
Custom Code Generation for Soft Processors
Martin Labrecque, Peter Yiannacouras and J. Gregory Steffan
Department of Electrical and Computer Engineering, University of Toronto{martinl,yianna,ste�an}�eeg.toronto.edu

Abstract
Embedded systems designers that use FPGAs are increasingly in-
cluding soft processorsin their designs (configurable processors
built in the programmable logic of the FPGA). While there has
been a significant amount of research on adding custom instruc-
tions and accelerators to soft processors, these are typically used
to extend an unmodified base ISA targeted by generic compila-
tion such as with unmodifiedg. In this paper we explore sev-
eral opportunities for the compiler to optimize the code generated
for soft processors through application-specific customization of
the base ISA—techniques that are orthogonal to adding custom in-
structions. In particular we explore: (i) low level software-hardware
trade-offs between basic instructions; (ii) the utility of ISA-specific
features—in particular for the delay slots andHi/Lo registers in the
MIPS ISA; and (iii) application specific register management. We
find that through these techniques that have no hardware cost we
can improve the area efficiency of soft processors by 8% on av-
erage across a suite of benchmarks, and by up to 37% in the best
case.

Categories and Subject Descriptors C [3]: Real-time and embed-
ded systems

General Terms Soft Processors, Compiler Techniques, Architec-
ture Exploration, FPGA

Keywords MIPS, subsetting, delay slots, hazard detection, for-
warding, registers

1. Introduction
As embedded systems designers increasingly employ FPGAs,
their designs are likely to contain one or moresoft processors—
processors that are implemented in the programmable logic of the
FPGA [3, 16]. Soft processors are useful because they can eas-
ily be programmed (rather than writing HDL), and a designer can
instantiate the exact number of processors required and can have
them incorporated into the greater design to ease placement and
routing. A key advantage of soft processors is that they can be
customized to match the target application or applications. For ex-
ample, a great deal of recent research has focused on the ability
to add custom instructionsto soft processors, where frequently
executed code segments are replaced with encapsulated hardware
implementations that can be “called” by the soft processor to im-
prove performance [1,5,6,8,20]. However, for many designs,rather
than improving the performance of a soft processor at all costs, the
designer desires a soft processor that is “fast enough” for the target
application, and would rather save area for other uses—perhaps to
help fit the overall design into a given FPGA component. Recent
research explores architectural area/performance/power trade-offs
and customization opportunities for a wide range of soft processor
designs [18,19]. However, this work assumes a fixed ISA (MIPS I),
and the evaluation is based on defaultg compilation—missing
many important opportunities for further customization.

1.1 Generating Custom Code for Custom Processors

In this paper we investigate several opportunities for the compiler
to customize the code that is generated for soft processors—to un-
derstand the range of impact of such techniques, and to give design-
ers more fine-grain control of the area/performance trade-off space
for soft processors. Using the SPREE infrastructure (Soft Processor
Rapid Exploration Environment) [18], we study the impact of our
techniques on the wall-clock time and area of a wide range of soft
processor architectures running a set of general-purpose benchmark
applications. In particular we focus on three main areas of cus-
tomization: (i) low-level software/hardware trade-offs, for example
in shifter implementations and in hazard detection and observation;
(ii) inclusion of ISA-specific features, for example the MIPS load
and branch delay slots, andHi/Lo multiplication result registers;
and (iii) register management, for example operand scheduling to
minimize forwarding logic, and reducing the number of architected
registers. We also study the combination of these techniques and
their resulting impact on area and performance. It is important to
understand that in this paper we do not study the addition of custom
accelerators in the form of custom instructions and co-processors,
although these are complementary to the compiler techniques that
we propose. Finally, the initial work presented here suggests future
efforts into larger-scale compiler optimizations for soft-processors
and other customizable architectures.

1.2 Related Work

Some of the trade-offs we examine in this paper have been explored
previously in other contexts. Shrivastavaet. al. demonstrated that
instruction scheduling can exploit incomplete bypassing in embed-
ded processors [13]. The CUSTARD [6] customizable soft proces-
sor has the ability to customize forwarding lines, and provides a
variable size register file and optional branch and load delay slots—
although to our knowledge these have not been specifically evalu-
ated.

Design decisions similar to some of those we discuss in this
paper were made for commercial soft processors, although there is
no published evaluation that quantifies their value. For example, the
commercial NIOS II and Microblaze processors implement three-
operand multiplication (rather than having special multiplication
registers such as the MIPSHi/Lo registers), and the NIOS II has no
delay slots while the Microblaze supports variants of branches with
and without delay slots. Support for unaligned memory operations
has recently been added tog, but the corresponding hardware
implementation of those operations is patented by MIPS [10].

1.3 Contributions

This paper makes the following three main contributions: (i) pro-
posal and evaluation of several techniques for custom code gen-
eration for soft processors, including software-only and custom
shifters, software hazard observation, and operand scheduling; (ii)
evaluation of the area/performance trade-offs for several MIPS-
specific ISA features, includingHi/Lo registers, load and branch
delay slots; (iii) composition of those techniques to improve on the
state of the art of generating application-specific soft processors.



Table 1. Benchmark applications evaluated.
Dyn. Instr.

