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Advancements in reconfigurable technologies, specifically FPGAs, have yielded faster, more
power-efficient reconfigurable devices with enormous capacities. In our work, we provide testament
to the impressive capacity of recent FPGAs by hosting a complete Pentium r© in a single FPGA
chip. In addition we demonstrate how FPGAs can be used for microprocessor design space
exploration while overcoming the tension between simulation speed, model accuracy, and model
completeness found in traditional software simulator environments. Specifically, we perform
preliminary experimentation/prototyping with an original Socket 7 based desktop processor
system with typical hardware peripherals running modern operating systems such as Fedora Core
4 and Windows XP; however we have inserted a Xilinx Virtex-4 in place of the processor that
should sit in the motherboard and have used the Virtex-4 to host a complete version of the
Pentium r© microprocessor (which consumes less than half its resources). We can therefore apply

architectural changes to the processor and evaluate their effects on the complete desktop system.
We use this FPGA-based emulation system to conduct preliminary architectural experiments
including growing the branch target buffer and the level 1 caches. In addition, we experimented
with interfacing hardware accelerators such as DES and AES engines which resulted in a 27x
speedup.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures

General Terms: Measurement, Performance, Design

Additional Key Words and Phrases: Pentium r©, processor, emulator, FPGA, accelerator,
simulator, architecture, exploration, model, reconfigurable, operating system

1. INTRODUCTION

Research in computer architecture has traditionally used software simulation of
a uni-processor executing a single binary, as in SimpleScalar [Burger et al. 1996].
While improvements to processor pipelines and memory hierarchies were historically
very fruitful in this context, more recent demands for increased efficiency, especially
in multi-processor environments, requires optimization across the entire system
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stack (processor architecture, instruction-set, device drivers, operating system, and
applications). However system-level research is stifled by the slow simulation speeds
and/or lack of detailed modelling inherent in the software simulators traditionally
used to innovate in microprocessor systems.

Field Programmable Gate Arrays (FPGAs) are seen as the solution to this
problem and are being targetted in the development of a new research infrastructure
which not only simulates a complete system, but a multi-processor one [Gibeling
et al. 2006]. The flexibility, speed (of both development time and simulation
time), and enormous capacity of FPGAs qualifies them for the emulation of
microprocessor systems. However there are two major obstacles to using FPGAs
as emulation systems: (i) the lack of support for real and modern-day operating
system software; (ii) the expensive cost of custom multi-FPGA boards necessary
to host the large/complex microprocessors; Our work provides compelling evidence
that both can be overcome.

We emulate a version of a commercial x86 desktop processor on an FPGA and
run real operating systems on stock hardware [Lu et al. 2007]. To be precise,
we’ve replaced a Pentium r©1 microprocessor from its standard socket on a stock
motherboard, with a single Xilinx Virtex-4 LX200 FPGA which implements the
Pentium r© core. The stock motherboard with a standard socket is underclocked
at 25 MHz and all system components such as memory, graphics card, CDROM,
hard disk, mouse and keyboard can be operated at the same relative speeds as in
an original system. Most importantly, our Pentium r© emulation system provides
us the ability to run real operating systems, such as Fedora Core 4, Red Hat 9, and
Windows XP on the FPGA while interacting with real hardware components.

Our system provides an interesting proof-of-concept demonstrating that microar-
chitecture research can be done with full detail and completeness at the speeds of
FPGA-implemented hardware, and in addition, can be performed with the realism
of commercial processors running modern-day operating systems while remaining
relatively inexpensive. The issue of support for modern operating systems including
existing closed-source binaries such as Windows has researchers looking at binary
translation as a solution [Gibeling and Wawrzynek 2006]. We demonstrate that
acquiring this support is not only feasible, but needs only a single FPGA device,
some commodity hardware, and a small and relatively simple board mostly for
translating the FPGA pinout to Socket 7 compatibility.

