terms of diagnosing desiglock. This operation is referred to asan dumpHowever,
errors, it is later extended to handle physical defects db wehe scan dump operation interrupts the execution of the chip
This increases its applicability and its practicality. because the functional clocks of the design are halted and

When trace buffers are used, not all registers can be #lse values stored in the registers are destroyed. In order to
cessed in practice. To comply with these hardware consstairresume the execution from the same point, the environment
a search algorithm is presented to find alternatives sueBeds to be reset and restarted from the initial setup. Note
that their value can restore the value of registers of isterghat although non-destructive scans (i.e., scan cellscthragist
that cannot be traced by the hardware. The proposed seasthan additional element for debugging purpose) provide
algorithm is memory efficient because only a small window ahechanism to resume the execution from the same point, a
the complete test trace is analyzed. Finally, because amy aew state capture cannot occur until previous scan dump has
traceable register group can be traced in each debug seasidreen completed. Hence, it is not practical to acquire state
simple ranking system is suggested to prioritize the trialeeavalues for several consecutive cycles using scan chains [7]
register groups according to the result from the proposed b) Trace buffers:record internal signals in an on-chip
analysis. memory in real-time. The trace buffer size, which for today’

Experiments on OpenCores.org and ISCAS'89 circuits a@€signs typically ranges from a few kilobytes to a few hun-
conducted. Results show that our methodology successfullieds of kilobytes, is determined by itgdth and its depth
determines the locations of the error or defect. It also spethe width constrains the number of signals to be probed,
ifies with accuracy the time interval in which the error igvhile the depth limits the number of samples that can be
excited. Even with the hardware constraints consideresl, thtored. A trace buffer contains control logic, called tegg
methodology reduces, on average, 31% of suspects that l@@ic (e.g., embedded hardware assertions), employedrfor o
engineer needs to investigates with only 8% to 20% of registéineé monitoring of circuit behavior. The logic values of the
traced. To the best of our knowledge, this is the first study thselected signals are recorded when the trigger condition is
presents a comprehensive analysis of the data acquired vagserted. Subsequently, the recorded data is read via a low-
modern in-silicon hardware like trace buffers to reduce tHe@ndwidth interface, such as a boundary scan. The advantage
number of iterations during silicon debug. of trace buffers is that the values of signals can be coliefte

The remainder of the paper is organized as follows. Segonsecutive cycles, while scan chains only provide theevalu
tion Il summarizes prior work on hardware and softwar® a specific cycle. However, due to the limited size of the
solutions for silicon debug, as well as the background rister embedded memory, only a small set of pre-selected signals ca
Section Il presents the proposed software solution tewili b€ traced. Those pre-selected signals are divided intopgrou
debug, while Section IV illustrates the searching algonifior and connected to the on-chip memory through a multiplexer.
selecting alternatives for non-traceable registers, ardemts During execution, only one group can be traced at a time.
a simple ranking system of traceable register groups. ThEe traceable signals are typically manually selected ley th
extension of the proposed methodology to deal with physicdsigner. Recently, several algorithms have been dewelope
defects is explained in Section V. Finally, the experimentautomate the selection process [8], [9], [10], [11]. In thos
results and conclusion are given in Sections VI and VIWorks, the authors try to select a small set of signals suah th

respectively. their values have a higher chance of restoring a significant
amount of untraceable states.

Il. BACKGROUND B. Related Work on Data Analysis

As mentioned in the introduction, the main difficulty of Although DfD hardware enhancement increases the ob-
silicon debug is the lack of access to the internal signals. $ervability of internal signals, there is a lack of techm@igu
this section, two data acquisition hardware componentd ughat automate the data analysis process on the acquired data
to enhance the observability of internal signals in chips aRecently, there has been an effort to develop methodologies
discussed. Next, previous automated data analysis dlgwsit to aid the engineer in this part of the silicon debug process a
are reviewed. Finally, we summarize the background matersummarized in the following.
for the proposed methodology. The method proposed in [12] relies on scan dumps collected
at multiple consecutive cycles to determine failing regjistat
each time frame. Next, it conducts back-tracing from those
failing registers to identify the fault propagation pathsda

The behavior of internal signals in a chip can only bsuspect registers at each cycle. Finally, it performs a diotw
observed if they are routed to external pins. Since numberacing from the suspect registers to further narrow doven th
of available pins on a chip are limited, this approach mayot cause candidates.
not provide sufficient information to perform debugging. To Yen et al. [13] propose an approach that isolates the dritica
improve observability of internal signals, two DfD solut® cycles using a binary search paradigm based on the compar-
are mainly used in practice: scan chains and trace buffers.ison between the observed data and the simulation results. A
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critical cycle is the first cycle in which the state elements
show a discrepancy between the expected responses and the
actual ones. Then, this method identifies suspect regisfdrs A

a simple path-tracing method [14] and simulating the golden A . [A]B]c]
model with faulty values injected at each suspect candidate [ellal (|m [

A formal approach that restores state values of a design in : =
a failing trace is proposed in [15]. It starts from the crash ______ ' """
state and computes backward in time. Signatures, computed
with additional hardware structures, are captured durirey t Alellal o]
chip execution and stored in the trace buffer. Later, those I .~
signatures are used to determine a unique or a small set of (a) Hierarchical design  (b) History of hierarchical
possible predecessor states that lead to the crash state. diagnosis

Fig. 1. Hierarchical diagnosis

C. Boolean Satisfiability and UNSAT Cores

This work models the debugging problem into a Boolean . .
Satisfiability (SAT) instance and utilizes the use of UNSAFaME gate in each unrolled copy of the circuit share the same
cores extracted from it to guide the silicon debug data acqdf'€ct line. This is because these gates represent the same
sition setup. A brief overview of these methods are given ggte in the original sequ_er_ltlal circuit. If one of them IS the
this section. error source, all the remaining should be selected as wiib. T

SAT proves or disproves whether a Boolean formblaas construction is later constrained with the input vector #rel
a satisfiable assignment, i.e., the formula is evaluatedie. ©XPected output response. Readers can refer to [20] for more

If such an assignment exists, the formu@ais said to be information on this S_AT—ba§ed deb_ugging methodology.
satisfiable; otherwise, it is unsatisfiable. For most mogn  1he SAT-based diagnosis algorithm from [20], also used
solvers, Boolean formula is presented@onjunctive Normal Nere, performsnodel-freediagnosis [22]. That is, it does not
Form (CNF), which consists of a conjunction olausesvhere make any assumption on the behavior of the fault/error. This

each clause is a disjunction of literals.liferal is an instance 'S & desirable fit to silicon debug since silicon prototypas ¢
of the variable or its negation. fail test for various reasons. The engineer can utilize tiees

If the formula is unsatisfiable, any subset of clauses in tiff the unconstrained variables to determine the type of the

instance that is also unsatisfiable is referred to at/bsAT fault that has occurred.

core Modern SAT solvers [16], [17], [18] can produce UNSAT More recently, g.nsatisfiability is also used for debugging.
cores as a result of proving unsatisfiability. For exampte, 41 [23], authors utilize UNSAT cores to determine suspeats i

UNSAT core of the formulagp = (a+b)-(a+c)-(b+T)-(a). anerroneous gate-level design. The work in [24] uses MaxSAT
(©), is {(a+c), (@), (@)} to identify the time in which the bug is activated in a trace.