Source Benchmark Modified Counts

MiBench [7] BITCNTS di 26,175
CRC32 d 109,414
QSORT* d 42,754

SHA d 34,394
STRINGSEARCH d 88,937

FFT* di 242,339
DIJKSTRA* d 214,408
PATRICIA di 84,028

XiRisc [4] BUBBLE_SORT - 1,824
CRC - 14,353
DES - 1,516
FFT* - 1,901
FIR* - 822

QUANT* - 2,342
IQUANT* - 1,896
TURBO - 195,914

VLC - 17,860

Freescale [15] DHRY i 47,564

RATES [12] GOL di 129,750
DCT* di 269,953

* Contains multiply
d Reduced data input set
i Reduced number of iterations

2. Infrastructure for Varying Soft Processor
Compilation, ISAs, and Architectures

Our compiler infrastructure is based on modified versions ofg
4.0.2,Binutils 2.16, andNewlib 1.14.0 that target variations of
the MIPS I [11] ISA; integer division is implemented in software,
and for now interrupts are not supported. Using the 20 embedded
benchmark applications described in Table 1, we evaluate our com-
piler techniques for generating custom code for varying soft pro-
cessor architectures.

We use the SPREE system [18] to generate a wide range of
soft processor architectures (full details are available in a previous
publication [17]). SPREE takes as input ISA and datapath descrip-
tions and produces RTL which is synthesized, mapped, placed, and
routed by Quartus 5.0 [2] using the default optimization settings.
The generated processors target the Altera Stratix FPGAs, in par-
ticular theEP1S40F780C5 device—a mid-sized device in the fam-
ily with the fastest speed grade. We determine the area and clock
frequency of each soft processor design using the arithmetic mean
across 10 seeds (which produce different initial placements before
placement and routing) to improve our approximation of the true
mean. For each benchmark, the soft processor RTL design is sim-
ulated using Modelsim 6.0b [9] (i) to obtain the total number of
execution cycles, and (ii) to generate a trace which is validated
for correctness against the corresponding execution by an emula-
tor (MINT [14]).

For Altera FPGAs, the basic logic element (LE) is a 4-input
lookup table plus a flip-flop—hence we report the area of these
processors inequivalent LEs, a number that additionally accounts
for the consumed area of any hardware blocks (e.g., memory and
multiplication units). For the processor clock rate, we report the
maximum frequency supported by the critical path of the proces-
sor design. To combine area, frequency, and cycle count to evaluate
an optimization, we use a metric ofarea efficiency, in million in-
structions per second (MIPS) per thousand equivalent LEs. Finally,
since power is dependent on the duration of execution of a bench-
mark, we instead reportenergy per cyclein nano-Joules (nJ) per
cycle.

As shown in Figure 1, the processors that we evaluate are un-
pipelined (serial), 3-stage-pipelined (pipe3), 5-stage-pipelined
(pipe5), and 7-stage-pipelined (pipe7). The unpipelined proces-

F/D/R
EX/M/WB

(a) serial

F/D WBR/EX
/M

(b) pipe3

WBF D EX
/MEX

R/

(c) pipe5

DF EX EX
/M WB2WB1

EX/R

(d) pipe7

Figure 1. Processor pipeline organizations studied. The pipeline
stages are:F for fetch,D for Decode,R for register,EX for execute,M for memory, andWB for write-back. The arrow indicates a path
for forwarding two operands at once.

sor is the smallest (889 LEs, 67.7 MHz): it has a multiplier and
a serial shifter. The pipelined processors all have forwarding lines
for both operands by default. The 3-stage pipeline has a shifter that
is implemented with the multiplier, and is the most area-efficient
processor generated by SPREE [19] (1174 LEs, 78.3 MHz). The 5-
stage pipeline also has a multiplier-based shifter, and implements a
compromise between area efficiency and maximum operating fre-
quency (1283 LEs, 86.79 MHz). The 7-stage pipeline has a barrel
shifter, is the largest processor, and has the highest frequency (1557
LEs, 100.59 MHz).

3. Low-Level Software-Hardware Trade-Offs
A powerful trade-off for soft processor designs is the implemen-
tation of common routines in either software (through regular in-
structions in the base ISA) or custom hardware (implemented as
custom instructions in addition to the base ISA). However, for area-
sensitive applications we find it can be compelling to explore simi-
lar trade-offs in the actual base ISA and architecture. For example,
previously we demonstrated that “subsetting” the base ISA—so
that the hardware support for any instructions that are not used by
an application is deleted from the processor—results in an average
area reduction of 25% and up to 60% for some applications [19].
In this section we evaluate two opportunities to further subset the
ISA and hardware by having the compiler compensate in software:
(i) by removing the shift unit or replacing it with one or more much
smaller fixed-amount shift units, and (ii) by removing the hazard
detection logic and instead observing dependences by having the
compiler schedule instructions and insert no-ops.

3.1 Shifter Implementations

It has been shown that it is advantageous to implement shift op-
erations using a hard multiplier if one is available [18]. However,
for an area-limited design that does not contain a hard multiplier
(opting instead for software multiplication if needed), a dedicated
shifter can consume more than 250 LEs. Instead we investigate the
possibility of implementing various shift operations either partially
or entirely in software. Shifts can be implemented entirely in soft-
ware using non-shift operations such asadd andsubtrat. Al-
ternatively, we could implement a small number of fixed-amount
shifts in hardware (in far less area than a full variable-amount
shifter), and use those operations to build up other shift amounts
through software (eg., call a shift-right-by-four operation three
times to implement a shift-right-by-twelve operation).



