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ABSTRACT
Embedded systems are often implemented on FPGA de-
vices and 25% of the time [2] include a soft processor—
a processor built using the FPGA reprogrammable fabric.
Because of their prevalence and flexibility, soft processors are
compelling targets for customization—although current soft
processors provide few architectural variations. Recent work
has proposed augmenting soft processors with customizable
vector processing support, enabling designers to easily scale
performance by exploiting the data parallelism available in
an application. However this approach provides only coarse-
grain scaling, by successively doubling the number of vector
datapaths for less than double the performance.

In this work we further augment soft vector processors
with more fine-grain architectural modifications: we add
support for (i) vector chaining and (ii) heterogeneous vector
lanes, allowing the soft vector processor to be customized
to not only the data-level parallelism available in an appli-
cation, but to the functional unit demand. We evaluate
the area and wall clock performance with full hardware
implementations on state-of-the-art FPGAs and find that
chaining can provide between 15-45% average performance
for less area than doubling the lanes, and that heterogeneous
lanes can save 6-13% area with little or no performance
loss in some cases. Finally, we implement 1200 soft vector
processors variants and find that the peak performance per
area compared to our base vector processor can be increased
by an average of 13% and up to 34% when choosing the best
variant per application.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures
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1. INTRODUCTION
FPGAs are commonly used to implement embedded

systems because of their low cost and fast time-to-market.
Approximately 25% of FPGA designs contain a processor
implemented in the FPGA reprogrammable fabric [2], such
as the Altera Nios II or Xilinx Microblaze. These soft
processors provide a software design environment for quickly
implementing system components which do not require
highly-optimized hardware implementations and can instead
be implemented in a soft processor that is customized
to achieve the desired performance/area/power. Current
commercial soft processors are based on simple single-
issue pipelines with few architectural variations, motivating
research on configurable soft processor architectures that
enable further customization.

While the customization of traditional hard processors
has been thoroughly studied, the trade-offs on an FPGA
substrate can be vastly different yet accurately measured—
including area, clock speed, and power. As a result,
several architectural axes have been recently studied in
a soft processor context including: (i) single-issue in-
order pipelines [17] which provide a limited design space;
(ii) VLIW pipelines [11] which are limited due to port
limitations on FPGA block memories; (iii) multi-threaded
pipelines [6,7,13] and multiprocessors [14,15] which exploit
thread-level parallelism but require parallelization of the
software; and (iv) vector processors [20,21] which can scale
performance by instantiating multiple vector lanes (the per-
element datapaths of a vector processor) to exploit the data-
level parallelism in an application. However, the flexibility of
recently proposed soft vector processors is primarily limited
to scaling the number of vector lanes by powers-of-two, to
avoid division and multiplication operations in the control.
For example, lane scaling provides only seven different
configurations between a one-lane soft vector processor that
consumes a fraction of the smallest FPGA device and a 64-
lane configuration that fills one of the largest FPGA devices
currently available—hence a system designer is provided
with only very coarse-grain (powers-of-two) control over
performance/area trade-offs when choosing an appropriate
soft vector processor instantiation.



1.1 Fine-Grain Customization of Soft Vector
Processors

In this work we extend soft vector processors with ar-
chitectural features that allow for more fine-grain cus-
tomization over current single-issue soft vector processors.
Specifically we target the varying functional unit demand
across applications by implementing (i) vector chaining,
while parameterizing the number of vector instructions that
can be simultaneously executed; and (ii) heterogeneous
lanes, that parameterize the functional units that exist
within individual lanes.

Vector Chaining A vector processor with support for
vector chaining can begin execution of the element oper-
ations of one vector instruction before completing all the
element operations of a previous vector instruction [10].
To support this simultaneous execution of multiple vector
instructions, many operands must be read/written from/to
the vector register file simultaneously. The conventional
solution is to exploit a many-ported register file—but this
design is not well-suited to an FPGA substrate since the
block memories on FPGAs are normally limited to only two
ports. Instead we propose to support chaining through a
banked register file where the number of banks determines
how many vector instructions can be in-flight. For some
benchmarks, this results in significantly better utilization
of the existing functional units and even motivates the
replication of functional units in high demand.

Heterogeneous Lanes Typically the lanes in a vector
processor are identical, requiring all functional units to
exist even when data-parallel code uses only some of them.
We introduce the ability to have a given functional unit
supported in only a subset of the lanes, thus supporting
heterogeneous lanes where some lanes are missing certain
functional unit types. For those lanes, operations are time-
multiplexed onto the lanes which do support the required
functional unit. A designer can therefore create the exact
number of desired functional units, similar to what would
be done in a custom hardware design.