An unsatisfiable SAT instance can have multiple UNSAT
cores. Each represents a situation where the instanceas-ung. Hierarchical Diagnosis

isfied. Additional UNSAT cores can be obtained by elimingtin Ali et al. [25] extend the SAT-based diagnosis to debug

a previously found UNSAT core, as described in [19]. In_ . . : . .
H%&gns in a hierarchical manner to improve the performance

summary, each clauses in an UNSAT core is augmented wit . . . :
L . ) - and resolution of logic debugging. The debug process ci@nsis
distinct relaxation variable. Additional clauses are atiaethe : . : :
f several iterations. In each iteration, the method onlg-co

CNF formula to ensure one and only one relaxation varlab?e . . ,
. . - . siders modules in the same hierarchical level. The proeedur
is true. Consequently, this additional formulation removes
. . . {
the constraints applied to Boolean variables and breaks

unsatisfied condition.

grts from the top-level of the design and goes deeper into
é design hierarchy. Suspect candidates for debugginacin e
iteration are sub-modules of the modules that are detede
be suspects in the previous iteration. The procedure isatege
D. SAT-based Diagnosis until the lowest level of the design hierarchy is reached.
Modelling the problem of logic and fault diagnosis in SAT The formulation of hierarchical diagnosis in SAT is the same
is first presented in [20]. Given a circuit and a set of testdsa as the basic construction of SAT-based diagnosis desciibed
that cause the design to fail, the problem is formulated inthe previous section except that multiplexers are inseated
CNF instance such that the SAT solver returns solutions thhe output of coarse-grain modules rather than simple gates
correspond to error location(s). This is achieved by imsgrt Additionally, all multiplexers at the output of the same mbsd
a multiplexer at every gate (and primary input) such thahare the same select line. Consequently, the SAT solver
when the select lines| of the multiplexer is inactive, the selects a module as a suspect if it can assign values to some
original design is maintained; otherwise, a new unconséichi outputs of this module such that the behavior of the design
primary input variablew) drives the output of the multiplexer. matches the constrained output response for the partitdar
Next, the design is translated into a CNF formula [21] andector.
duplicated for each vector sequence and for each cycle of thé-igure 1 illustrates the concept of debugging using hierar-
test sequence. Note that multiplexers that are driven by tbleical information. Figure 1(a) shows the hierarchicalstre



of a design. A situation in which hierarchical diagnosisjs a
plied to this design with two iterations is shown in Figuré)1(
Diagnosis starts with three top modules. In the first iterati
moduleC (grey box) is diagnosed to be the suspect. Hence,
diagnosis, in the second round, only considers the sub-tesdu
of C, namely,Cy, Cp, andCs, as candidates. At that rounty
is identified as the suspect. As a result, the suspect cardida
list for the third round consists &, andCy, only.

With the hierarchical information of the design, diagnosis
can start with a coarse-grain global analysis and the searth
be directed to local areas after each iteration. Such a guwee

n-level Hierarchical Diagnosis
* Identify suspect modules

h
Timeframe Diagnosis
* Identify critical interval

'
Data Acqusition Setup
* Identify signals to be traced

reduces the runtime and memory requirement, since there Igrez A sinale deb i )
fewer candidates that need to be analyzed. '9- <. A singie debug analysis session

lIl. AUTOMATED DATA ANALYSIS « All discrepancies are due to a single error present in the

A silicon debug process is different from an RTL debug pro-  RTL representation. Since most test vectors target specific
cess in many important aspects. First, silicon debug needs t functionality of the design, it is realistic to conclude tha
utilize the DfD hardware components in the design to acquire a failing test vector is due to a single error [26].
values of internal signals, whereas, in RTL diagnosis,esf
internal signals can be obtained through simulation. Sdz,coré_ Proposed Methodology Overview
due to the vast complexity of the silicon debug problem, a ) ] ) ) )
software solution should be designed appropriately to take! N methodology in the following discussion deals with
advantage of the debug hardware available to the engineef4Bctional errors (bugs) in the design. Examples of funio
reduce the iterations of the process. Finally, becauseoaili PU9S that escape to silicon can be found in [5]. The extension
prototypes are operated at-speed during test, the test fiiac of the methpdologles on physical def.ects_ is dlscusseq later
debugging can be orders of magnitude longer compared td'\" Overview of the methodology is given here with the
the one usually available during RTL diagnosis. As such, §tails of the implementation described in the remainirig su
is important to identify the segment of the trace that rea|[§)ec:t|ons. The complete flow of the methodology is summarized

matters to aid the future iterations of the debug process afdi9ure 2. The objective of the proposed methodology has
simplify the analysis. three main goals: to identify the suspect modules that aonta

the error, to find the critical interval of the error, and todfin
. the registers that may contain helpful information abowt th
A. Assumptions error. A critical interval is a window of cycles that contains
In this work, the following assumptions are used to mak@e critical cycle. Unlike for RTL debug, the above objeetiv
the silicon debug problem more feasible to solve, whild stihust be achieved with a conscious usage of the on-chip debug
reflect realistic practice concerns. hardware resources. This objective is unique to silicorugeb
« The erroneous silicon behavior is deterministic. That ignd it motivates the key contributions in this work.
errors replicate their behavior with the same set of testThe objectives are achieved in three steps. First, it diag-
vectors. This is the case if the circuit is debugged amoses the circuit in a hierarchical manner as described in
the tester or on an application board where the input &ection II-E. The algorithm takes in the RTL representation
controlled synchronously. This assumption is necessarf/ the erroneous design, failing input test vectors and the
to replicate experiments and to obtain the values ekpected (i.e., correct) output responses to build the ool
multiple state elements at different cycles. It is also theatisfiability instance. Here, only test vectors that cacitex
fundamental underlying assumption of a silicon debutpe error and cause discrepancies observed at some primary
environment described in the introduction. outputs are examined. Hence, the algorithm identifies desig
« Scan chains and trace buffers (Section II-A) are utilizecdbmponents that are potentially responsible for the fonéti
to obtain the values of internal states. In this scenarifailure observed during functional test. It has been shdva t
the design is fully scanned and trace buffers can be piib4is effective to use the design hierarchy information when
grammed to capture the value of specific state elemergsarching between different components of a design [25].
Those values are compared with the expected valuesUalike in [25] where the debugging algorithm iterates the
determine whether the error is observed. procedure until the lowest hierarchical level is reachée, t
« The golden model, such as a high-level behavioral modalgorithm in the proposed flow would only expand at mest
is available to provide the correct responses of the desidnerarchy levels from the level ended in the last sessiomdur
Note that although this behavioral model may not provideach debug session. This is referred tandsvel hierarchical
access to the data on every single net in the implematiagnosis For example, ifn =2 and the maximum hierarchy
tation, the important information on the data and addredspth of the design is 10, the algorithm goes deeper in the
buses, as well as the essential control signals that ste@rarchy by two levels. As a result, at most five sessionk wil
the data through the data-path, can be monitored. be performed. Then, timeframe diagnosis is carried out tb fin



Algorithm 1 Timeframe Diagnosis C. Timeframe Diagnosis

1: ML.\S( := list of suspect modules
2: k := size of time interval
3: Tp(Te) := beginning(end) cycle of the trace