Figure 2. Percentage of dynamic instructions that contain shift
operations, broken down by those that have a fixed shift-amount
encoded in the instruction (sll, sra, andsrl), those that have a
variable shift amount stored in a register (sllv, srav, andsrlv),
and thelui instruction which also has a fixed shift-amount (16 bits
left).

Figure 3. Impact of removing the dedicated shifter unit, relative to
the corresponding default processors with software multiplies.

Figure 2 shows the percentage of dynamic instructions executed
for each benchmark that perform a shift operation, for exampleshift
left logical (sll), shift right arithmetic(sra), andload upper im-
mediate(lui, which shifts left by 16 bits). Some instructions have
a variable shift amount stored in a register (srav), as opposed to an
immediate shift amount encoded in the instruction (sra). The re-
sults demonstrate that while shift instructions can be quite common
(an average of 15% of dynamic instructions across all benchmarks),
the vast majority shift by a fixed amount. In general, any variable
shifts can potentially be implemented entirely in software, or else
through use of a fixed-amount unit shifter—with the possible ex-
ception of thePATRICIA benchmark for which variable shifts are
more common (2.5% of dynamic instructions).

To further demonstrate the potential for eliminating shift in-
structions, Figure 3 shows the impact of removing the dedicated
shifter unit for various processors, each relative to the correspond-
ing default processor with software multiplies. We observe that re-
moving the shifter results in significant area and energy savings
for all processors, although clock frequency is not significantly af-
fected, even it varies somewhat due to the impact on overall place-
ment and routing.pipe3 andpipe5 benefit from the largest area

Table 2. Selection and impact of the two fixed-amount hardware
shifters for each benchmark that provide the maximum cycle count
improvement. The last column represents the fraction of original
shifts that are not directly translated to a number of fixed-function
shifts.

1st Shifter 2nd Shifter Relative % Shifts not
Shift Shift Increase Fully

Benchmark Type Amt. Type Amt. in Cycles Translated

bubble_sort - - - - 1 -
crc srl 24 sll 2 1.27 29%
des srl 1 sll 1 2.58 0
fft srl 1 sll 1 1.18 0
fir srl 1 sll 1 1 0

quant srl 1 sll 1 2.44 0
iquant srl 1 sll 1 1.29 0
turbo srl 2 sll 8 2.39 51%
vlc srl 1 sll 1 3.2 0

bitcnts srl 4 srl 1 1.33 0
CRC32 srl 8 sll 2 1 48%
qsort srl 1 sll 1 1 0
sha srl 1 sll 5 1.68 49%

stringsearch sra 24 sll 2 1.02 18%
FFT_MI srl 1 sll 1 1.57 0
dijkstra srl 1 sll 1 1.11 0
patricia srl 1 sll 24 1.8 61%

gol sra 24 sll 1 1.66 33%*
dct srl 1 sll 1 1.47 0

dhry sra 24 sll 1 1.33 35%*

savings because they implement shifts with a multiplier that can
be eliminated when removing the support for the shift operations.
Given these potential savings, we are motivated to investigate ways
to eliminate shift instructions from the base ISA, while minimizing
the impact on overall performance.

In the absence of a dedicated shift unit, shift operations can be
supported through clever use of other instructions. Left shifts can
be replaced by repeatedly adding a number to itself as many times
as the shift amount (effectively doubling the number every time);
this technique can also be applied to the 16-bit left shift required
by load-upper-immediate(lui) instructions. The right shift opera-
tion is more challenging, but it can be replaced by a method simi-
lar to software division that performs successive subtractions; note
thatshift right arithmetic(sra) requires sign extension to the most
significant bits, whileshift right logical (srl) does not. We found
that supporting shift operations only in software resulted in unac-
ceptable cycle-time increases—orders of magnitude for many ap-
plications; hence we are motivated to compromise with hardware
support for a small number of fixed value shifters.

We investigate the impact of having up to two fixed-amount
hardware shifters in lieu of a variable-amount shifter, as shown in
Table 2. We decided which are the best two fixed-amount shifters
for each benchmark based on the projected total dynamic cycle
savings of each. Note that this calculation accounts for the fact
that any shift operation that requires amultipleof one of hardware
shift-amounts may be implemented through a software routine that
calls the hardware shifters an appropriate number of times. From
the table it is apparent that left and right logical shifts of 1 bit are
the most beneficial, followed by shifts of 24-bits. We also report
the increase in dynamic cycles relative to the default implementa-
tion with software multiplication (and a variable-amount hardware
shifter). The increase in cycles ranges to negligible for 5 bench-
marks to a worst case of 2.58 for DES, and a mean increase of 1.57
across all benchmarks which seems to be reasonable enough to be
exploited as an area/performance trade-off. Finally, we report the
percentage of original shifts that are not fully translated to a num-
ber of fixed-function shifts instructions but rather require software



(a) Comparison of variants of thepipe3 processor

(b) Area efficiency of up to 2 fixed-function shifters per benchmark

Figure 4. Results showing: (a) the area cost for variants of thepipe3 processor, including two popular fixed-amount shifter con-
figurations from Table 2; (b) the area efficiency for apipe3 pro-
cessor in its default configuration or equipped with up to 2 fixed-
amount shifters. The source of instruction count to compute the
MIPS value is indicated. Starred benchmarks (*) require multipli-
cations.

routines (that may in turn use the fixed-function hardware shifters,
in particular for divisions).