We evaluate these modifications using a full in-hardware
implementation on a Stratix III FPGA executing data
parallel EEMBC benchmarks. We show that with chaining
we gain significant performance with more modest area cost
than doubling the number of lanes. We show that hetero-
geneous lanes can provide area savings over homogeneous
lanes with little or no performance degradation. Finally,
compared to all previously possible configurations, we gain
up to 34% performance-per-area after exhaustively searching
the design space to minimize performance-per area on a per-
application basis.

Our goal is to enable fine-grain customization of soft
processors, allowing an FPGA-based embedded systems
designer to use a few architectural parameters to specify a
soft processor optimized to specific application and system
design requirements; as a result, the amount of laborious
hardware design is reduced. In the long term we envision
that FPGA CAD tools will employ soft processor generators
in conjunction with heuristics for automatically mapping
applications to architectural configurations under a given
performance/area constraint.

1.2 Related Work
Vector processor architecture has been thoroughly studied

both in multi-chip supercomputers and single-chip micro-
processors [3,10,12], but much less so in the FPGA context.
The FPGA design flow allows us to accurately measure area,
clock speed, and real in-system performance of benchmarks.
Finally, the reprogrammability of an FPGA leads us to
appreciate architectural features that can benefit only a few
applications, whereas historically these features would be
deemed failures in a general-purpose context.

Yu et. al. [21] recently demonstrated the potential for vec-
tor processing as a simple-to-use and scalable accelerator for
soft processors. In particular, the authors show that a vector
processor can scale performance better than Altera’s C2H

behavioral synthesis tool. They also propose configurable
architectural options such as lane-local memories and direct
support for vector reductions which both exploit FPGA-
specific features. However, their design does not support
vector chaining nor heterogeneous vector lanes.

Hasan et. al. [8] designed a floating point FPGA-based
vector processor for solving sparse sets of equations. Using
this application a number of targetted customizations were
performed including vector chaining. Follow on work [9]
considered partial reconfiguration to create custom hard-
ware units for an application. Cho et. al. studied a 16-
way integer SIMD processor for multimedia kernels [4] and
explored the effect various levels of banking in the memory.
Our work considers soft vector processor architecture more
generally and thoroughly explores a large design space.

In our own previous work [20] we implemented the VESPA
FPGA-based vector processor in dated 130nm hardware and
evaluated its performance scalability up to 16 lanes across
various data parallel EEMBC benchmarks. No support
for vector chaining or heterogeneous lanes was considered.
Some parameterization of the instruction set was explored,
but this customization can be orthogonal to any architec-
tural tuning. Similarly, the memory system was explored,
but its customization can be influenced by the scalar
processor which often shares the cache. Customizing the
vector processor compute architecture and pipeline through
chaining and heterogeneous lanes can specifically target
the vectorized workload and adds another much needed
dimension of customizability to soft vector processors—in
this work we build on VESPA to evaluate these features. In
addition, we port the VESPA system to new 65nm FPGA
hardware enabling the exploration of larger soft vector
processor architectures.

1.3 Contributions
This paper makes the following contributions: (i) we

implement VESPA on a state-of-the-art Stratix III FPGA
device while accurately measuring area, clock frequency, and
cycle performance of our modifications using full EEMBC
benchmarks executed from off-chip DDR2 memory; (ii) we
propose and evaluate an FPGA-specific implementation of
vector chaining with the required register file bandwidth
facilitated exclusively via banking; (iii) we propose and
investigate heterogeneous vector lanes in a soft vector
processor; and (iv) we exhaustively explore a design space
of 1200 VESPA configurations and show that these modifi-
cations allow for more fine-grain architectural customization
as well as better performance per area.
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Figure 1: VESPA processor block diagram.
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Figure 2: VESPA pipeline architecture.

2. IMPLEMENTING FINE-GRAIN
CUSTOMIZATIONS

In this section we describe the parameterized base VESPA
design implemented in Verilog then describe how we aug-
ment it with fine-grain customization features—namely
support for both vector chaining and heterogeneous lanes.

2.1 Base VESPA Design
Figure 1 shows a block diagram of the VESPA processor

that consists of a scalar MIPS-based processor automatically
generated using the SPREE system [18], coupled with a
parameterized vector coprocessor based on the VIRAM [12,
12] vector instruction set. Figure 2 the pipelines within
VESPA. The scalar SPREE processor is a 3-stage pipeline
with full forwarding and a 1-bit branch history table. The
parameters of the VESPA system are listed in Table 1 with
our newly added parameters marked with an asterisk. The
top group of parameters configure the compute architecture,
the middle group configures the instruction set architecture,
and the bottom group configures the memory architecture.
VESPA’s architecture and parameters are as follows: The
vector coprocessor consists of L parallel vector lanes where
each lane can perform operations on a single element in a
pipelined fashion. The width W of each vector lane datapath
is 32 bits by default, but can be reduced for applications
that require less than the full 32 bit-width. MVL determines
the maximum vector length supported in hardware.