The ability to host desktop microprocessors on an FPGA device and have
it execute modern-day consumer softwares has significant ramifications for the
reconfigurable systems community. It may not be feasible for desktop processors to
be hosted on FPGAs commercially, but with academia and industry embracing the
concept as a research vehicle, at the very least, researchers will discover innovative
ways to use the reconfigurable fabric (for example by adding custom instructions
or parameterizing parts of the architecture), which may then pave the way for
reconfigurable technologies to be more tightly integrated into mainstream processor
devices. For that reason, researchers and vendors in reconfigurable technology are
well-motivated to encourage processor exploration on reconfigurable devices, and

1Pentium r© is a registered trademark of Intel Corporation or its subsidiaries in the United States
and other countries.
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our work provides compelling evidence of its fruitfulness.
The FPGA-based Pentium r© desktop system provides a powerful tool for the

exploration and customization of future microprocessors. Although the system
being emulated does not contain a state-of-the art microprocessor, its applicability
to modern architectural research has recently spiked due to the successful arrival
of chip multi-processors (CMPs). As the number of cores in a CMP increases, the
design of the interconnect between the cores rivals in importance the architecture of
the individual cores. The only requirement often being that the cores can support
real application software. Our emulation system has already been expanded to a
multiprocessor system by using available dual socket motherboards, though that
work is still in progress. In addition, further effort in improving the mapping of
the processor to FPGA resources, coupled with the substantial growth in capacity
with newer FPGA families such as Virtex-5, will lead to relevant multiprocessor
exploration systems on even a single device.

In this work we make the following contributions: (i) we demonstrate the
enormous capacity of modern FPGAs by hosting a complete Pentium r© processor
on a single Virtex-4 FPGA and executing modern operating systems on stock
hardware (ii) we analyze the Pentium r© core implementation on the FPGA and
crudely contrast it to its implementation using the silicon technology of its time, (iii)
we demonstrate the emulator’s ability to measure the effect of microarchitectural
changes on the complete system using the SPEC2000 integer benchmarks by
performing some preliminary architectural enhancements—specifically we parame-
terize the branch target buffer and the L1 cache; and (iv) we demonstrate its ability
to be customized by experimenting with adding hardware accelerators such as AES
and DES crypto engines.

The remaining sections of this document will summarize related work and
relevant background in Section 2, describe the Pentium r© emulation system
in more detail in Section 3, outline the implementation of our architectural
enhancements made in Section 4, discuss the area/speed effects of the architectural
implementations in Section 5, and then conclude in Section 6.

2. BACKGROUND

Microprocessor research is typically done through instruction set simulators
such as SimpleScalar [Burger et al. 1996], but detailed simulation can take up
to a month [Wunderlich et al. 2004] for a single SPECINT2000 benchmark.
Researchers are forced to trade fidelity of simulation results by reducing the model’s
detail/completeness for timeliness. Our FPGA-based Pentium r© can execute all 12
SPECINT2000 benchmarks in just over 3 days, and emulates the complete processor
design at the cycle accurate level necessitated by hardware design.

The Bochs open-source IA-32 emulator simulates behaviorally at an instruction
level and can achieve rates of 21-25 million instructions per second on a 2.6GHz
Core2 Duo [Butler 2006]. Our system running at 25 MHz can achieve 50 million
instructions per second for the dual-pipeline Pentium r©, a speed that is twice as
fast as Bochs but also captures all hardware details in the complete processor
design. These and other full-system software simulators such as Simics [Magnusson
2002] and SimOS [Rosenblum et al. 1995] can provide impressive simulation speeds
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with simple abstract behavioral models, but are more suited for studying software
applications rather than researching architecture. Successful innovation in com-
puter architecture must also complement many decades of previous enhancements,
requiring detailed (cycle-accurate) modelling of all processor components and the
interactions between them. This level of detail significantly slows simulation speeds
as more things need to be modelled causing more sequential code to be written and
executed. In contrast, our system can easily scale to more components or even
processors, with only occasional reductions in clock frequency and limited only by
the size of the FPGA (which is increasing with Moore’s Law).