Figure 4(a) shows the area impact of gradually decreasing hard-
ware support for shifting for theserial processor (default), in-
cluding two common choices of fixed-amount hardware shifter
pairs (srl1 & sll1, andsra24 & srl1). The frequency of those
processors is increased by 1% when removing the multiplication
support and 8% on average when removing the shifter or having
fixed-function shifters. Figure 4(b) shows the area efficiency of pro-
cessors with up to 2 fixed-function shifters. To compute the area
efficiency of this optimization, we first use the instruction count
of the benchmarks with software multiplies to compare constant
amounts of work. We find that area efficiency is improved by 20%
on average across all benchmarks (with a standard deviation of
38%). Also in Figure 4(b), we show the efficiency of processors
with fixed-function shifters when using the instruction count of the
default processors equipped with hardware shifters. We can see that
having soft multiplies and fixed-function shifters proves to be more
area efficient for 3 benchmarks that use a hardware shifter (FIR,
QSORTandDIJKSTRA).

3.2 Removing Hazard Detection Logic

A nice feature of SPREE is that it automatically generates haz-
ard detection logic which stalls the pipeline so that register depen-

Figure 5. Measurements of various soft processors with hazard de-
tection logic removed, normalized to the corresponding soft proces-
sors having hazard detection logic.

dences are observed. However, hazard detection logic consumes a
non-trivial fraction of processor area: roughly 10% or 110 LEs. Al-
ternatively, the compiler could become responsible for observing
register dependences, implemented through instruction scheduling
where possible and insertion ofno-op instructions as a last resort.
Figure 5 shows the potential benefits of removing hazard detec-
tion logic, which are an area savings of 10% forpipe3 andpipe5,
and 6% forpipe7, and an increase in clock frequency of 3% forpipe3, and 6% forpipe5 andpipe7. The serial processor is
not affected by this transformation because it has no hazard de-
tection logic. Since these results are promising, in future work we
will investigate the impact on cycle count, code size, and overall
performance of compiler scheduling and no-op insertion. However,
note that such compiler scheduling can be non-trivial, for example
to account for variable-cycle operations such as shifts—a practi-
cal solution may be to only partially remove hazard detection for
simple cases.

4. Impact of Unique ISA Features
Customizable and parametric processors are often built on a base
RISC ISA, which can then be extended with custom instructions.
Depending on the base ISA, there may be unique ISA features
which may or may not benefit a given application. Since our in-
frastructure is based on the MIPS ISA, we investigate the MIPS-
specific features of load and branch delays slots,Hi/Lo registers,
and unaligned memory references; for example, the Nios II ISA is
similar to MIPS, although it does not support any of those features.
Hence we are motivated to evaluate the impact of these features.

4.1 Load Delay Slots

The MIPS instruction set has two delay slots: one that follows load
instructions, and one that follows branch and jump instructions. A
delay slot is a placeholder in which an instruction may be sched-
uled, so long as it does not depend on the result of a load, or will be
executed regardless of whether the corresponding branch is taken;
if there is no appropriate instruction to occupy a delay slot, a no-op
instruction is used. Delay slots are useful in helping tolerate delays
due to hazards in a processor’s pipeline. Note that there is a neg-
ligible hardware cost for supporting load delay slots, while branch
delay slots can complicate several aspects of pipeline control logic.

Figure 6(a) shows the impact on wall-clock time of removing
the load delay slots on theserial processor. Since this processor
is not pipelined and has a one-cycle memory access latency, load
delay slots have no benefit and removing them only improves wall-
clock time. We also evaluate removal of load delay slots for the



(a) Removing load delay slots,serial processor

(b) Removing delay slots,pipe3 processor

Figure 6. Impact on the wall-clock time of removing delay slots,
normalized to the corresponding default compilation/processor
(with delay slots). loop_start:branh loop_startnoploadnop

(a) With the load delay slot.loop_start:branh loop_startload
(b) Without the load delay
slot.

Figure 7. Code showing a load instruction scheduled into a branch
delay slot by the compiler as a side-effect of the removal of the load
delay slot.

3-stage pipelined processorpipe3, as shown in Figure 6(b): on
average this results in a small (1%) reduction in wall-clock time due
to cycle count savings, although the savings for some benchmarks
is significant. For pipelined processors, the forwarding lines can
reduce stalls and make load delay slots unnecessary (again, since
we have a 1-cycle access to the memory system).

For CRC32 removing the load delay slot leads to a slowdown
of 14% due to unfortunate circumstances: as illustrated in Figure 7,
the compiler scheduled a load in a branch delay slot, such that the
load is then unnecessarily executed along with every execution of
the branch. In contrast, when a load delay slot is supported the

(a) CAD metrics relative to corresponding default implementation
(that implements branch delay slots).

(b) Impact on wall-clock time for thepipe7 processor, relative to the default
execution (with branch delay slots).

Figure 8. Impact of removing the branch delay slot.

branch delay slot is occupied by a no-op and the load is only
executed whenever the branch is not taken. As a solution to this
problematic case we implemented a compiler setting where the load
delay slot is removed, but a load can never be used in a branch
delay slot. In Figure 6(b) we evaluate this setting (the 2nd bar), but
find that it is a compromise: it always improves on the baseline but
cannot achieve the full benefit of simply removing the load delay
slot in some benchmarks.

