ECE324 Fall 2020 Assignment 2

Assignment 2: Single-Neuron Classifier Coded from Scratch and
using PyTorch

Deadline: Thursday October 1, 2020 at 9:00pm

Late Penalty: There is a penalty-free grace period of one hour past the deadline. Any work
that is submitted between 1 hour and 24 hours past the deadline will receive a 20% grade deduc-
tion. No other late work is accepted.

The goal of this assignment is to build and understand the basic process of how a single artificial
neuron can be trained and used as a classifier. You will build the software in two ways: first, from
scratch with almost no library support, and second using the PyTorch library. You’ll use one set of
data to train the linear neuron and a second set to ‘validate’ the model produced in training. The
training will make use of the gradient descent method of optimization, as described in class. Note
that although the actual classification task is very simple to do in normal procedural software; this
simplicity will help you gain insight and understanding of the optimization process that is used in
all deep learning.

What To Submit
You should hand in the following files to this assignment on Quercus:

e A PDF file assign2.pdf containing your answers to the written questions in this assignment;
please make it clear which sections contain the questions that you are answering.

e Your code, in the file partl.ipynb that must be able to generate all of the data required in
Section 6.

e Your code, in the file part2.ipynb that must be able to generate all of the data described in
Section 7.

1 Problem To Solve

The goal of this assignment is to build a single-neuron classifier that solves the following problem:
given a 3x3 array of binary data (containing only 1’s and 0’s), determine when the 3x3 pattern is
an ‘X’ as illustrated in Figure 1. To be clear, the goal is to make a classifier that outputs the value
1 when the input is the pattern in Figure 1, and the value 0 when it is any other pattern of 1’s and
0’s in the 3x3 grid.

As noted, this is a simple problem to solve with the usual ‘procedural’ coding that you learned
in first year - a simple if statement in Python. It is also possible to determine a correct answer for
the linear classifier by inspection, as also discussed in class. Instead, the goal in this assignment
is to gain an understanding of the learning from data approach, and to use the specific method
of learning employed in the successful deep learning approach: an artificial neural network trained
with gradient descent. This will underpin your understanding when we apply various versions of
this approach to much more difficult problems in later assignments and your course project.



ECE324 Fall 2020 Assignment 2

1 0 1
0 1 0
1 0 1

Figure 1: Problem Definition - ‘Recognize’ this Pattern

2 Neural Network Classifier Method to Solve Problem

The neural net machine learning method is illustrated in Figure 2. It shows the nine inputs of the
3x3 array (the I; in the figure) all being fed into a single artificial neuron, which computes the
linear function Z = (Z?:O w;l;) + b, and then passes it through an activation function, such as a
sigmoid, ReLU or just linear (Y = Z) as described in class. The weights (w;) and bias (b) must
be determined, through a training process, so that the output Y correctly indicates whether the
input pattern is the one shown in Figure 1 or not. Note that we will use the following classification
rule (which I called a decision function in class) on the output Y to determine which outcome the
model is predicting: when Y > 0.5 the output will be classified as and X, and when Y < 0.5 the
output will be classified as 'not an X.’

2 g T
p a0
I I, I,
" ; Y
T 1 1 Activation
i 2 i Function

I I, Ig

Input T

Figure 2: Single Neuron Classifier

The sections below will ask you to write the code implements this neural network computation
an trains it to set the values of the weights (w;) and bias (b) parameters.

3 Solve by Inspection (Total Points: 10)

In class we discussed this structure above, using classification rule whose decision point was O.
In class we determined, by inspection, values for the weights (w;) and bias (b) parameters that
would make the classifier work for that classification rule. For the questions below, assume that
the classification rule is the with the 0.5 decision point. Answer the following questions:



ECE324 Fall 2020 Assignment 2

ii.

ii.

iii.

1v.

. What are values of w; and b that will make the classifier 100% correct for all possible inputs

using the 0.5 decision point classification rule?

Is the answer to (i) unique? If your answer is yes, say why. If your answer is no, give a second
answer that uses different weights and bias.

How many unique inputs (that is, different instances of I = {Iy, I1,...,Ig}) are possible for
the 3x3 grid?