Table 1: Configurable parameters for VESPA.

Parameter Symbol Value Range

C
o
m

p
u
te

Vector Lanes L 1,2,4,8,16,. . .
Memory Crossbar Lanes M 1,2,4,8,. . . L
Multiplier Lanes* X 1,2,4,8,. . . L
Register File Banks* B 1,2,4,. . .
ALU per Bank* APB true/false

IS
A

Maximum Vector Length MVL 2,4,8,16,. . .
Vector Lane Bit-Width W 1,2,3,4,. . . , 32
Each Vector Instruction - on/off

M
em

o
ry

ICache Depth (KB) ID 4,8,. . .
ICache Line Size (B) IW 16,32,64,. . .
DCache Depth (KB) DD 4,8,. . .
DCache Line Size (B) DW 16,32,64,. . .
DCache Miss Prefetch DPK 1,2,3,. . .
Vector Miss Prefetch DPV 1,2,3,. . .
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Figure 3: Vector chaining support for a 1-lane
VESPA processor with 2 banks.

The scalar processor and vector coprocessor share a
single instruction stream fed by an instruction cache. The
scalar processor and vector coprocessor are both in-order
pipelines, but can execute out-of-order with respect to each
other except for memory operations which are serialized
to maintain sequential consistency. Both share a direct-
mapped data cache with parameterized depth DD and cache
line size DW. A crossbar routes each byte in a cache line
to/from M of the L vector lanes in a given cycle. A full
crossbar (M=L) can significantly reduce the clock frequency
of the design when L is large; in such cases M can be reduced
to restore the clock rate and save area, but additional
cycles will be required to move data between the cache
lines and vector lanes. The data cache is equipped with
a hardware prefetcher configured with parameters DPK and
DPV. In this work we use only two prefetching configurations:
off and prefetching of 8 times the current vector length (no
prefetching is done for scalar instructions).

2.2 Supporting Vector Chaining
VESPA has three functional unit types, an ALU, a mul-

tiplier/shifter, and a memory unit, but only one functional
unit type can be active at a time. Additional parallelism
can be exploited by noting that for sufficiently long vectors,
the first element-operations of one vector instruction are
guaranteed to be independent of the last element-operations
of another. Traditional vector processors exploit this using
a large many-ported register file to feed operands to all
functional units keeping many of them busy simultaneously.
This approach was shown to be more area-efficient than
using many banks and few ports as in historical vector
supercomputers [3]. But since FPGAs can not efficiently
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implement a large many-ported register file, our solution
is to return to this historical approach and use multiple
banks each with 2 read ports and 1 write port (achieved
by duplicating the register file). We partition the vector
elements among the different banks allowing instructions
operating on different elements to each use a register bank
to feed their respective functional unit thus achieving the
multiple vector instruction execution required for vector
chaining.

Figure 3 shows an example of our implementation of
vector chaining using two register banks to support a
maximum of 2 vector instructions in flight for a 1-lane
VESPA processor. Once resource, read-after-write, and
bank conflicts are resolved, instructions will enter the Bank
Queue and cycle between the even and odd element banks
until all element operations are completed. During that time
another instruction can enter the queue and rotate through
the cyclical Bank Queue resulting in 2 element operations
being issued per cycle. As each operation completes the
result is written back to the appropriate register bank. Using
a cyclical queue simplifies the control logic necessary for
assigning a bank to an element operation, but causes a cycle
delay for the few vector instructions which can not start on
an even element (most vector instructions start with element
0).

The number of register banks B used to support vector
chaining is parameterized and must be a power of two. A
value of 1 reduces VESPA to a single-issue vector processor
without vector chaining support eliminating the Bank Queue
and multiplexing. VESPA can potentially issue as many as
B instructions at a time, provided they each have available
functional units. To increase the likelihood of this, VESPA
allows replication of the ALU for each bank, the APB

parameter enables or disables this feature. Since multipliers
are generally scarce we do not support duplication for the
multiply/shift unit, and we also do not support multiple
memory requests in-flight because of VESPA’s locking cache.