4.2 Branch Delay Slots

A branch delay slot provides an extra cycle to compute the tar-
get of the branch in a pipelined datapath, before the program
counter is updated with either the branch target or fall-through
locations—hence the delay slot instruction following a branch
must be executed regardless of whether the branch is taken. Ac-
counting for branch delay slots requires additional control logic
and increases the complexity of the processor, and hence is a po-
tential area/performance trade-off in itself. Figure 8(a) shows the
impact on the processor metrics of removing support for branch
delay slots, which is negligible except for a 13% increase in clock
frequency for the 7-stage pipeline. This frequency improvement is
due a change in the critical path of the processor that occurs only
for that particular processor.

In Figure 6(b), we show that removing the branch delay slot
for the 3-stage pipeline increases the number of cycles because our
processor simply assumes that branches are not taken—i.e. all in-
structions executed after the branch must be squashed when the
branch is taken. In Figure 8(b) removing branch delay slots from



multiplier

re
gi

st
er

 fi
le

M
U

X

Hi/Lo

Figure 9. Schematic of theHi/Lo circuitry. The solid line repre-
sents the default MIPS implementation, while the dashed line rep-
resents the proposed elimination ofHi/Lo registers.

the 7-stage processor reduces wall-clock time by an average of 8%,
which is a significant improvement—this is due entirely to an in-
crease in clock frequency, as the average cycle count actually in-
creases in this case. We are currently implementing more sophis-
ticated branch prediction support so that we may more thoroughly
study the potential of customization of branches and their delay
slots.

4.3 3-Operand Multiply vs Hi/Lo Registers

On a 32-bit architecture, the multiplication of two registers results
in a 64-bit product of which the 32 most significant bits are called
the high part and the 32 least significant bits are called thelow
part. In a MIPS processor, special registers calledHi andLo hold
the result of a multiplication so the destination of a multiplication
is implicit. To become accessible to the ALU, the high and low
parts of the result must be loaded in the register file by two separate
instructionsmfhi andmflo. Figure 9 shows the two registers that
are used exclusively for the multiplication (since our processors
support only software division). Those registers were originally
introduced to reduce the scheduling complexities of the multi-cycle
multiply and divide instructions and because they had hardware
interlocks, while the rest of the processor did not.

To evaluate the costs/benefit of this particular feature of the
ISA, we optionally support a three-operand multiply (similar to the
NIOS II [3] or Microblaze [16] ISAs), where the destination reg-
ister may be any general-purpose register, and is explicitly defined
in the instruction encoding. Since only one 32 bit destination reg-
ister may be specified, we require two multiply instructions: one to
compute the high part of the multiplication, and one to compute the
low part. A side-benefit of this approach is that only one multipli-
cation instruction need be used if only the low part of the operation
is required. We found that only the low part of multiplication is
required forFFT, FIR, QUANT, IQUANT, andQSORT benchmarks,
while FFT_MI , DIJKSTRA andDCT require 64 bit multiplication re-
sults (the remaining benchmarks do not contain multiplies).

Figure 10(a) shows the impact of 3-operand multiplies relative
to the corresponding default multiplier implementation for the dif-
ferent pipelined processors. While there is a modest area savings
(2% on average) due to elimination of the actualHi andLo registers
(which are cheap in an Altera FPGA), processor frequency suffers
significantly in most cases because the write-back path from the
multiplier to the register file becomes a critical path. However, we
find that the average cycle count is reduced by 2% for the 3-operand
multiplication (with a standard deviation of 3%), due to a reduction
on average of the number of instructions required for multiplica-
tion: when only the lower 32-bit result is required, only the one
3-operand multiply instruction is required, while for the 2-operand
multiply instruction amflo instruction is additionally required.

Figure 10(b) shows that wall-clock time is improved by 3%
on average for the 3-stage pipeline, but unchanged for the 7-stage
pipeline. Taking area into consideration, our conclusion is that
the 3-operand multiplication (along with the removal of theHi/Lo
registers) is beneficial only for our 3-stage pipelined processor.

(a) CAD metrics for processors that implement only one instruction to
compute the low part (Low) or two instructions to compute both the high
and low parts (High + Low) relative to the corresponding default multiplier
implementation.

(b) Impact on wall-clock time normalized to the execution with the default
multiplier averaged over all benchmarks that contain multiplications (see
Table 1).

Figure 10. Impact of 3-operand multiplies.

4.4 Unaligned Loads and Stores

While the instructionslwl, lwr, swl, andswr have patent restric-
tions and are thus not supported by SPREE, they can be generated
by g. These perform unaligned memory loads and stores, effec-
tively comprising memory references with shift operations. In ab-
sence of those instructions, compilers typically use padding to align
data to word boundaries. Since padding is not always possible, it is
important to measure the cost/benefit of these instructions. In Fig-
ure 11, we show the reduction in dynamic instructions through the
addition of these more powerful instructions. ForTURBO, SHA, and
DHRY, this savings is significant, but on average these instructions
only reduce the cycle count by 0.5% and hence are not generally
worth supporting.

5. Application-Specific Register Management
For a soft processor, the set of architected registers in the base ISA
and their conventional uses may not necessarily match the needs
of the target application, or may miss opportunities for a more effi-
cient architecture. In this section we present and evaluate two tech-
niques that customize the compiler’s use of registers to applica-



Figure 11. Percentage of dynamic instructions removed with the
addition of the patented instructions performing unaligned memory
accesses.