In silicon debug, the depth of the trace buffer limits the
number of samples that are acquired in one debug experiment.
. Once the buffer is full, the older data is overwritten by thesvn
4: procedure TIMEFRAMEDIAGNOSIS(MList, K, To, Te) samples. Hence, if the cycle in which the error is exercised

5 TMs = the timeframe diagnosis solutions can be estimated, the buffer can be utilized more effegtivel
ef for all M e__M'-‘S‘ do . L This unique constraint motivates timeframe diagnosis.
7 TMjst := the new list containing timeframe modules . ) X .
8: for t =Ty to Te incremented bk do A timeframe diagnosis pass narrows down the critical inter-
o: TMnew := A new timeframe module consists ofval. This result can help to set up the next debug experiment,
{MtoMmttky such that data acquisition starts at the right cycle(s), e
i(lJ: endpf‘g:j TMnew to T Myist one(s) as close to the critical cycle as possible. Note,abe t
1 Debug with candidates frofiMLg; and add solutions to still runs fro_m the beginning of thg test vector sequence2 Th
TNy trace b.uffer is programr.ned.to pegm the capture. ata Iat(f‘tecyc
13 end for In this work, sequential circuits are modelled in therative
14 Critical interval (TJ, T¢) «— Urm et (Tvi, Tei) where TM;  Logic Array (ILA) representation. The design is unfolded over
is defined over the intervdlTp;, Tej) time to maintain the combinational functionality. Throwgth
15: return (Ty,Te) this paper, the superscript of a symbol refers to the cycle of
16: end procedure the unfolded circuit. For instance,? represents the set of the

primary inputs in the second cycle. FurthermdiPUT(M)
(OUTPUT(M)) denotes the input (output) nets of modivie
Definition 1: Consider an ILA representation of a sequen-

a greater precision estimate for the window of clock cycldi@l design. Atimeframe module TM for a single modulev
in which the error may be excited. This interval can furthédver a set of cycledTy- - Toii} is @ conceptual entity that
reduce the time interval where the design needs to be amalygentains the instanced™ --- M™+k of moduleM over this
in the next debug session. The trace can also be truncate§@bOf cycles such thaNPUT(TM) = (J,"5 INPUT(M®) and
start at the same cycle as the begin of the returned intétial. OUTPUT(TM) = UETE OUTPUTMY)
idea is that the segment of the trace before the criticalecycl Timeframe diagnosis is a SAT-based algorithm as described
can be safely removed for debugging analysis since it ddesSection II-D. Recall, in basic SAT-based diagnosis thaesa
not contain information related to the error observed (Whigates in each unrolled time frame form one suspect candidate
is excited at the critical cycle). The value of state elersentsince their multiplexers share the same select line). Cag m
w.r.t. the truncated trace can be initialized with the vaddie think that it is a timeframe module defined over the complete
scan dump at this new starting cycle. Moreover, during theace. Hence, instead of considering suspects in one timefr
test, signals only need to be traced within the new reducetbdule that is defined over the complete trace, timeframe
window. Finally, the design with the location of the potanti diagnosis examines suspects in timeframe modules that are
suspects is analyzed to determine a set of registers that sats-of-cycles.
provide more information about the actual bug. The abovepPseudo-code to identify the critical interval is described
information feeds back to the proposed analysis flow whigh Algorithm 1. Timeframe diagnosis divides the trace into
iterates the three steps in Figure 2 in the next debug sesséefreral intervals of widtk and constructs a timeframe module
to aid in further root cause analysis. for each suspect module returned by hierarchical diagnosis
Note that, after debugging, engineers still need to inspein each interval. That is,_the suspect modules i_n each cycle
each suspect to determine which one is the real error souoc:ethe interval are col!ect!vely considered as a smglg eusp
ﬁg timeframe diagnosis (lines 8—-11). Consequently, tiaraf

and fix it. This process can be time-consuming. Hence, t . ; o
' ! , . lagnosis selects suspects from this new set. In this scenar
final suspects that require manual inspection should bevas fe

. . . a timeframe module is selected if the SAT solver can assign

as possible. Furthermore, to ease this process for the esgin :

. o . . values to the outputs of the timeframe module such that the
the algorithm should also indicate the time interval wherei’ ~ : D . . .

. . . applied constraints are satisfied (line 12). The final aitic
the error is excited. In such a way, the test engineer cary stu . . . )

interval is the union of intervals wherein all selected tirame

a much smaller segment of the complete trace to determine

. - .modules are defined (line 14). The union of two time intervals
the actual cause of the failure and, consequently, rectiéy t T T U (T T is a new time interval(T’ T/ here
error. The first step, hierarchical diagnosis, only prosittee (Toa, Te1) U (Toa, Teg). | w time interval(Ty, Te), w

! H A
location but it gives no information about this time framer F Tp = Min(Toa, Tho) and T = MaxTey, Tea).

this reason, the second and third steps of the proposed ﬂo.vJ_.he formulation of the_timef_rame d_iagnosis problem s
ilar to the one described in Section II-D, except the

are used to improve the resolution of the debugging result § ) ) . . . .
sertion of multiplexers. In timeframe diagnosis, mukiers

terms of further screening of the error locations and thee ti _ )
frames that they are excited. are mserted_ at the_z outputs of each timeframe module an_é shar
one select line. Timeframe modules are selected as sudgpects
The details of timeframe diagnosis and data acquisitidimeframe diagnosis can assign values at the outputs oéthos
setup are discussed in the following subsections. timeframe modules such that the output response of therdesig



Error

Excited of TMa2 and T Mgz. Hence, timeframe diagnosis can deduce

that the critical interval iS(Thi2,Tnhis) as defined byl May
andTMB3.

Since the algorithm guarantees that one of the selected
timeframe modules contains the critical cycle, the subsetju
analysis can focus on the trace within the critical interval

T Tor Tz Tz 0 Taa Tas returned by timeframe diagnosis. In Example 1, becaudg,
and T M3 are selected, cycles betwedp, > and T,.5 are
Fig. 3. Timeframe diagnosis analyzed in the next debug session. The valu& afefines