2.3 Supporting Heterogeneous Lanes
Increasing the vector lanes duplicates the default lane

configuration, so all vector lanes are identical, or homoge-
neous. In this work we modify this assumption by allowing
the multiplier units (also used for shifting) to appear in
only some of the lanes. This allows for a heterogeneous
mix of lanes where not all lanes will have each of the three

functional unit types. A user can specify the number of lanes
with ALUs using L, the number of lanes with multipliers
with X, and the number of lanes with access to the cache
with M. Because of the frequency of ALU operations across
the benchmarks and because of their relative size compare
to the overhead, we do not support the elision of ALUs.
Therefore VESPA requires that L is greater than or equal to
the greater of X or M. This is a reasonable limitation since the
multipliers are generally scarce, and the memory crossbar
generally large, so reducing those units will have greater
impact on area savings while being more likely to only mildly
affect performance.

As shown in Figure 4 some area overhead is required to
buffer operands and time-multiplex operations into the lanes
which have the desired functional units, so the area savings
from removing multipliers and shrinking the crossbar must
offset this. In place of the missing functional units is a
parallel-loading Input Queue which accepts input operands
from all lanes with missing functional units and transfers
them to the corresponding lanes that have the functional
unit. The output is then loaded into an Output Queue which
transfers the results back to the original lane.

3. MEASUREMENT METHODOLOGY
In this section we describe our infrastructure used for

executing, verifying, and evaluating the new VESPA fea-
tures. Specifically, we describe our hardware platform, pro-
cessor system, verification process, CAD tool measurement
methodology, benchmarks, and compiler.

Hardware Platform All processors are fully synthesized
and implemented on an FPGA system. We use the
Terasic DE3-340 board equipped with a single Stratix III
EP3SL340H1152C3 which is one of the largest state-of-the-
art FPGAs currently available. We also use a 1GB DDR2-
533 memory device for the storage of instructions and data
in a program.

Processor System Each design consists of the VESPA
soft vector processor with separate first-level direct-mapped
instruction and data caches and the Altera DDR2 full-rate
memory controller that connects to the DDR2 DIMM. The
VESPA configurations are capable of 100-110MHz clock
rates on the mid-speed 3S340C3 device. However we clock
all designs at 100 MHz and the memory system at 266 MHz
and then correct the wall clock time using the highest clock
frequency achievable by that design on a faster 3S340C2.
This allows us to model the performance of high-end FPGAs
without owning them. The time dilation effects between the
processor and memory from this correction generally do not
affect the results significantly.

Testing All instances of VESPA are fully tested in
hardware using the built-in checksum values encoded into
each EEMBC benchmark. Debugging is performed using
Modelsim and is guided by comparing traces of all writes to
the scalar and vector register files. This trace is extracted
from RTL simulation using Modelsim and compared against
an analogous trace obtained from instruction-set simulation
using the MINT [16] MIPS simulator augmented with the
VIRAM extensions. Altera SignalTap II is used for in-
hardware debugging.



Table 2: Benchmark applications.

EEMBC Input Output Largest Vector
Benchmark Description Source Suite (Dataset) size (B) size (B) Element

autcor auto correlation EEMBC/VIRAM Telecom (2) 1024 64 32 bits
conven convolution encoder EEMBC/VIRAM Telecom (1) 517 1024 1 bit

rgbcmyk rgb filter EEMBC/VIRAM Digital Ent. (5) 1628973 2171964 8 bits
rgbyiq rgb filter EEMBC/VIRAM Digital Ent. (6) 1156800 1156800 16 bits
fbital bit allocation EEMBC/VIRAM Telecom (2) 1536 512 16 bits
viterb viterbi encoder EEMBC/VIRAM Telecom (2) 688 44 16 bits

ip checksum checksum EEMBC (kernel) Networking 40960 40 32 bits
imgblend combine two images VIRAM - 153600 76800 16 bits
filt3x3 image filter VIRAM - 76800 76800 16 bits

FPGA CAD Tools A key value of performing FPGA-
based processor research directly on an FPGA is that we
can attain high quality measurements of the area consumed
and the clock frequency achieved—these are provided by
the FPGA CAD tools. We use aggressive timing constraints
to maximize the CAD tool’s effort for default optimization
settings but with register retiming and register duplication
enabled. Through experimentation we found that these
settings provided the best area, delay, and runtime trade-
off. We also performed 8 such runs for every vector
configuration to average out the non-determinism in modern
CAD algorithms. The relative silicon areas of each FPGA
resource relative to a single Adaptive Logic Module (ALM)
was supplied to us by Altera [5] for the Stratix II. We
extrapolated this for Stratix III and used these equivalent
areas to calculate the total silicon area consumed on the
Stratix III measured in units of equivalent ALMs—the
silicon area of a single ALM including its routing.