Table 3. Percentage cycle count savings of forwarding lines and
operand scheduling, relative to the corresponding default processor
with no forwarding lines (and no scheduling), averaged across all
benchmarks (i.e., 0% means no cycle savings).

Processor Fwd A Fwd A + Scheduling Fwd ABpipe3 10% 11% 14%pipe5 12% 14% 17%pipe7 9% 11% 15%

tions: operand scheduling, and limiting the use of architected reg-
isters.

5.1 Operand Scheduling

To reduce stalls due to data hazards between registers in pipelined
processors, designers employ forwarding lines to forward the result
computed in a later stage directly to an earlier stage, bypassing the
register file. In our soft processor designs, we optionally support
one pair of forwarding lines (see Figure 1)1. Since operands for
instructions that implement a commutative operation (such asadd
may be freely exchanged, our insight is that we could bias operands
with near-distance register dependences to favor a given operand
position in the instruction, potentially allowing us to reduce the
performance impact of removing one of the two forwarding lines
from our processors. Our algorithm for scheduling operands is as
follows. For each instruction, we traverse a history of instructions
in the static program order—from the most recent to the oldest—
to find read-after-write dependences, and to adjust the order of the
operands to take advantage of the supplied forwarding lines. Care is
taken not to affect the register allocation which could counter/undo
our operand scheduling.

Table 3 shows the impact of forwarding lines and operand
scheduling on the 3, 5, and 7 stage pipelines. We find that the ad-
dition of a single forwarding line improves the average cycle count
by 9 to 12 percent for the different processors, and that the addition
of compiler operand scheduling provides an additional 1 or 2 per-
cent average improvement (but up to 8% for some benchmarks).
Note that we observed thatg already favors one operand, hence
our scheduling efforts are on top of that bias. Addition of a second
forwarding line further improves cycle count by 3 to 5 percent. In
summary, while operand scheduling provides an improvement over

1 Additional forwarding lines are not possible in these datapaths.

(a) CAD metrics for forwarding lines (either A, or both A and B), normal-
ized to the corresponding processors without forwarding lines.

(b) Comparison of the area efficiency of thepipe3 processor with forwarding for
one operand (fwd A), plus operand scheduling (fwd A + S), and with forwarding
for both operands (fwd AB).

Figure 12. Impact of forwarding lines and operand scheduling.

a single forwarding line at no hardware cost, it cannot equal the
benefits of an additional forwarding line.

Although our algorithm improves the effectiveness of a single
forwarding line, unexploited forwarding opportunities still remain
for two reasons: (i) for each instruction we can only choose one
permutation of its operands; and (ii) our algorithm does not pre-
dict control flow. Figure 13 illustrates the three situations where
missed forwarding opportunities occur. On average with the 3, 5
and 7 stage pipelines with a single forwarding line, the breakdown
of missed forwarding opportunities after operand scheduling is as
follows: 8% for commutative operations with forward branches
(Figure 13(a)); 10% for commutative operations with backward
branches (Figure 13(b)); 82% for non-commutative operands (Fig-
ure 13(c)). The most frequently occurring non-commutative in-
structions that result in missed forwarding opportunities are store
instructions (sb, sw), and the set-less-than instruction (slt andsltu set a register if a comparison is true). These results mo-
tivate future improvements to our algorithm to schedule non-
commutative operands. One available option would be to change
the ISA definition on a per-application basis to choose the best av-
erage operand permutation for some non-commutative instructions.

Figure 12(a) shows the impact of forwarding lines on the maxi-
mum frequency, the area and the energy per cycle of our pipelined



r1 = r2 + r3branh startr4 = r1 + 4start:r5 = r4 + r1

(a) Forward branch.

r1 = r2 + r3loop_start:r3 = r1 + r4
r4 = r3 + 1branh loop_start

(b) Backward branch.

r1 = r2 + r3r4 = r5 - r1

(c) Non-commutative
operands.

Figure 13. Examples of missed forwarding opportunities. Itali-
cized register names show a register that is written then read. As-
suming support for forwarding the operand in the first source po-
sition, the read instruction has the register as a second operand be-
cause of other operand scheduling constraints in (a) and (b), or be-
cause of properties of the instructions (c).

processors. In all cases, area is increased by less than 10% and en-
ergy per cycle by less than 5%. Surprisingly, certain processor con-
figurations have an improved maximum operation frequency which
should be considered within the noise margin of the placement and
routing of the FPGA. As seen in Figure 12(b), because of the area
cost of having two forwarding lines, compiler support allows some
benchmarks (such asBUBBLE_SORT, DES and STRINGSEARCH)
to be equally or more efficient with a single forwarding line than
with two forwarding lines. While compiler support improves area
efficiency of this processor by 2% on average (and up to 5% for
FIR), a single forwarding line remains less area efficient than two
forwarding lines overall (3% degradation).

5.2 Limiting Use of Architected Registers

Not all applications require the use of all architected registers in
a base ISA to maintain good performance, and for other applica-
tions limiting the number of registers accessible by the compiler
has a tolerable impact on performance. For an FPGA-based soft
processor, since the register file is typically implemented using a
block memory, the memory space freed by reducing the number
of architected registers is not easily reclaimed by the rest of the
FPGA design. However, these free register locations could poten-
tially be exploited by new custom instructions or functional units,
for a tighter integration with the processor.