a trade-off between performance and resolution. The more
timeframe modules one has to examine, the more candidates
matches the expected response. The following theorensstafgyi need to be considered at every iteration of the algarith
that one of the selected timeframe modules must be defir]ﬁdeany debugging sessions, a larger valuekionay be more
over the interval that contains the critical cycle. preferable for some coarse-grain analysis. Since failesy t
Theorem 1:Timeframe diagnosis is guaranteed to select thgctors can contain many cycles, short timeframe modulks wi
timeframe module with the respective interval that cordaii®  introduce a lot of candidates that take more time to screen. O
critical cycle. the other hand, having excessively long timeframe modules
Proof: Timeframe diagnosis divides the trace into consegtervals may not always be a good practice at later stages.
utive intervals of cycles. As such, the cycle when the actual
error is triggered must be in one of the intervals. This iepli
that one of the timeframe modules must contain the critic
cycle. Assume, toward contradiction, that the timefram@&mo Due to the insufficient observability of internal signals,
ule that contains the critical cyclél () is not selected by determining which set of signals to observe is a key step in
timeframe diagnosis. This means that the SAT solver cannbe silicon debug process. Trace buffers provide the ergine
re-adjust the value aOUTPUT(TM;) to make the design great flexibility in the choice of traced signals. Howevéie t
comply with the expected output response for the given inpbtiffers can only trace a limited subset of signals. In moskre
vector. However, because the error is excited during the tirworld designs, only a small set of hard-wired signals can be
interval defined byT M., the outputs ofT M must contain traced during the execution.
erroneous values and, correspondingly, there must beatorre Among all traceable registers, the engineer wants to select
values. It follows that the SAT solver can assign the correghes that are related to the error source or provide valuable
values atOUTPUT(T M) to eliminate the error effect andinformation to aid in pruning suspects. A simple approach
make the instance satisfied. Hence, by construclidf, must to identify those registers is using X-simulation [22], wihi
be one of the solutions returned by timeframe diagnols. simulates the design with logic unknown at the output of the
It is worth to note that the suspects returned by hierarthicuspects to capture all possible paths for error propagatio
diagnosis may not be the actual error source. They can Deen, any registers that store logic unknown are the catefida
modules driving the actual error source or propagating tler tracing. Because X-simulation is a pessimistic process
error effect to the primary outputs. To be more accurate, inmay return too many registers to make the information
addition to the timeframe module containing the criticatley useful. To improve resolution and accuracy, another select
the solution also includes timeframe modules defined ower thlgorithm that utilizes the proof of unsatisfiability geatsd
intervals that are (a) before the critical cycle and (b) leetw by SAT solvers is presented.
the critical cycle and the cycle in which the erroneous @¢ffec As discussed in Section II-C, an UNSAT core of an un-
are observed. In the former cases, the timeframe modulesigisfiable SAT problem is a subset of clauses that is also
selected because the condition to excite the error can lnesatisfiable. Given an erroneous circd@t, the input vector
eliminated, whereas, in the latter cases, the error effsttbe sequencey, and the correct output responsg, the CNF
masked. Therefore, the resulting critical interval is tméoa formula of the ILA representation of the circuit_,(C'-v-y'),
of time intervals in which selected timeframe modules amghereL is the length of the sequence, is unsatisfiable due
defined. The following example demonstrates the behaviortof the contradiction between the erroneous output response
timeframe diagnosis. and the correct output response. Intuitively, the conttaah
Example 1:Consider a test vector interval between cyclesan occur at any signals along the paths from the actual
Th and Ty, 5, as shown in Figure 3. From hierarchical diagndault location to the output where discrepancies are oleskerv
sis, it is known that module& andB, shown in that figure as Therefore, signals associated with clauses in the UNSAgcor
grey boxes, are suspects. To improve the estimate for thee tioan be potential locations for tracing and provide infoiiprat
interval where the error is excited, timeframe modules thabout the behavior of the failure.
consider two cycles at a time (i.&k,= 2) are created. These Example 2:Consider the circuit shown in Figure 4(a).
timeframe modules are shown in dotted rectangles (Ela1  Assume the error is dt, where the correct implementation
consists of{ A, ATn+11). Assume that the error is excited inis i =AND( a, b) . The test vector and the correct/erroneous re-
moduleA at cycleT,, s, that is, the grey box marked with ansponse are shown in Figure 4(b). Since the circuit is errageo
x. As such, timeframe diagnosis returns solutions congjstithe CNF formula,® = Ui“:l(Ci -V -y), is unsatisfiable. Due

Oy Data Acquisition setup



Algorithm 2 UNSAT-core-based register selection

1: ¢ := The erroneous design
2: ¢ := Input vectors
3: 0 := Output vectors
Vector | Response {g, h} 4 ®:=c-v-0
Cycle | {abe} [Correct | Erron. 5. procedure IDENTIFYTRACEDSIGNALS(®)
(7)) (l&:orr) (yerr> 6: q)init —®
1 100 11 11 7: Uinit .= Solve ® and extract the UNSAT core
2 011 01 01 8: U — Uinit
3 110 11 11 9: while @ is unsatisfiabledo
4 11 1 00 10: relax on clausegc|c € wint andc is an input vector unit
(a) Erroneous circuit (b) Test vector sequence and re- clausg
sponse. The initial value ofd, e, 11 Unew<— SoOlve ® and extract the UNSAT core
f} is 000 12: U — UU Upew
13: end while
Fig. 4. Example erroneous circuit. The correct implemémtatof gate 14: P — Djpjt
i =OR(a, b) is i =AND( a, b) 15: while @ is unsatisfiabledo
16: relax on clausegc|c € Uipit andc is an output response
unit clauseé
to the space limitation, the formulation @ is not shown. 17 Z”i"gusg"eq) and extract the UNSAT core
However, the construction can be done in linear time as ShoW§i a1 while new

in [21] Given @ to the SAT solver (e.g., MiniSAT [18])1 an 20; R« extract registers irni
UNSAT core of the instance can be extracted from the proaf: return %,
of unsatisfiability provided by the solver as shown below. 22: end procedure

{(13+€")- (P +et+gh) - (dB+ %)
(i2+d% - (02+i?) - (c*) - (g% - (b?)} T, g

{@+ih) ((1+d?) (d2+j?) - (j2+€) - (02 +i?):
By examining the UNSAT core, variables that represent (2+d%) - (d®+ ) (€+ 3 +K) - (¢ +ht+ 1)
registers can be extracted? ( from the clausei2 + d®)) and (K34 4. (al)- (b?) - (c*) - (h*)}

¢ (from the clause j3 +e*)). Therefore, signals that should
be traced ar@ at cycle 3 anct at cycle 4. In the new UNSAT core, variables that represent registers
The overall algorithm is shown in Algorithm 2. The goafre {d®,d* €%, f*}. Hence, the new list of registers-to-be-
is to identify as many UNSAT cores as possible and extrdé@iced containgl at cycles 2 and 3¢ at cycles 3 and 4, and
registers from each UNSAT core. Since each UNSAT core fisat cycle 4.
one potential error propagation path, registers involvéth w Note that the proposed algorithm may not explore all
these UNSAT cores are potentially on the error propagati@fopagation paths. If an error is propagated to a primarguut
paths. To obtain multiple UNSAT cores, the algorithm iterddy following various paths, it is possible that only some of
tively eliminates UNSAT cores until the problem is satisfiedthe paths are explored by the algorithm. However, since the
The procedure of the algorithm is as follows. It starts bfurPose of this step is to help the engineer to select registe
obtaining the initial UNSAT core @ini in line 7). Then, for trgcmg during the data acquisition stage, a complet®fse
the algorithm tries to obtain more UNSAT cores througBolutions may not be necessary.
relaxation, as summarized in Section II-C. First, it rekaxe
clauses inuj; that represent input vectors (line 10) until
the problem is satisfied. Next, it repeats for clausesijg
that represent output responses (line 16). Since each UNSATThe algorithm bDENTIFYTRACEDSIGNALS from Sec-
core can represent different error propagation pathsereifit tion IlI-D selects a list of registers that may contain usefu
signals can be included. To ensure that all paths are carsideinformation about the behavior of the faulty chip. One way to
the union of all UNSAT cores is taken, as shown in line 12 arabtain the values of those registers is through the use of sca
line 17 in the algorithm. Finally, if the corresponding \alyies dumps, if they are scannable. Nevertheless, this appraath c
of registers appear in any UNSAT cores, these registerdare lbe impractical. As explained in Section II-A, to acquirealat
potential locations for tracing. at different cycles with the scan dump operation, test needs
Example 3:Continue from Example 2, another UNSATto be reset and started over again after each dump, a process
core can be obtained by relaxir{@*), which is an output that can be time inefficient.
constraint. Letr; be the new relaxation variable. To relax Another approach is tracing these registers with trace
the constraint(g*) is replaced with(g* + r1). Moreover, an buffers. Recall, not all registers can be traced with theera
additional clausér;) is added to the originab. This results buffer. In this case, one can try to obtain the value of
in a new formula which is still UNSAT and a new UNSATnhon-traceable registers indirectly by implication usintes
core can be obtained as follows: traceable registers.