Benchmarks As listed in Table 2, the top six are
uncompromised benchmarks from the EEMBC [1] industry-
standard benchmark collection. The fifth is a kernel
extracted from an EEMBC benchmark executing a hand-
made data set, and the last two benchmarks were provided
to us from the VIRAM group. Cycle counts are collected
from a complete execution on our hardware platform.

Compilation Framework Benchmarks are built using a
MIPS port of GNU gcc 4.2.0 with -O3 optimization level.
Experiments with this version of gcc’s auto-vectorization
capability showed that it is in its infancy, preventing us
from automatically generating vectorized code from key
EEMBC program loops. Instead we use the GNU assembler
ported to support VIRAM vector instructions. Hand-
vectorized assembly EEMBC routines were provided to us
by Kozyrakis who used them during his work on the VIRAM
processor [12].

4. COARSE-GRAIN TRADE-OFFS:
VECTOR LANES

In this section we show the powerful scaling afforded by
soft vector processors and point out the gaps in the design
space that need to be filled. Figure 5 shows the cycle
performance improvement for each of our benchmarks as
we increase the number of lanes on an otherwise aggressive
VESPA architecture with full memory support (full memory
crossbar, 16KB data cache with 64-byte cache lines and
hardware prefetching). The figure verifies that impressive
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scaling still exists between 1 and 16 lanes on our state-of-
the-art hardware platform. We also measure the effect of
32 lanes for the first time and notice that the performance
scaling continues for benchmarks which have the available
data parallelism. We see 10x average performance for 16
lanes, and 14x for 32 lanes with a peak of 24x.

Figure 6 shows the area/performance space for these
configurations and highlights the coarse-grain nature of
using vector lanes to trade area and performance. The area
cost of increasing the number of lanes can be substantial,
for example growing from 8 to 16 lanes requires more than
10000 ALMs worth of silicon. While this powerful parameter
allows VESPA to take leaps in the area/performance space,
our new architectural parameters enable more fine-grain
area/performance trade-offs as shown in the next section.
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5. FINE-GRAIN TRADE-OFFS
In this work we added parameterized vector chaining to

VESPA, as well as heterogeneous lanes which allows a user
to have L lanes of ALUs, X lanes of multipliers, and M lanes
for the memory crossbar. These additions can be used to
customize the vector core to the functional unit demands in
an application.

5.1 Impact of Vector Chaining
We measured the effect of vector chaining via register file

banking across our benchmarks using a vector processor with
full memory support. We vary the number of banks from 2
to 4 and for each toggle the ALU per bank APB parameter
and compare the resultant four designs to a single bank (no
vector chaining) VESPA.

Figure 7 shows the cycle speedup of chaining across our
benchmarks for an 8-lane vector processor, as well as the
area normalized to the 1 bank configuration. The area cost
of banking is considerable, starting at 27% for a second
register bank and the expensive multiplexing logic needed
between the 2 banks and functional units. The average
performance improvement of this 27% area investment is
approximately 26%, and in the best case is 54%. Note that
if instead of adding a second bank, the designer opted to
double the number of lanes to 16, the average performance
gain would be 49% for an area cost of 77%. Two banks
provide half that performance improvement at one third the
area, and is hence clearly a more fine-grain trade-off than
increasing lanes.

Replicating the ALUs for each of the 2 banks (2 banks,
2 ALUs) provides some additional performance, except for
fbital where the performance improvement is significant.
fbital executes many arithmetic operations per datum
making demand for the ALU high and hence benefiting
greatly from increased ALUs and justifying the additional
7% area. Similarly the 4 bank configuration with no
ALU replication benefits only few benchmarks, specifically
rgbyiq, imgblend, filt3x3. These benchmarks have a near
equal blend of arithmetic, multiply/shifting, and memory
operations and thus benefit from the additional register file
bandwidth of extra banks. However the area cost of the
4th bank becomes significant at 59%. Finally, with 4 banks
and 4 ALUs per lane the area of VESPA is almost doubled
exceeding the cost of adding more lanes while performing
slower; as a result we do not further study this inferior
configuration. Though its peak performance is 4x that
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Figure 8: Cycle performance averaged across our
benchmarks for different lane configuration all with
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of the 1 bank configuration, our benchmarks and single-
issue pipeline with locking cache can not exploit this peak
performance.