In this section we evaluate the impact of limiting the use of
certain architected registers for the base MIPS ISA, usingg
with full optimization (-O3). In particular, for now we examine the
MIPS convention of reserving two registers for operating system
purposes (k0-k1), and eight registers for caller-saving across a
function call (s0-s7). We modifiedg to usek0-k1 as general
purpose registers but observed no significant application speedup
over all our benchmarks, meaning that an increased number of
registers was not helpful. We thus revertedg to not usingk0-k1
and modified it so that it does not use some registers in thes0-s7
register range.

For our embedded benchmark set, Figure 14 shows that sev-
eral applications do not fully take advantage of the 32 registers
assumed by the MIPS ISA: onlyDES incurs an observable slow-
down when removing 2 registers from the default compilation. The
fact that theBITCNTS andPATRICIA benchmarks encounter a small
speedup is an unexpected side-effect of register allocation, instruc-
tion scheduling and forwarding opportunities. The unpipelined pro-
cessor in Figure 14 suffers the most from fewer registers among our
reference processors because memory spills due to register pressure
result directly in additional processor waiting cycles for memory.

Figure 14. Impact on wall-clock time of increasingly limiting the
number of registers available to the compiler for theserial pro-
cessor.

We verified that some benchmarks did not use any of thes0-s7
registers with the default optimized compilation. Removing some
of the 10 callee saved registers (t0-t9) was not yet attempted.

6. Combining Customization Techniques
In this section we evaluate the impact of combining the compiler
optimizations described in this paper, and their interaction with
application-specific architecture and ISA subsetting as detailed in a
previous publication [19].

In Figure 15, the first bar shows the area efficiency for thepipe3
processor, since overall it is the most area efficient over all our
benchmarks. In other words, we would choosepipe3 if we re-
quired the one most efficient processor to support all benchmarks.
We usepipe3 as the comparison basis for our application-specific
optimizations. For the second bar (AS), we select the most area-
efficient processor architecture for each application (considering
as design options shifter implementations, pipeline depth and for-
warding lines, hardware vs software multiplication support), in a
similar manner to earlier work [19] but with the addition of for-
warding lines as a design option. Choosing an application-specific
processor design improves efficiency by 17% on average, illustrat-
ing the power of customization for soft processors. For the third
bar (AS + Subset), to the best application-specific processor we ad-
ditionally apply ISA subsetting (removal of the processor support
for any instructions that are unused by that application [19]). Sub-
setting further improves efficiency by an additional 8% on average,
although for some applications, such asFIR and BUBBLE_SORT,
the benefit is much greater since they have a large number of un-
used instructions.

For the fourth bar (AS + Opt), to the best application-specific
processor we apply the most effective combination of the follow-
ing compiler techniques: (i) custom fixed-amount shifters, (ii) de-
lay slot removal, (iii) 3-operand multiplication, and (iv) operand
scheduling—the remaining optimizations (compiler-managed haz-
ard detection, unaligned memory accesses, and register elimina-
tion) are not evaluated here because the SPREE infrastructure does
not yet either support or exploit them. The table in Figure 15 shows
the combination of compiler optimizations selected for each ap-
plication. Our optimizations provide an average improvement of
5 MIPS/1000 LEs (8%) over the application-specific processor
(AS); the maximum improvement (for CRC32) is 20 MIPS/1000



Load
Fixed Delay

Amount Slot 3-op Oper.
Benchmark Shifters Removal Mult. Sched.

bubble_sort X X

crc X X

des X

fft X X

fir X X

quant X X

iquant X X

turbo X

vlc X

bitcnts X X

CRC32 X X

qsort X X

sha X

stringsearch X X

FFT_MI X X X

dijkstra X X

patricia X

gol X

dct X X

dhry X

Figure 15. Area efficiency of thepipe3 processor, best application-specific processor (AS), and the best application specific processor with:
subsetting (AS + Subset); compiler optimization (em AS + Opt); and both improvements (AS + Subset + Opt). The table describes which
optimizations were beneficial and hence enabled for each benchmark.

LEs (37%), mostly due to the effectiveness of the fixed-function
shifters.

For the fifth and final bar (AS + Opt + Subset), we evalu-
ate the combination of our optimizations and subsetting on the
application-specific processors, which improves efficiency over
subsetting alone by 8% on average. We also find that our opti-
mizations and subsetting can be complementary: for example, for
FIR the efficiency of optimizations and subsetting is greater than
the sum of the gain of each individually by 18 MIPS—a result of
improved FPGA placement and routing. The best improvement (ei-
ther relative or absolute) over the best application-specific proces-
sor with subsetting (AS + Subset) is 23 MIPS (40%) for CRC32.
This illustrates that our optimizations can significantly impact de-
sign decisions when area, frequency and wall-clock time must be
taken into consideration.