IV. ALTERNATIVE SIGNAL SEARCHING



Implication Implicationy s al 1: condy := (s # X) OR (a # X)
H 4i>07 2: conds :=(s=a)OR (s=X) OR (a = X)
N N 3: cond; AND conds is TRUE
' B (a) Schematic (b) Model syntax
/Y /Y Fig. 6. The model of target registers
1 T

1. if [ then
To- b Tor o Thww 2. (s=a) is TRUE
| 3: else
Fig. 5. An unfolded circuit fromil_y t0 Tpyw e 4: condy == (s# X) OR (a # X)
s aE 5 conds :=(s=a)O0R (s=X) OR (a = X)
6 condy AND conds is TRUE
Consider a circuit modelled in the ILA representation shown _ 7 end if
(a) Schematic (b) Model syntax

in Figure 5. Lets{;3 denote the untraceable regisggrat cycle
Tp of which the values are desired. Fig. 7. The model of candidate register

Given a set of traceable registess, referred to asandidate
registers the goal is to find a subset of traceable registers, _ o
{s{ C.st}, such that the values of the registerssjncan imply ~ The first  component, [P, ®L(£1, 91,900, Sitown):
the value ofs]. Therefore, instead of tracing, registers in models the design from cycl&_ to Tp.w. Each o) rep-
.5'[/ are traced. Then, the value @ is restored with the values resents a copy of the erroneous design at Cy.'dﬂ.th input
of the registers inSt’. The restoration can be due to forwarqlectorq/j and observed responsgibv enforced at the primary
implications, backward justifications or both. inputs and the primary outputs, respectively. Previouslged

A SAT instance is formulated to |dent|fy these implication&egister Vaiues‘%inowr) are also used to constrain the probiem’
The instance iS SatiSfied |f the SAT SOIVer can aSSign Valuﬁﬁce they rnay be heipfui in generating impiications_ Ad wil
to a subset of candidate registers that, together with thetin pe explained in the next subsection, special CNF models are
and output trace, imply the value of the target register.98en required for the target register and candidate registers.

quently, the alternative for the target register consiftthose  Although the valuew is user-defined, it also depends
selected candidate registers. The details of the fornanaiie gn the size of the trace buffer. One can setsuch that

given in the following subsections. 2w+ 1= buffer depthto fully utilize the memory space of the
_ trace buffer. However, largev's can increase the computation
A. Problem Formulation complexity and memory consumption, since there are more

The basic problem formulation is presented in this sectiocandidate registers for selection and a larger portion aafetr
The formulation consists of two components. The first conis analyzed. The flexibility ofv allows the user to adjust it
ponent models the circuit betwe¢my - -- Tpyw}. Variablew according to the available resources.
is user-defined and referred to window size This interval The second componenEN(Ui’ji’)"waJ), constrains the
constrains the search space where the SAT solver can seameimber of selected candidate registers. It is an adder that
for implications to the target register. The second compbnesums up the value of select variables. The details of the
of the formula limits the number of candidate registers usednstruction can be found in [20]. To find the minimum
for generating implications. number of candidate registers required for implicatiohg, t

Candidate registers are traceable registers within tleevat output of the adder is constrained to allow one active select
{Tp—w---Tpyw}. In order to indicate whether a candidateariable, and the value is incremented until a solution isfb
register is selected for generating an implication, new-vaor the total number of the select variables is reached.
ables, calledselect variablesand denoted as = {lq,l2,-- }, The search algorithm is carried out to find alternatives
are added for every candidate register at each cycle. Wien each untraceable register selected by the UNSAT core
a select variable is assigned with logic 1, it indicates thatlection algorithm. Since each untraceable register ragg h
the corresponding candidate register is used to produce thi#erent required sets of traceable registers and becaniye
implication. one group of traceable registers can be traced in a singlegdeb

If the formula is satisfied, each solution to the problem isession, a simple ranking system is discussed later taitpzéor
one possible implication for the target register under tivery each group. Then, the group with the highest priority isathc
input vector. Candidate registers wherein the select bemig In the next subsection, the models for target registers and
is active are the necessary registers to generate the atipiic candidate registers are described.

Because traceable registers in each cycle have one unique
select variable, the algorithm identifies not only the regis B. Register Modelling

but also cycles where those registers are located in order to ) ) )
generate the implication. Target registersand candidate registerseed to be encoded

In detail, the SAT instance can be expressed as follows: SPecially in the CNF formula in order to solve the searching
problem described above. In this section, models applied to
p+w prw these two types of registers are discussed.
- i—i q;i(Lj,q/J’yOwaSdnowni -En( U LJ) (1) Target Register. The goal of the target registest, is to
j=p-w j=p-w have a logic 0 or logic 1. The implication can come from two



the number of select variables can be reduced to two, e.g.
d®,d® d’ share one, whilg®, 6 f share another one.

The second optimization is to find implications for a group
of target registers. As mentioned in Section IlI-D, target
registers identified by the proposed method are correlated t
each other. Hence, if there exists an implication for one of
the target registers, the same implication may as well imply
the value of other target registers. By grouping severgjetar
registers together, the number of executions of the seagchi
algorithm can be reduced. As a result, the overall runtime is
reduced. However, it is a trade-off between the runtime had t
precision of solutions, because more traceable registags m
need to be selected when multiple registers are targeted.

Fig. 8.

ILA of the example circuit in Figure 4(a)

directions: forward propagation from assignments in thréeza
time frame, or the backward justification from assignments

in a later time frame. To allow the SAT solver to considelP- Group Ranking

implications from both directions, the target register isdn  The algorithms described in previous sections identify reg
elled, as shown in Figure 6. An extra signal is introduced isters that should be traced to provide more information on
disconnecs‘é from its fanouts. If either variables have a logiche error. Since registers are selected by groups at the end
0 or a logic 1 value, there exists an implication. This iseslat when configuring the trace buffer, a simple ranking system is
ascond (line 1) in Figure 6(b). Conditiocond enforces that described to prioritize the traceable register groups ralicg

the implication only needs to be satisfied from one directioto the results from the proposed algorithms.

Furthermore, if there are implications from both direcipn , Rule 1: The group that contains the most registers re-
the implied values have to be the same. turned by the algorithmdENTIFYTRACEDSIGNALS has

Candidate Register Candidate registers are traceable reg- the highest priority. This is because those registers are
isters that are available for the SAT solver to select in prde directly related to the error source. Their values may

to generate implications. For each candidate register, two
variables are introduced as shown in Figure 7(a). The select
variable, |, determines whether the register connects to its
fanout. Wherl equals 0, the network remains the same (line 1-
2 in Figure 7(b)). Wheth equals 1, the register is disconnected

contain most useful information.