Figure 8 shows that the speedup achieved from banking is
reduced as the lanes are increased. Chaining allows multiple
vector instructions to be executed if both the appropriate
functional unit and register bank are available. But because
only one instruction is fetched per cycle, chaining is only
effective when the vector instructions are long enough to
stall the vector pipeline, in other words, when the length of
a vector is greater than the number of lanes. As the number
of lanes increases, vector instructions are completed more
quickly providing less opportunity for overlapping execution.
In the slowest vector processor speedups from banking can
average as high as 60% across our benchmarks, while in
the fastest banking achieves only 23% speedup. The 1
lane vector processor represents a peak speedup achievable
under extremely high load with long vector operations on
the vector coprocessor.

The vector register file is comprised of many FPGA block
RAMs. Given block RAMs with maximum width WBRAM

and total depth of DBRAM , and using the parameters from
Table 1, the number of block RAMs is equal to the greater
of L · W · B/WBRAM or 32MV L × W/DBRAM . For vector
processors with many lanes, making the first expression
greater, adding more banks increases the number of block
RAMs used. For example increasing from 1 to 4 banks with
no ALU replication on a 16 lane VESPA with MVL=128 adds
38% area just in block RAMs and 56% in total. On a design
with many unused block RAMs this increase can be justified,
moreover the added capacity of the block RAMs can be
fully utilized by the vector processor with a corresponding
increase in MVL.

Figure 9 shows the wall clock time versus area space of
the no chaining (solid dots) configurations from 1 to 16
lanes, identical to Figure 6. We overlay two vector chaining
configurations on the same figure and observe that the points
with 2 banks appear about one third of the way to the next
solid dot, proving that chaining can trade area/performance
at finer increments than doubling lanes. Note that the
4 bank configurations are omitted since the area cost is
significant and the additional performance is often modest
compared to 2 banks. Since we have complete measurement
capabilities of the area and performance we are able to
identify that vector chaining in this case is indeed a trade-
off and not a global improvement (it did not move VESPA
toward the origin of the figure).
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Figure 10: Performance impact of varying X for
a VESPA with L=32, M=16, DW=64, DD=16K, and
DPV=8VL, area and performance is normalized to the
X=32 configuration.

Another option for fine-grain area/performance trade-
offs is to use lane configurations that are not powers of
two, resulting in cumbersome control logic which involves
multiplication and division operations. Since the control
logic is often critical, and the additional area overhead
significant, this approach would likely generate inferior
configurations that, in terms of Figure 9, would form a
curve further from the origin than the processors with lanes
that are powers of two. Chaining, on the other hand is
shown to directly compete with these configurations, and in
Section 6 is shown to even improve performance per unit
area. Note that instruction scheduling in software could
further improve the performance of vector chaining, but in
many of our benchmarks only very little rescheduling was
either necessary or possible, so we did not manually schedule
instructions to exploit chaining.

5.2 Impact of Heterogeneous Lanes
The X parameter determines the number of lanes with

multiplier units. We evaluate the effect of varying X on a
32 lane VESPA processor with 16 memory crossbar lanes
and a prefetching 16KB data cache with 64B line size. Each
halving of X doubles the number of cycles needed to complete
a vector multiply. We measure the overall cycle performance
and area and normalize it to the full X=32 configuration.

Figure 10 shows that in some benchmarks such as filt3x3
the performance degradation is dramatic, while in other
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Figure 11: Clock frequency impact of varying X for
a VESPA with L=32, M=16, DW=64, DD=16K, and
DPV=8VL.

benchmarks such as conven there is no impact at all.
Programs with no vector multiplies can have multipliers
removed completely with the instruction-set subsetting tech-
nique explored in [20], but programs with just few multiplies
such as viterb can have its multipliers reduced with very
small performance penalties. The resultant saved area can
then be used for other architectural features or components
of the system.

The area savings from reducing the multipliers is small
starting at 6% for halving the number of multipliers to 16,
the savings asymptotically grow and saturate at 13%. Since
the multipliers are efficiently implemented in the FPGA as
a dedicated block, the contribution to the overall silicon
area is small, and the additional overhead for multiplexing
operations into the few lanes with multipliers ultimately
cancel the area savings. However multipliers are often found
in short supply, so a designer might be willing to accept
the performance penalty if another more critical system
component could benefit from the multipliers.

Figure 11 shows the effect on clock frequency as the
number of lanes with multipliers is varied. The large
memory crossbar is primarily responsible for the limited
clock frequency in the design. As a result removing
multipliers has only a moderate impact on clock frequency.
Specifically values of X between 2 and 8 achieve a 97 MHz
clock over the original 93 MHz. The X=1 configuration
achieves 95 MHz. All of the configurations match or improve
on the clock of the full X=32 configuration. In general we do
not expect the inserted logic for supporting heterogeneous
lanes to degrade the clock frequency.