7. Conclusions
In this paper we have presented a customization approach that
consists of adapting code generation to make it more efficient
by revisiting traditional architectural and ISA assumptions. We
have illustrated several trade-offs between area, power, operating
frequency and wall-clock time. We found: (i) that we can improve
area efficiency by replacing a variable-amount shifter with two
fixed-amount shifters; (ii) that hazard detection logic hinders the
processor’s area and operating frequency; (iii) that we can eliminate
load delay slots in most cases; (iv) that branch delays slots can
be removed in a 7-stage pipeline even with no branch prediction;
(v) that 3-operand multiplies are only justified for our 3-stage
processor (and that otherwiseHi/Lo registers are best); (vi) that
unaligned memory loads and stores do not provide a significant
performance benefit for our benchmarks; (vii) that we are able to
remove one forwarding line with simple operand scheduling and
improve area efficiency; and (viii) that we can limit the compiler’s
use of a significant fraction of the 32 architected registers for
many benchmarks without degrading performance. To maximize
the efficiency of the customized architecture of our soft processors,
we combined several of these optimizations and obtained an 8%
additional area efficiency increase on average (and up to 37% in

the best case). By including subsetting and our optimizations, the
mean improvement remains 8% but the maximum is 40%.

In the future, we will study in greater depth the potential for
optimizations that focus on branch prediction and the memory sys-
tem. We also plan to develop methods for automatically deciding at
compile time the best optimizations and architectural features for a
specific application.

References
[1] Altera Corporation. Nios II C-to-Hardware Acceleration Compiler.

http://www.altera.com/c2h.

[2] Altera Corporation. Quartus II. San Jose, CA, USA.

[3] J. Ball. The Nios II Family of Configurable Soft-Core Processors.
Hot Chips, August 2005.

[4] F. Campi, R. Canegallo, and R. Guerrieri. IP-reusable 32-bit VLIW
RISC core. InProc. of the 27th European Solid-State Circuits Conf,
pages 456–459, September 2001.

[5] J. Cong, Y. Fan, G. Han, A. Jagannathan, G. Reinman, and Z. Zhang.
Instruction set extension with shadow registers for configurable
processors. InFPGA ’05: Proceedings of the 2005 ACM/SIGDA
13th international symposium on Field-programmable gate arrays,
pages 99–106, New York, NY, USA, 2005. ACM Press.

[6] R. Dimond, O. Mencer, and W. Luk. CUSTARD - A Customisable
Threaded FPGA Soft Processor and Tools. InInternational
Conference on Field Programmable Logic (FPL), August 2005.

[7] M. Guthaus and et al. MiBench: A free, commercially representative
embedded benchmark suite. InIn Proc. IEEE 4th Annual Workshop
on Workload Characterisation, December 2001.

[8] R. Lysecky and F. Vahid. A Study of the Speedups and Com-
petitiveness of FPGA Soft Processor Cores using Dynamic Hard-
ware/Software Partitioning. InDATE ’05: Proceedings of the con-
ference on Design, Automation and Test in Europe, pages 18–23,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] Mentor Graphics Corp. Modelsim SE. http://www.model.com, 2004.

[10] MIPS Technologies Inc. The MIPS RISC architecture. http://www.mips.com.

[11] S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P. Jouppi, and
C. Rowen. Organization and VLSI implementation of MIPS.



Technical report, Stanford University, Stanford, CA, USA,1984.

[12] L. Shannon and P. Chow. Standardizing the performance assessment
of reconfigurable processor architectures. InIEEE Symposium on
Field-Programmable Custom Computing Machines, pages 282–283,
2003.

[13] A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau. Operation
tables for scheduling in the presence of incomplete bypassing.
In CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis, pages 194–199, New York, NY, USA, 2004. ACM Press.

[14] J. Veenstra and R. Fowler. MINT: a front end for efficientsimulation
of shared-memory multiprocessors. InProceedings of the Second
International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 201–207, NC,
USA, January 1994.

[15] R. Weiker. Dhrystone 2.1.SIGPLAN Notices, 23(8), August 1988.

[16] Xilinx Inc. MicroBlaze RISC 32-Bit Soft Processor, August 2001.

[17] P. Yiannacouras. The Microarchitecture of FPGA-BasedSoft
Processors. Master’s thesis, University of Toronto, 2005.

[18] P. Yiannacouras, J. Rose, and J. G. Steffan. The microarchitecture of
FPGA-based soft processors. InCASES ’05: Proceedings of the 2005
international conference on Compilers, architectures andsynthesis
for embedded systems, pages 202–212, New York, NY, USA, 2005.
ACM Press.

[19] P. Yiannacouras, J. G. Steffan, and J. Rose. Application-specific
customization of soft processor microarchitecture. InFPGA’06:
Proceedings of the internation symposium on Field programmable
gate arrays, pages 201–210, New York, NY, USA, 2006. ACM Press.

[20] P. Yu and T. Mitra. Scalable custom instructions identification for
instruction-set extensible processors. InCASES ’04: Proceedings of
the 2004 international conference on Compilers, architecture, and
synthesis for embedded systems, pages 69–78, New York, NY, USA,
2004. ACM Press.


	Introduction
	Generating Custom Code for Custom Processors
	Related Work
	Contributions

	Infrastructure for Varying Soft Processor Compilation, ISAs, and Architectures
	Low-Level Software-Hardware Trade-Offs
	Shifter Implementations
	Removing Hazard Detection Logic

	Impact of Unique ISA Features
	Load Delay Slots
	Branch Delay Slots
	3-Operand Multiply vs Hi/Lo Registers
	Unaligned Loads and Stores 

	Application-Specific Register Management
	Operand Scheduling
	Limiting Use of Architected Registers

	Combining Customization Techniques
	Conclusions