Rule 2: When searching alternatives for non-traceable
registers, different target registers may require diffiere
traceable groups. If a group is being selected at higher
frequency than other groups, it gets a higher rank. In-

from its fanout, and the SAT-solver can assign 0 or 1 to
the either end of the break. This enables the possibility to
identify forward and backward implications. Similar to the ,
model for target registers, at least one of the two variahtes
the disconnected ends must be either logic O or logic 1. Ifibot
ends are not unknown, the values must be the same.

Example 4:Figure 8 shows a portion of the ILA of the
example circuit in Figure 4(a). Assume that traceable tegss
ared and f, and the target register €. Let the value of h
the input/output trace as shown in the brackets next to t
variables. The candidate registers &8, f°, d°, f6,d’, '},
which are modeled as shown in Figure 7 with six addition
select variables{l*---1°}. One can verify that the value ef
can be restored if the value dP is known.

tuitively, this group contains registers that have a higher
chance to provide implications to non-traceable registers
Rule 3: A higher rank is assigned to the group that needs
to be traced for more time frames. This is simply done to
efficiently utilize the memaory space of the trace buffer.

V. APPLICATION TOPHYSICAL DEFECTS

Although the presented methodology assumes that errors in
e silicon prototype are functional errors, it can alsolapp
debug physical defects with minor modifications. This is
ossible because the underlying debug algorithm is a model-
%ee one that works with both errors and faults [20]. It isoals
because most physical defects can be modeled in terms of
design errors as extensively discussed in [27], [28].

When debugging functional errors as shown here, the input
to the methodology is an erroneous RTL model that is imple-
mented in an erroneous silicon prototype. In this scenth®,

As discussed in Section II-A, traceable registers are typiiethodology tries to identify these error locations in tHeLR
cally divided into groups. When configuring the trace byffemodel such that when corrected, the model complies with the
one group of the traceable registers is selected and tragedden RTL reference available. In contrast, when debuggin
for several time frames. With this observation, the numbehysical defects, the RTL model is assumed to be correct.
of select variables for the candidate registers can be sgtudn this case, the algorithm identifies the source of the error
Instead of introducing one distinct select variable forheady insertingincorrect faulty values at locations in the correct
candidate register, all registers in the same group careshBTL model so that its behavior matches this of the failing
the same select variable. Furthermore, the same registersiiicon [20]. This is achieved by constraining the SAT imsta
different time frames can share one select variable as walf.the correct RTL with the observed failed responses froen th
In Example 4, assumingl and f are in different groups, silicon. Once candidate fault locations are identified, téwt

C. Formulation Improvements
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TABLE |
PERFORMANCE WITH LIMITED HARDWARE CONSTRAINTS

Ci Gate | # of # of # of Total Total # of init. trace length| % of critical
irc. . . ) . .
count | reg. | modules || sessions| time (sec)| groups traced| final susp.| (# time frames) interval
divider 6419 510 31 4 123.1 7 11 38 12%
spi 2832 | 162 79 4 351.5 6 12 213 11%
whb 5283 | 110 94 3 101.4 3 6 187 14%
rsdecoder| 11353 | 521 481 4 162.2 5 15 136 10%

3 the second column. The next two columns record the number
B B2 3| Jna Bn=1 Bln=2 [n=3[_Jn=4 of registers in the design and the number of the modules at
the lowest level of hierarchy. This is also the total number
of suspects one needs to examine in a brute-force manual
silicon approach. The number of debug sessions and the total
runtime for all sessions are shown in the fifth and columns,
respectively. The total number of groups that are traced is
divider” soi b rsdecod O divider spi _ wb rsdecoder shown in the seventh column. The eighth column has the
pI WD rsdecoader Benchmark . R R
Benchmark number of final suspects in the lowest level of hierarchy that
(a) Total number of suspect modules (b) Total runtime the engineer needs to investigate. The final two columns show
the initial trace length in terms of the number of time frames
and the ratio of the final critical interval compared to thigiah
trace length, respectively.
engineer can use the available mapping information with theOverall, comparing the number of final suspects to the
silicon prototype to probe further and analyze their source number of modules shown in the third column, on average, an
85% improvement in resolution is observed. The experinienta
VI. EXPERIMENTS results also show that the critical interval can be narrowed
In this section. experi . do(yvn to only 10% to 15% of its initial length after the
, experiments on OpenCores.org designs an . . .
%st debug session. Furthermore, as mentioned earlier, one

ISCAS’89 benchmarks are presented. Minisat [18] is use . . :
or two groups of registers can be traced in each session.

as the underlying SAT-solver. Experiments are conducted D inadivi der as an example. seven arouns are traced durin
Core 2 Duo 2.4GHz process with 4 GB of memory. All 9 pie, group 9

; ; . debugging: one group is traced during the first session aad tw
runtimes are reported in seconds. In each testcase, a single . . .
. : . oups are traced in each of the remaining three sessiors. Be
random functional error (e.g., wrong assignment, incdarre . . . e
g . . cause timeframe diagnosis often reduces the criticalvater
case state, etc) is inserted into the RTL code. For designs fr : : ) .
to more than half in the first one to two sessions, two register
OpenCores.org, test vectors are extracted from the testibe : : '
. : roups can be traced in one hardware run in many sessions.
provided by OpenCores.org. Test vectors for ISCAS'89 a . . .
. Next, the impact of two parameters of the diagnosis method-
generated randomly. In both cases, the trace length is batwe

. . logy is examined, namely the level of hierarchy that hi-
100 to 300 time frames. Finally, to fully take advantage Ograrchical diagnosis examines at each sessign and the

hierarchical diagnosis, building blocks of HDL code, sush fimeframe module interval sizes used in timeframe diagnosi

a case statement or an if-statement, are parsed as a most\s._ Figure 9(a) shows the total numbers of modules returned

by each hierarchical diagnosis round when various numkers o

A. Performance of the Methodology hierarchy levels are examined in one debug session. In gener

This set of experiments first shows the performance tfe numbers are increased as hierarchical diagnosis rures mo
the methodology. Here the algorithm is configured such thatunds in one debug session. This is because fewer stagsvalu
during hierarchy diagnosis, it analyzes two levels in thare available and the diagnosis algorithm cannot distsigui
hierarchy structure (n = 2) in each debug session. Durisgme of the suspects. The runtime is plotted in Figure 9(b)
timeframe diagnosis, the trace is divided into four timefea and is normalized by comparing it to the runtime rof= 1
modules of an equal number of cycles each. X-simulation figr each benchmark. As shown, the runtime increases as
used to determine registers that should be traced in the niextreases. This is because more suspects need to be analyzed
debug session. The size of the trace buffer is assumed towlieen more hierarchical diagnosis runs are executed in one
16*128 bits. It is assumed that 80% of registers in each desidebug session. Recall that timeframe diagnosis is carngd o
are traceable and they are divided into groups of at mostil6 dfter the completion of n-level hierarchical diagnosisntte,
each debug session, the buffer can store values of one grauih smaller values of, although there are fewer numbers
for at most 128 cycles or two groups for at most 64 cyclesof suspects, a greater overhead due to timeframe diagrsosis i