Does your solution easily scale to solve finding a single X-type pattern in a 4x4 grid? Explain
why or why not.

Suppose that, on a 5x5 grid, you had to match the ‘X’ as above, but, in addition, an ‘X’ shifted
left by one, and shifted right by 1 position also had to be matched (in the shifted cases, part
of the X would be missing). Could you as easily create the single-neuron parameters to solve
that problem? Why or why not?

4 Training from Data

You are to write a Python-based program, in a file called a2.ipynb, using either Google Colab
or Jupyter Notebook, that trains the single-neuron classifier shown in Figure 2 using the gradient
descent method as described in class. This includes the calculation of parameter gradients (for the
weights and bias) through analytic equations. Your code should be written to make it easy to select
the following different choices for hyperparameters:

1.

The activation functions should be selectable as: sigmoid, ReLU and linear. (linear means
Y = Z in Figure 2). Note that in class we derived the equations for the gradient of the
weights and bias for the linear activation function, making use of the chain rule. While the
derivative of the linear activation function is the constant one, the derivative of the sigmoid
and ReLU functions is not as simple.

. The learning rate.

. Number of epochs (number of times the entire training set is used to determine a modification

to the weights and bias).

Random number seed (setting this value differently changes the random initialization of the
weights).

You should use the separate files of data to train and then validate the training. These are
provided for you in the associated assignment files named as follows:

File ‘ Contents

traindata.csv | 200 example 3x3 grids

trainlabel.csv | labels for training examples
validdata.csv | 20 different 3x3 grids
validlabel.csv | labels for validation examples

The data in the files is formatted as follows: the traindata.csv and validdata.csv files
contain one sample input per line, given as nine numbers, separated by commas, consecutively
representing the inputs Iy, I7,...Igs. The trainlabel.csv and validlabel.csv files contain one



ECE324 Fall 2020 Assignment 2

number per line, either 0 or 1, indicating if the corresponding line in the Data file is a match for
the X pattern (with a value of 1) or not a match (with a value of 0). Be sure to view the files with
a text editor of some kind to make sure you agree that the labels are correct.

You can use the numpy function loadtxt to read this data into your code.

5 Guidance

In this section we give guidance as to the various choices you’ll need to make in coding this
assignment.

1. You should use a mean squared-error loss function.
2. You should initialize the weights and bias to random numbers between 0 and 1.

3. Be sure to set the seed for the random generator function (using random.seed()) so that you
can set this for the experiments as required below.

4. Make the activation function easy to change in to your code, by changing a setting at the top
of your code.

5. It will be useful (and required) to visualize the weights wg through ws, and we have provided
a function that takes in the weights and two parameters and outputs a gray scale ‘picture’
of the weights, to see if they ‘look’ correct or close to correct. This function is provided in
the assignment, in the file dispkernel.py. This function makes the lowest value weight the
colour black, and the highest white, and everything elese is in-between black and white. You
will need this function to produce some of the outputs required in Section 6.

6. I have to confess that I am somewhat worried about using Notebooks (Jupyter or Colab)
in this course, which we’re doing for the first time. Most professional programmers won'’t
use notebooks, but instead use straight-up Python (file.py) code files. One advantage of
that, even for this assignment, is that you can use command-line arguments to vary the
hyperparameters (i.e the learning rate, or the activation function, or number of epochs).
If you still wanted to do that, the skeleton code comm_parm_a2.py shows you how to use
command line arguments , using the argparse library. See https://docs.python.org/3/
howto/argparse.html for a good description of the library. If you did this, it might be easier
to run scripts with the different hyper-parameters.

6 Experiments and Outputs to Hand In (40 points)

As you write and debug your code, you’ll need to test individual parts of your code in the usual
way (by inspecting the output from subsections of the code, after setting the input). With machine
learning, you will also need to inspect the learning curves which shown the progress of the classifier’s
loss function and accuracy after each step. We are interested to see if the training loss and accuracy
are improving after each epoch, and also whether the validation loss and accuracy are improving.
So, in your code, use matplotlib to show how loss and accuracy are changing vs. epoch. Be sure
to put the training and validation loss on one plot (as is typical practice in the field), and the
training and validation accuracy on a second plot.