Overall the heterogeneous lanes mechanism provides an
effective means of conserving FPGA dedicated multiplier
block for applications which have low demand for them.
The memory crossbar explored in [20] uses the same het-
erogeneous lanes mechanism to reduce the crossbar size
for applications which exhibit low demand of the memory
system. Together these parameters can be used to closely
match the instruction mix in an application.

6. EXPANDING THE VESPA DESIGN
SPACE

With the new banking and heterogeneous lanes param-
eters, the VESPA design space has grown significantly
making it increasingly interesting to pursue customized
architectures. In this section we explore that design space
and quantify the additional benefit of our new parameters.



Table 3: Explored VESPA architectural parameters.

Parameter Symbol Explored
C

o
m

p
u
te

Vector Lanes L 1,2,4,8,16,32
Memory Crossbar Lanes M L, L/2
Multiplier Lanes* X L, L/2
Register File Banks* B 1,2,4
ALU per Bank* APB true/false

IS
A

Maximum Vector Length MVL 128, 256
Vector Lane Bit-Width W -
Each Vector Instruction - -

M
em

o
ry

ICache Depth (KB) ID -
ICache Line Size (B) IW -
DCache Depth (KB) DD 8, 32
DCache Line Size (B) DW 16, 64
DCache Miss Prefetch DPK -
Vector Miss Prefetch DPV off, 8*VL
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Figure 12: Average wall clock performance and area
of 1200 soft vector processor variations.

We vary all combinations of the explored parameter values
listed in the last column of Table 3 and implement each
architectural configuration. Note that the instruction cache
was not very influential so it is not explored here; we
also do not perform any modifications which reduce the
functionality of the vector processor (e.g. lane width
reductions or instruction disabling). A total of almost 1200
designs were explored, with the new parameters expanding
the number of design points by 8x.

Figure 12 shows the average performance and area of
all the VESPA configurations. The design space spans a
total of 15x in area and 19x in performance providing a
wide range of design points for an FPGA embedded system
designer to choose from. Moreover, VESPA now provides
more fine-grain coverage of this design space. The pareto
optimal points in the figure approximate a straight line
providing steady performance returns on area investments
until the high-area designs begin suffering from significant
clock frequency decay. Additional retiming or pipelining
can mitigate this decay. Currently clock frequencies range
from 134 MHz to 91 MHz. The maximum area is over
50000 equivalent ALMs, which accounts for more than one-
quarter of the silicon area of the device. In terms of just
logic implemented in Stratix III ALMs, the largest design
consumes more than one-third of the available ALMs in the
device.

As area is increased, two branches emerge: the topmost
(slowest) being the designs throttled by a small 16B cache
line size, and the middle branch throttled by cache misses
without prefetching. With both larger cache lines and
prefetching enabled the fastest and largest designs in the
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Figure 13: Average wall clock performance and area
of pareto-optimal soft vector processor configura-
tions from 768 pruned and expanded design space.

bottom branch can trade area for performance competitive
with the smaller designs. The two top branches are examples
of inferior VESPA configurations. In other words, these
configurations are dominated in both area and speed by
other VESPA configurations. We are therefore motivated to
prune some of these configurations and explore more VESPA
parameter values. Specifically we exclude configurations
with:

1. (L < 8) and (MVL = 512) – Configurations with few
lanes can seldomly justify the area for such large
amount of vector state.

2. (L >= 8) and (DW = 16B) – Configurations with many
lanes require wider cache lines as seen in Figure 12.

3. (L >= 8) and (DPV = 0) – Configurations with many
lanes require prefetching as seen in Figure 12.

4. (DD = 8KB) and (DW = 64B) – Configurations which
do not fully utilize their block RAMs waste area and
are matched or dominated by configurations which do.

5. (DD = 32KB) and (DW = 16B) – Configurations with
extra block RAMs used only to expand the cache
depth which was shown to be ineffective in accelerating
benchmark performance [19].

We also add the values DPV=7 and MVL=4*L to the explo-
ration. With these new values and the above exclusions,
the design space is reduced to 768 configurations. We
can further reduce this design space to a much smaller set
of pareto-optimal configurations which dominate all other
configurations on average across this benchmark set. Note
that certain configurations can benefit a specific application
without being pareto-optimal on average.