Table | outlines performance metrics for the methodologsequired. As the result, in some cases the best runtime happe
Each experiment contains the average of five runs. The testenn= 2.
bench used is listed in the first column. The size of each testFigure 10(a) shows the ratio of the size of the critical
bench in terms of the number of primitive gates is reported interval after the last debug session compared to the aligin

n
(=]

—_
[$)]
N

—_
o

Normalized Runtime
[

# of final suspects

[$))

Fig. 9. Impact of parameter in performance
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B 40 5 TABLE I
g —=—divider o O|IIN2 Il4 T8 16 TRACEABLE REGISTER GROUP INFORMATION

z * spi £

£30 =

5 X ¢ wb 2 1 Circ Gate | Total | # of #of Perc
§i 20 —+ rsdecoder 3 ) count | reg. | groups | reg./group )
SR N . £ Spi 2832 | 162 8 8 40%
10 £05 hpdmc || 20536 | 453 16 8 28%
3 P4 usb 39179 | 2054 32 16 25%
£ s1423 753 74 6 6 49%
o 00 2 4 #?of?m;?v;é 14 16 18 0 divider ggri'.chmngrSdeCOder s5378 3042 179 7 8 31%

s9234 5883 211 8 8 30%

(a) Final size of the critical interval (b) Total runtime

Fig. 10. Impact of number of intervals used in timeframe dagis

by the UNSAT core-based selection procedure (columns 5 —

) ) 11). Experiments in the former situation are cases where the
trace length when various numbers of intervals are used g es of internal states are not used in debugging analysis
tlmgframe diagnosis. Four cases are cqn5|dered: 2: 4 8 debugging problem is solved with constraints on the
16 intervals. As expected, greater reductions are achieited imary inputs and primary outputs. As in the latter sitoafi
finer-grain intervals. The only exception i@ in the case yehygging analysis utilizes the values of internal staltes t
where the interval size is 16. In this case, the error happ&f§re selected by the proposed state selection procedure as
to be excited across two intervals, which results in a widgfe|| Each row is one individual case that contains a difiere
range. In all cases, over 50% of reduction is achieved. Tng in the design. The final row is the geometric mean of
normalized runtime is depicted in Figure 10(b). In generge gata in the columns. The sum of the number of modules
as discussed in Section 3, it requires more computation ffy;rned at the end of each debug session is shown in the
smaller intervals are used, since timeframe diagnosis [t Mgecong and fifth columns. This is the total number of modules
candidates to screen. However, usispi as example, itS a¢ the engineer needs to investigate. As shown in the, table
runtime is reduced as the number of intervals increases.ighiyith state values, the debugging tool can effectively eliabé
because approximately 90% of the trace interval is trunkatg,qre false candidates in all cases. The percentage reductio

after the first few sessions when the number of intervals jis the number of suspects, the ratio of the fifth column to the
over eight. As a result, timeframe diagnosis in the lattéude second column, is listed in the sixth column. The reduction
sessions has a much smaller trace window to analyze anddt, pe as high as 78% (i.e., case 1sb423).

requires less computation. The third and seventh columns show the number of debug

sessions performed. About one third of cases require fewer
B. Performance with Hardware Constraints debug sessions to find the root cause of the failure, for

This part of the experiment section demonstrates the effé@mple, the second case ®pi, hpdnt and both cases
tiveness of the UNSAT-core register selection, as well as tRf usb. The number of registers traced by the trace buffer
searching algorithm. To emulate the real trace buffer hardw iS Shown in the eighth column. Those numbers are small
structure, a subset of registers of each design is select@npared to the total number of registers shown in Table II.
randomly, or byState signal selectiofg], [9], as traceable The benefit of _the UNSAT—core.-base.d technique is shown
by the trace buffer. These registers are divided into groug§'en one considers the reductions in both the number of
The grouping configuration is summarized in Table II. Th8USpects and the number of debug sessions. Furthermore, the
first column lists the circuits used in the experiments; tize s results indicate that the proposed register selectiomiqae
of each circuit in terms of the number of primitive gates i capable to support data acquisition, although the tegkeni
reported in the second column. The third column of the tabfe NOt @ complete solution.
shows the total number of registers in each design. Thetourt Finally, the runtime of the diagnosis procedure in both
and fifth columns have the number of the register groups agiguations is reported in the fourth and ninth columns. In
the number of registers in each group, respectively. Thia sithe case of the proposed methodology, the additional rentim
column shows the percentage of total registers that can fie searching the registers for tracing is recorded in thé 10
traced. column and the total runtime is shown in thet" £olumn.

Similar to the experiments in the previous subsection, Because of the reduction of suspects and debug sessions, the
single random functional error is inserted into the RTL codeuntime for diagnosis is reduced in the cases of the proposed
The algorithm is configured to perform one-level hierarahic methodology. However, the proposed methodology requires
diagnosis (= 1) and timeframe diagnosis divides the tim@dditional computation for the searching algorithm. Asvgho
interval into two timeframe modules. For the searching algé the table, the additional runtime can be significant inesas
rithm, the window size\) is set to be six time frames and, asuch ashpdnt. This is because the algorithm has a higher
mentioned in Section IV-C, the target registers in everyr fodailing rate on finding the recommendation for non-traceabl
time frames are targeted together. registers in those cases.

Table Il summarizes the performance of debug analy- Overall, an average of 31% reduction in the number of
sis under two situations: debug without values of registessispects and 12% reduction in the number of sessions (from
(columns 2 — 4) and debug with values of registers select8d down to 8.4) are achieved. The runtime for diagnosis is
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TABLE Ill
PERFORMANCE OF DEBUGGING WITH PROPOSED TECHNIQUES

No state value used With UNSAT-core-based register selection
Circ. # of # of Runtime (s) || # of % # of # of Runtime(s)
susp. | sessions Diag. susp. | reduction | sessions| traced sig.| Diag. | Search| Total increased
spi 146 11 1990 73 50% 11 24 828 1011 0.92
144 11 179 76 48% 9 32 101 94 1.09
hpdme 213 17 3817 170 21% 17 40 2323 | 15734 4.73
167 16 2321 131 22% 15 40 1963 | 14233 6.98
usb 103 15 3795 38 74% 11 64 1609 | 9218 2.85
224 14 7091 138 39% 7 128 4245 | 18519 3.49
s1423 438 6 847 13 78% 6 6 19 28 0.06
506 6 768 148 71% 6 18 452 36 0.64
5378 103 6 549 92 11% 6 16 456 288 1.36
191 6 1577 164 25% 6 32 1505 634 1.36
59234 83 6 1042 74 11% 6 16 1011 | 1553 2.46
average][ 179 | 95 ] 1426 [ 88 ] 31% [ 84 | 28 | 684 | 1012 ] 1.43
TABLE IV

52% less on average (from 1426s down to 684s). Due to
the searching algorithm, the total runtime of the proposed