The concept of using FPGAs to more quickly and more accurately explore the
microprocessor design space has recently gained traction causing publications on
the topic to multiply [WARFP 2005]. Some of this work focusses on accelerating
simulation times by offloading highly detailed resource modelling into the FPGA
while a software simulator remains the core of the emulation environment [Chiou
et al. 2006; Wunderlich and Hoe 2004]. Other research often focusses on a single
architectural novelty (for example transactional parallel systems [Kozyrakis and
Olukotun 2005], caching [Lu et al. 2005], vector-thread processors [Kasper et al.
2005]) and build FPGA-based models of the relevant hardware. Contrary to both
these approaches, we implement the complete microprocessor on an FPGA making
the entire processor architecture flexible.

Complete RTL models of microprocessors have already become available for the
SPARC V8 [Gaisler 2003], Niagara [Sun Microsystems 2006]. These cores can be
synthesized to FPGAs and are designed to facilitate design space exploration [Jones
et al. 2004]. However, to the best of our knowledge, we are the first to employ such a
core in a real desktop system with real hardware peripherals capable of hosting real
and modern operating systems. FPGA implementations of microprocessors have
been worked on for more than a decade[Gray 2000], however these processors are
often simple cores meant more for exploring FPGA design issues than processor
architecture. Our work emphasizes realistic architecture exploration and hence
plugs into a real hardware system and supports the advanced features of modern
day operating systems (such as virtual memory).

An abundance of research already exists in the embedded domain which applies
customization to an FPGA-based core. The fruitfulness of application-specific
microarchitectural variation was commercialized by Tensilica [Tensilica 1997] and
can be seen in [Yiannacouras et al. 2006] and its automatic navigation in [Sheldon
et al. 2006]. In addition, the effect of including custom instructions into such cores
was explored [Biswas et al. 2006]. While our work is similar in spirit to these works
we differentiate ourselves by focussing on the desktop domain and emphasizing
peripheral and operating system interaction.

Commercial products such as Cadence’s Incisive Palladium [Cadence 1988] allow
in-circuit emulation of arbitrary RTL circuits. These systems are usually big boxes
with multiple boards and multiple FPGAs per board. They are very expensive and
require additional wiring to hardware that the circuit needs to interface with. Our
system is low cost and is already designed to plug into a Socket 7 motherboard.

A complete Commodore 64 has also been ported to FPGA and can run in a
Commodore box with its own operating system[Ellsworth 2007]. However while
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Fig. 1. Image of the FPGA-based processor emulator system equipped with standard hardware
peripherals, a Xilinx Virtex-4 device in place of a microprocessor chip, all running Windows XP

similar in concept, the 16-bit processor is too old to be relevant for state-of-the-art
computer architecture research.

3. THE FPGA-BASED PENTIUM r© EMULATION SYSTEM

The complete emulation environment consists of four main components: (i)
the FPGA which hosts the Pentium r© processor; (ii) the hardware including
motherboard and peripherals; (iii) the software/operating system; and (iv) the
necessary FPGA CAD software required to implement the FPGA design. We
discuss each of these four items in further detail.

3.1 The Processor

The RTL which describes the processor is written in VHDL in a structural
form. Some manual mapping to FPGA memories was performed and many of
those components are easily parameterized, but much of the existing HDL is
not. Modification to the processor requires some studying and visualization of the
affected circuitry. This tends to encourage more isolated changes to the datapath,
but more sophisticated programmability is available using microcode sequences in
place of modifying instruction decoding logic. Improvements to the VHDL code to
make it more amenable to modification is still ongoing.

The processor implemented in our emulation system is the original Pentium r©

which is the desktop processor released after the 486 and before the Pentium
Pro r©. The 3.3 million transistor processor was released in 1994 in a 0.6 micron
technology and was originally clocked at 75 MHz [Intel Corporation 1997]. It is
a 32-bit in-order 5-stage dual-pipeline processor supporting the IA32 instruction
set including floating point instructions using an on-chip pipelined floating-point
module. It is equipped with two on-chip separate 8 KB 2-way set associative level
1 caches for data and instructions and implements the MESI protocol for use in
multiprocessor environments. It also includes dynamic branch prediction using a
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Fig. 2. Image of the 3-level stacked board which houses the Xilinx Virtex-4 and converts it for
use on the processor motherboard.