Figure 13 shows the wall clock performance and area
design space of the pareto-optimal VESPA configurations
after pruning and adding the new MVL and DPV values. The
MVL value of 4*L instructs VESPA to implement a maximum
vector length that is four times the number of lanes.
Typically the maximum vector length is large to enable long
vectors, but for a single lane configuration this only adds
significant area overhead without significant performance.
The 4*L value allows for much smaller configurations to be
explored. The smallest pareto-optimal configuration is 1838
equivalent ALMs which is signficantly smaller than any of
the previously explored configurations in Figure 12.



The pareto-optimal points span an area of 28x and
wall clock times of 18x. This range of areas is much
larger than the 15x seen previously because of the reason
described above. The performance range however has been
reduced slightly from 19x to 18x. This reduction is due
to the eliminated low-performance configurations which are
dominated by the faster pareto-optimal configurations. The
peak performance is the same in both cases, but the worst-
case performance for the pareto-optimal points is less than
for the full 1200 point design space.

6.1 Per-Application Analysis
A key motivation for FPGA-based soft processors is their

ability to be customized to a given application. This
application-specific customization can aid FPGA designers
in meeting their system design constraints more quickly
and more easily. We therefore analyze the configurations
from the original 1200 point design space which achieve the
best performance-per-area on a per-application basis. Using
this analysis we quantify the benefit of selecting a custom
VESPA configuration over the best overall configuration.

Table 4 shows the VESPA configuration with the best
performance-per-area for each benchmark selected out of
the 1200 explored designs. Surprisingly, all chosen con-
figurations have 2 banks, and fbital has the ALU per
bank parameter enabled. Four of the chosen configurations
also make use of the X parameter to instantiate half as
many multipliers as lanes. The second-last column shows
how much the performance-per-area has improved because
of these new parameters compared to choosing the best
configuration without the new parameters. We achieve
up to 34% (average of 13%) better performance-per-area
compared to the VESPA configurations without chaining
and heterogeneous lanes.

The selected configurations for each benchmark vary sig-
nificantly. For example fbital achieves a peak performance-
per-area with a small 4 lane VESPA with aggressive chaining
and small cache. Most benchmarks benefit from advanced
memory systems, but none benefit from more than 16 lanes
due to the clock frequency decay discussed earlier. The
table also shows the best overall configuration across all
benchmarks, which we refer to as the general purpose or GP
configuration and is shown in the last row of the table. The
general purpose VESPA uses chaining through 2 register
banks and as a result increases its performance-per-area
by 14% over the general purpose VESPA before adding
these parameters. The last column shows the performance-
per-area benefit of choosing a custom VESPA configuration
for each benchmark compared to using the general purpose
VESPA. On average a 12% performance-per-area benefit is
seen, with a peak of 44%, motivating research into auto-
matically selecting a configuration for a given application.
Note that processors with similar performance-per-area can
have drastically different performance and area profiles,
amplifying the variation.

With the exception of viterb the benchmarks are char-
acteristically similar: streaming-oriented across a large data
set with little data re-use. With greater benchmark diversity
we expect the improvements in selecting a per-application
configuration to be significantly higher. Nonetheless, these
improvements highlight the value in matching the soft vector
processor architecture to the application.

7. CONCLUSIONS
We implemented VESPA in hardware using the Stratix

III FPGA on a Terasic DE3 board which is equipped
with a DDR2 DIMM. We verified the increased scalability
of VESPA across a set of benchmarks mostly from the
industry standard EEMBC suite, and noted the coarse-grain
area/performance trade offs within it.

We proposed an FPGA-specific implementation of vector
chaining facilitated exclusively through register file banks
since FPGA block RAMs have only two access ports. We
parameterized the number of banks in the architecture,
as well as allowed duplication of the ALU for each bank
and observed more fine-grain trade offs could be achieved.
Performance gains averaged between 15% and 45% with
area costs significantly less than doubling lanes. We
further augmented VESPA with the ability to implement
heterogeneous lanes, allowing separate specification of the
number of lanes with ALUs, multipliers, and memory units.
This provided further fine-grain control over the architecture
allowing each functional unit to exactly meet its demands.
Between 6-13% area can be saved compared to homogeneous
lanes, in some benchmarks, with little or no performance
degradation.

We observed that our modified VESPA spans an enormous
28x space in area, and 18x in performance. The addition
of our new parameters results in up to 34% (average
13%) increased peak performance per area achievable on
a per-application basis over the previous VESPA. Our new
architectural parameters further motivate the customization
of soft processors to their application providing up to 44%
(average 12%) better performance per area for choosing a
unique configuration for each benchmark versus selecting
one configuration for all benchmarks. This motivates further
design space expansion and eventual inclusion of algorithms
to map applications to processor configurations in FPGA
CAD tools.
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