PERFORMANCE OF THE SEARCH ALGORITHM

methodology is about 1.43 times longer than the runtime when  circ. Random State signal selection
. . . . succ. rate[ # cand. sel.|| succ. rate] # cand. sel.
no register data is used. However, since the number of thie fina 50 =
. . ope n - 9 . (] - -
suspects is reduced significantly, this additional runtimsey Spi 100% 4 B B
be acceptable if there is a greater amount of time saved by hpdme 25% 11 - -
manually inspecting fewer suspects. ‘1‘22?’ 181 - -
The next experiment examines the performance of the  usb 6% 8 . .
alternative searching algorithm. Clearly, the perforneait 100% 1 100% 2
i 1ahili : s1423 || 100 35 100% 4
the algorithm depends on the availability of traceable &ign 1000/0 = 100(; -
. B (1] . 0
Some S|gnals_may not be able to be resto_red at_ f';\II if the 5378 100% 6.3 100% 7
necessary registers are not traced. Hence, in addition-to se 9232 50% 1 50% 1
lecting the traceable registers randonsgte signal selection average]| 49% | 47 ]
is also usedState signal selectioselects registers with values
that are more likely to restore other registers of which ealu TABLE V

. . IMPACT OF STATE VALUES ON THE DIAGNOSIS
are unknown. The results are summarized in Table V. Due

to the technical implementatiorstate signal selectioronly Cases Susp. | Sess. | Traced Diag.
handles ISCAS benchmarks. Hence, there is no result for all reduc. | reduc. | signals | runtime reduc.
OpenCores.org designs, as indicated by “-". nﬁi‘gf‘]g’tvr'g:m 82% | 21% | 56% 77%
The second and fourth columns of Table IV show the UNGAT with - . . o
percentage of non-traceable registers for which the search no constraint|| 8°% | 26% | 16% 89%
algorithm successfully finds alternative recommendati®he Uwosga"rvéthh 27% | 10% | 8% 15%
number of traceable register groups selected in order to -
T - , : UNSAT With 11 3706 | 1196 | 10% 26%
generate implications is shown in the third and fifth columns search

In the case of the random selection, the algorithm is, on
average, able to find an alternative for almost half of the
targets. The performance of the searching algorithm in theced registers to the total number of registers, follolwgd
cases where pre-selected traceable registers are chosatdy the reduction in the diagnosis runtime.
signal selectiorand by the random selection is similar. This is To demonstrate the advantage of the proposed UNSAT core
possible because the main goalstite signal selectiois to approach, we compare it with X-simulation as shown in the
restore as many registers as possible over the whole delignfirst two cases of the table. In these two cases, no hardware
[9]. The procedure does not target a specific region of tlenstraints are considered; that is, all registers arenzssu
design. to be traceable. The table shows that the UNSAT core ap-
The next set of experiments investigates the performanmeach outperforms the X-simulation approach in all colamn
of debugging when various state values are available. Tparticularly with respect to the number of traced registers
experimental results are summarized in Table V. All numbeTéis demonstrates that the UNSAT core approach can achieve
are the average of the 11 erroneous benchmarks discudsetier performance with fewer register values. For the rsgco
in Table lll. The reference case for comparison is the catgo cases, only debugging with the UNSAT core approach
wherein no state value is used (columns 2 — 4 of Table llis considered, as well the trace buffer hardware consgaint
The first column lists the four considered cases. The next twtowever, in the third case, the searching algorithm is not
columns summarize the reduction of the number of suspeetecuted to find alternatives for non-traceable registEnss
and the number of sessions. The fourth column is the ratiomeans that none of those registers, or any other altersative
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120 ~spi 12 TABLE VI
Config 1
B ~—hpdme| g1 =02:f:32 PERFORMANCE OF DEBUGGING STUCKAT FAULTS
< * usb ] '
g 80 || +sta23] S8 [JConfig 3 Circ. || Suspects Debug Total runtime
5 60 v s5378 2 6 ’ reduced | sessions reduced increased
g 40 ’ s g, : 26% 0% 164
E 5 sp 69% 0% 0.72
2 v * 2 hodme | 0% 0% 163
%onfig 1 Con%ig 2 COHﬁE 3 0 i 1423 5378 P 41% 57% 6.60
Group configuration P oo usb ggz;o 481‘212?) ggg
0 () .
(a) Successful rate (b) Group selected

Fig. 11. Performance of the search algorithm with threeettauffer group ] ] ) ]
configurations. All have the same number of groups, but thekes of algorithm can successfully identify the location of thecgtu

registers per group is 4:2:1 at fault in all cases. Similar results as shown in Table I# ar
observed in Table VI. Fewer suspects are returned and fewer

_ debug sessions are required due to the availability of galue
are traced. Comparing the results of the case 3 and the cgfternal states. The total runtime increases becausheof t

4, it shows that, with the help of the searching algorithre, thyyerhead of the searching algorithm. However, in some cases
debugging process performs better. For example, the rieducty,ch as case 2 ahi and case 1 ofish, the total runtime is

of suspects increases from 27% to 31%. This implies thequced as the result of fewer suspects or debug sessions.
effectiveness of the searching algorithm.

In the last set of the experiments, we investigate the perfor VII. CONCLUSION
mance of the searching algorithm when three different hard-aytomated software silicon debug solutions are the ne-
ware group structures are us@dnfig 1 is the configuration cessity today to ease the task of the test/design engineer
in Table I1.Confi g 2 andConfig 3 have the same number ofqyring chip failure analysis. In this paper, we propose aehov
traceable groups @®nfig 1 does, butthe number of registergjepugging methodology that comprises of multiple itegativ
in each group is only half and quarter of the siz&€mnfig 1, gebug sessions. In each session, the methodology uses the
respectively. For instanc€pnfig 1 of hpdme has 16 groups circuit hierarchy to debug the failure and also narrows down
of the size of eight register€pnfig 2 has 16 groups of the the window of cycles wherein the error or fault is exercised.
size of four registers, whil€nfig 3 has 16 groups of the sjnce the debug analysis relies on the data acquired during
size of two registers. the test run, two techniques are proposed to aid in selection

The success rate on finding an alternative of non-traceaBfetraceable registers to be traced in the next debug session
registers is plotted in Figure 11(a). As expected, sinceethee  sych that the diagnosis can benefit from the new data. The
fewer traceable registers, more non-traceable registeTsat experimental results confirm the effectiveness of the aggro
be replaced. Hence, the success rate drops as the numbaf @fso demonstrates that the methodology maintains good
candidates is reduced. performance under the constrains presented by the data ac-

Figure 11(b) depicts the average number of selected traggiisition hardware.
able groups for generating implications. When the seagchin As future work, several techniques can be investigated to
algorithm is executed with a trace buffer configuration veheincrease the scalability of the proposed methods. For el@mp
each group contains fewer traceable registers, two situsti abstraction and refinement [29] reduces the problem size by
can happen:i] more groups are required since each grougbstracting the implementation of portions of the desigtet,
contains fewer registersiji) the algorithm fails to find the it refines the model to improve the resolution of the result.
alternatives because the crucial registers are not tréeeaknother example is to use vector compression [30], [31]
anymore. In general, more traceable groups are required ddeshorten the erroneous traces, which results in a smaller
to the situationif, for instanceConfi g 3 of spi andConfig problem for debugging. Those techniques and the generation
2 of s1423. However, because the reported number is thg tests that exercise specific portions of a design can @d th

average number of selected groups for target registersttdat silicon debug step to localize the errors in a more effective
algorithm can find an alternative recommendation, the @esramanner.
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