256 entry predictor table and branch target buffer.
A 3-level stacked board houses the FPGA and necessary circuitry. The first level

contains the pin/power conversion between the motherboard and FPGA allowing it
to be plugged directly into the motherboard. The second level contains the FPGA
itself, and the top level contains the programming circuitry for the FPGA. The
FGPA used to host the Pentium r© is a Xilinx Virtex-4 LX200 90 nanometer device,
which gets less than half consumed by the Pentium r©. More detailed analysis of
the Virtex-4 resources utilized by the Pentium r© will follow in Section 5.

3.2 The Computer Hardware

Everything other than the actual Pentium r© chip is original hardware that would
typically be used in a Pentium system. The motherboard is an original ASUS
Socket7 motherboard with 196 MB of SDRAM, and original chipset and BIOS.
The only modification is that the board’s clock is underclocked to approximately
25 MHz—one third of the speed the system was designed for. Note that the
underclocking of the board affects the processor, RAM, cache, chipset, and bus
speeds and hence preserves the relative speeds of the original system. Other
peripherals attached to the board include graphics card, USB connector, hard disk,
CDROM, keyboard, mouse, and monitor.

3.3 The Operating Systems

The most powerful ability of our FPGA-based system is its ability to boot real
operating systems. We successfully installed unmodified versions of Fedora Core 4,
Red Hat 9, and Windows XP on the Pentium r©; the installation procedure was no
different than on any typical desktop system. In terms of performance and usability,
it takes approximately 10 minutes to boot Fedora Core 4 without a GUI. Command
shells, and text editors such as vim operate just as expected on a modern computer
system, and GCC can compile small programs in seconds. Typing is certainly done
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at full speed, searches through normal sized text files succeed with unnoticeable
latency. In summary, the system is perfectly usable as a desktop computer for very
simple non-graphical applications.

3.4 FPGA Development

To synthesize the Pentium r© we use Synplify Pro 8.5.1 for high-level synthesis of
the VHDL and then use Xilinx ISE 8.1i for placement and routing onto the Virtex-4
device. The entire process takes between 10 and 20 hours to synthesize, map, place,
route and generate a bitstream, followed by an additional 20 seconds to download
the bitstream to the device. This turnaround time is orders of magnitude quicker
than the fabrication time for a silicon implementation of the processor which could
be inserted directly on the motherboard. In terms of debugging, Modelsim 6.1 is
used to simulate the VHDL in lockstep with a software simulator which models the
original behavior of the processor. A suite of regression tests are used to ensure
the processor is still a functional x86 machine. The regression tests are a subset of
those used to verify the original Pentium r©.

4. MODIFYING THE PENTIUM r© CORE

In this section we discuss our design and implementations of the three different
enhancements we made to the Pentium r©. Below we discuss the expansions made
to the branch prediction capabilities and the L1 cache of the core, and we detail
our integration of the hardware acceleration for encryption/decryption through our
AES and DES crypto-engine.

4.1 Expanding the Branch Target Buffer

The Pentium r© is equipped with dynamic branch prediction which consists not only
of a predictor table to speculate on conditional branches, but also a branch target
buffer (BTB) to speculate on indirect branches—when the target of a branch can
not be deduced by the current program counter and the instruction word alone (ie.
the branch target cannot be resolved early enough in the pipeline), the Pentium r©

uses the BTB to guess where the branch will jump to. The branch target buffer
originally held 256 entries allowing it to speculate “correctly” for up to the last 256
indirect branches. The size of the BTB was doubled to 512 entries and no other
changes were required to the rest of the system to accommodate this growth.

4.2 Expanding the L1 Caches

The Pentium r© 8 KB L1 caches are very small by today’s standards. There are two
such caches, one for data memory, the other for instruction memory, each of which
are 8 KB and 2-way set associative with 32 bytes per cache line. The caches were
increased internally by 4x way-wise to become 32 KB 8-way set associative caches.
The LRU replacement policy which determines which line gets evicted within a full
set was also expanded to handle the sets of 8 cache lines. Both instruction and data
caches can be individually configured to either the 8KB or 32KB versions, but in
this work we always keep them the same size.
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4.3 Integrating AES and DES Crypto Engine

We integrated two crypto-engines into the Pentium r©: Advanced encryption
standard (AES) and data encryption standard (DES). Security has more recently
become a critical requirement in many computing areas such as network security
and digital rights management. To support such security requirements and
maximize system performance, security-enhanced processors are preferred and
becoming available in the market [Hifn Inc. 2006]. In our approach we integrate
custom instructions for accelerating encryption and decryption directly into the
processor.

We retrieved AES and DES intellectual property (IP) cores from Open-
cores [Opencores 2007]. The AES core implemented the Rijndael’s algorithm and
takes a 128-bit key and a 128-bit plaintext/cyphertext for encryption and decryp-
tion, respectively. The DES core takes a 56-bit key and 64-bit plaintext/cyphertext
for encryption and decryption, respectively. In our implementation, we extended
the x86 ISA to integrate AES and DES engines by creating new Model-Specific Reg-
isters (MSRs)—a set of hidden registers usually used to capture debug/performance
information which are accessible only by two privileged instructions called rdmsr

and wrmsr respectively for reading and writing. We can use the MSRs to provide
communication with the crypto-engines. That is, the encryption/decryption is
executed by sending data to the appropriate crypto-engine by “writing” to our
newly created MSR(s) via the wrmsr instruction, then the corresponding cyphertext
or plaintext result can be “read” from the crypto-engine via the rdmsr instruction.
Similarly, control information is sent to the crypto-engines using another MSR. For
example, users can choose the configuration such as AES or DES, encryption or
decryption, and key or input data. This approach reduces the access latency by
avoiding comparably expensive bus accesses had the engine been a co-processor
connect through the bus.

Implementing the new MSRs involved several changes. First the actual MSRs
and necessary logic to access them was inserted into the VHDL design. Second
the privilege protections checks were removed from rdmsr and wrmsr allowing us
to access the crypto-engines from user space rather than through the operating
system. Finally, many optimizations were required to improve the execution speed
of these instructions since generally rdmsr and wrmsr are very slow instructions.
With all these modifications we achieved a communication overhead of only 6 cycles
between the processor and the crypto-engines (the engines were clocked at the same
CPU frequency though capable of much higher clock rates). The entire design time
was less than two weeks for this change and involved modifications to the microcode
in addition to VHDL changes to only one isolated component.

5. EXPERIMENTING WITH THE PENTIUM r© SYSTEM

In this section we analyze and benchmark the FPGA-based Pentium r© system to
extract the following results: (i) an area breakdown of the Pentium r© as reported
by the CAD flow; (ii) a comparison between the original branch target buffer
and our expanded version; (iii) a comparison between the original 8KB L1 cache
and our expanded 32KB L1 cache; (iv) an analysis of the crypto-engine hardware
accelerator. We examine each of these in more detail. Note that we report on
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Table I. Virtex-4 resource utilization by the unmodified Pentium r©.

Resource Number used Percent Used

4-LUTs 65615 37%
Registers 26859 15%
Slices 41438 46%
DSP48s 29 30%
BRAMs 118 35%

area in terms of Virtex-4 resources but are cognizant that these results may not
predictably map to a real silicon implementation. Nonetheless the area analysis
can be used for first-order approximations.

5.1 Area Breakdown of the Pentium r©

We synthesized the Pentium r© VHDL to the Virtex-4 LX200 and noticed that less
than half of the device resources were used; the corresponding data is shown in
Table I taken after high-level synthesis and technology mapping was completed.
Only 37% of the LUTs were used to store all the logic for the Pentium r©, however
they were distributed through 46% of the slices. Also, 35% of the block RAMs were
utilized (distributed RAMs are counted as 4-LUTs). With more than half of the
resources still available, there exists sufficient space on the device for expanding
and augmenting the Pentium r©.

Figure 3 shows the breakdown of each Virtex-4 resource used by different units in
the processor; the data was collected from the synthesis results reported by Synplify
Pro. All of the DSP48 (multipliers) were used by the floating point unit, and nearly
all of the block RAMs were divided amongst the instruction cache, data cache, and
microcode units. The Virtex-4 LUTs were used mostly by the FPU, ALU, address
generation, and caches. The entire memory hierarchy (including the caches and
bus interface) claimed approximately 45% of the LUTs used, suggesting that even
when considering only logic, almost half of the chip is devoted to communication
leaving the other half for control and actual computation.

An area constrained architect can presumably use off-chip memory to emulate
the ”on-chip caches” which would free nearly half the FPGA resources used by the
processor. This approach can be valid since the processor implemented on an FPGA
would likely be clocked considerably slower than memory devices, allowing the
multi-cycle memory latency to occur within a single (longer) processor cycle. Many
low cost FPGA boards have on-board SRAM/SDRAM/DDR-RAM suitable for this
task, so architects/researchers can use these low-cost boards for their exploration
rather than purchasing expensive custom boards or multi-FPGA boards.

Although synthesizable, the Pentium r© VHDL was not designed for mapping to
an FPGA. Recent work [Gibeling and Wawrzynek 2006] suggested that a processor
designed specifically for synthesis to an FPGA can be more than an order of
magnitude smaller than a generically written mostly-behavioral VHDL processor.
While our processor has had some manual tweaking to guide its mapping to some
FPGA resources, we too also believe that the resource usage of the Pentium r© can
be significantly reduced by more carefully mapping structures to the resources in
the FPGA. Of particular note is the mapping to block RAMs. The interconnection
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Fig. 3. Breakdown of FPGA resources used by different parts of the Pentium r© archtiecture.

between large numbers of under-utilized BRAMS is a major contributor to both the
speed and area overhead. Multiple BRAMs are often required due to limitations
on the number of ports or the width of the ports. Re-architecting the processor to
better utilize the block RAMs may be of great benefit to the FPGA design.

In spite of the core’s ill-suitedness for FPGA design, it still provides an interesting
point of comparison for FPGAs as a platform. Recent work [Kuon and Rose 2006]
has measured FPGAs to be 3x slower in speed and 35x larger in area compared to
a standard cell ASIC flow with both using 90nm technology. With some simple and
crude calculations we can attempt to do the same with the 12 year old Pentium r©,
although it was highly hand-optimized while the previously cited work used a push-
button design flow. The FPGA-based core is clocked at 25 MHz compared to the
75 MHz it originally ran at 12 years ago, meaning the 90nm FPGA is already 3x
slower than the older 600nm silicon technology. Accounting for the generation gap
can only be crudely estimated so we do not do so here. Nonetheless, we see that
compared to a highly optimized transistor design, the push-button FPGA flow not
only eliminates 12 years of electrical innovation but is an additional 3x slower. We
expect more careful mapping to FPGA resources may reduce this penalty.

5.1.1 Future FPGA Architectures. Future FPGA devices will rapidly grow in
capacity. The Virtex-4 LX200 used in our research was the largest FPGA in that
family with 200,000 logic cells. The new Virtex-5 family has capacities of up to
330,000 logic cells. Such a device can almost host four of our Pentium r© designs
which would make it a great research platform for recently emerged quad core
microprocessors. Additional fine-tuning of the VHDL design to aid its mapping
to FPGA technology would make that a reality and may also yield even higher
processor densities in FPGA devices.

In addition to the size, the architecture of an FPGA also plays a large role in
the ability to map a processor design to a given FPGA device and hence is a
critical component to an FPGA-based processor emulation system. We hope that
future FPGA architectures will better accommodate processor designs. The Virtex-
5 architecture may boost logic density because of the new 6-input LUT size, but
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Fig. 4. Performance increase of the doubled branch target buffer on SPEC2000 integer
benchmarks.

new hard circuits could be very useful to processor designs. Block RAMs used for
caches, register files, memory management units, etc. are typically constrained to
2 ports while more would prevent the manual intervention required to stop the
CAD tool from mapping those components to structures built expensively out of
flip flops. A crossbar circuit could prove interesting for multiprocessor systems.

5.2 Comparing Branch Target Buffer Sizes

Doubling the branch target buffer should give the processor twice as many branch
target entries, which ideally should translate to increased accuracy in predicting
taken indirect jumps. This modification was a simple warm-up exercise requiring
only an extra block RAM and a small amount of logic most likely a side-effect of
the randomness in the CAD algorithms. The performance of the expanded BTB
was measured across all SPEC2000 integer benchmarks. Since the system is in fact
real, the time to complete a single benchmark run is non-deterministic and takes
almost a day making it difficult to average out the non-determinism. As such, some
of the effects of the increased branch target buffer remain hidden in this noise.

Figure 4 shows significant speed improvements up to 11% by parser. vpr and
perlbmk also benefit largely from the increased predictor accuracy. On average
the expanded BTB provides a 5.35% speed improvement, which is quite significant
for such a small change.

5.3 Comparing Level 1 Cache Size

Figure 5 shows the additional FPGA resources consumed from growing the L1
caches from 8KB (2-way) to 32KB (8-way). Almost 25% more logic was necessary
for the expansion as well as more than 50% more block RAMs making this growth
in L1 cache very expensive with respect to area. In addition to the area cost, the
place and route time is more than doubled. Nonetheless the performance benefit is
quite substantial.

Figure 6 plots the performance improvement of the expanded L1 cache for each
SPEC2000 integer benchmark. An average of 16% performance improvement is
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Fig. 6. Performance increase of the 32KB 8-way L1 caches versus the 8KB 2-way L1 caches.

achieved with benchmarks such as crafty reaching as high as 40%. Although
there are a myriad of cache studies, we believe this work is unique in capturing
operating system effects such as cache flushes and preemption while sustaining
high simulation speeds.

5.4 Evaluating the Crypto-Engine

The AES takes only 12 CPU cycles to finish its computation for encryp-
tion/decryption, and the DES takes 16 CPU cycles, both significantly faster than a
software implementation. The best known software implementation for AES written
specifically for the same Pentium r© executes in 320 cycles [Granboulan 2000]. This
results in an execution speedup of 27x for our custom crypto-engine versus the best
software implementation. Table II summarizes the resource utilization of the AES
and DES engines on the Virtex-4 FPGA and shows that the logic requirement is
very small but a substantial number of BRAMs were required. Nonetheless, for
secure environments the performance improvement may justify the extra resources.
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Table II. Virtex-4 resource utilization of the AES and DES IP cores.

Resource Number used

4-LUTs 2347
Registers 1319
DSP48s 0
BRAMs 72

6. CONCLUSION

The FPGA-based Pentium r© emulator is a powerful tool for researching desktop
processor architectural enhancements. Its ability to quickly prototype architectural
changes and measure their effects at the application-level in the presence of a real
operating system provides a more realistic research tool without the expensive costs
and long design times associated with actually creating a silicon implementation.
Such a system can be used to optimize across the entire system stack: architecture,
instruction-set device drivers, operating systems, and applications without the
prohibitive simulation times of a software simulator.

Although the Pentium r© processor requires a large number of FPGA resources,
modern FPGA devices have ample capacity for hosting desktop uniprocessors. The
Pentium r© processor consumed less than half of the Virtex-4 LX200 providing
significant space for growth of the design. We expect that more careful mapping of
the design to FPGA resources will result in large-scale reductions in size. Moreover,
the improvements to capacity and logic architectures of future generation FPGAs
will only make them more capable of hosting larger more recent processor designs,
including multiprocessors.

The Pentium r© emulator was used to explore expansion of both the branch target
buffer and L1 cache. Doubling the size of the branch target buffer required a
negligibly small amount of resources and provided significant speed improvements
on the SPEC2000 integer benchmarks. The L1 caches were quadrupled from 8KB
2-way to 32KB 8-way caches and required significantly more FPGA resources and
synthesis time, but also provided large speedups for the SPEC2000 benchmarks.

Finally we integrated custom instructions to interface with AES and DES crypto
engines to accelerate encryption and decryption operations. The tight integration of
these engines into the core provided instructions which can encrypt/decrypt in 12-16
CPU cycles providing a 27x speedup over the best known software implementation.
The added area was relatively small for the engines.
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