You will need to experiment with the learning rate parameter to find one that works well, and
to determine how many epochs are needed to succeed. (We expect to succeed for this problem by
the way, since we know that there are good solutions as determined in Section 3.)


https://docs.python.org/3/howto/argparse.html
https://docs.python.org/3/howto/argparse.html

ECE324 Fall 2020 Assignment 2

In your report, assign2.pdf you should hand in data, tabular form, that shows the effect of
the hyperparameters listed below on the training and validation accuracy. For each item below,
select (and report) reasonable values of the other parameters. (e.g. when showing the effect of
epoch, choose fixed values for learning rate and activation function that give a good sense of what
the variation in number of epochs does):

1. The number of epochs.

2. The learning rate - be sure to show a range where the learning rate is too high, and where it
is too low.

3. The effect of the three activation functions - linear, sigmoid and ReLLU. Explain why the best
one came out best.

4. The effect of 5 different random seeds; for this choose a learning rate that isn’t the best, but
one that does not succeed as well as your best. Explain why the answers differ.

Finally, you should determine a single set of parameters that achieve the best result you can
get, but in the fewest epochs. In your report, say what those parameters are, and what test and
validation accuracy was achieved.

In addition, in you should create and hand in properly labelled loss and accuracy plots vs.
epoch, as well as the nine weights displayed using the dispKernel function, as described above, for
the following cases:

1. Show an example where the learning rate is too low (which means learning is too slow). Give
an explanation as to what is happening in this case.

2. That shows an example where the learning rate is too high. Explain.
3. That shows a ‘good’ learning rate.

4. Give the two plots for each of the three activation functions, linear, sigmoid and ReLU.

7 Re-Implement the Same Classifier Using PyTorch

Now that you have a sense of how inference and training are done when coded from scratch, you need
to learn how to do exactly the same thing using the PyTorch deep learning library. PyTorch (and
its cousin, TensorFlow) automatically do many of the things you’ve just programmed from scratch,
and much much more. The key in this part of the assignment is to be clear on which function/class
is doing the same things that you coded from scratch in the first parts of this assignment.

7.1 Set up your Environment
If you are using Google Colab, then there is nothing to install. That environment already contains

the PyTorch and TorchVision libraries by default.

If you have installed Anaconda and Python as described in Assignment 1, you will also need
to install the PyTorch libraries, as described in the Section below.



ECE324 Fall 2020 Assignment 2

7.1.1 Installing PyTorch (if not using Google Colab)

1. On a command line, activate the conda environment for this course first:
conda activate ece324 (macOS/Linux) or activate ece324 (Windows).

2. To download PyTorch go to https://pytorch.org/, which at the bottom of the page will
give you a conda command to download the correct verson for your specific operating system
and hardware.

3. You can test that your system has installed PyTorch successfully by bringing up a Python
interpreter (i.e. run python in command line while inside your ece324 conda environment)
and running ‘import torch’.

7.2 Re-implementation of Classifier in PyTorch (10 points)

Above you were asked to code a single-neuron classifier to recognize the ‘X’ pattern of ones in a 3x3
‘picture.” You should modify that code (largely re-using the data input code, and the plotting out-
put code) and re-implement it using PyTorch, as described in class. You should use the nn.Linear
module from PyTorch to implement the one neuron, and SGD optimizer to train it. Make sure you
understand the torch.tensor object, and how to work with it, including bringing your data into that
form from a Numpy array. Also try to be clear on what causes the parameters to be instantiated
and initialized, as that becomes somewhat invisible in PyTorch. Finally, try to see what gradients
are being computed, and be sure to understand what PyTorch method causes that to happen.

Submit your code as a Notebook file part2.ipynb. Also, answer/submit results from the following
questions, as part of the assign2.pdf you submit:

1. (2 points) For the single-neuron classifier that you instantiate, what is the full name of the
tensor object that contains the weights, and what is the name of the object that contains the
bias?

2. (2 points) What is the name of the tensor object that contains the calculated gradients of the
weights and the bias? (This was not covered in class).

3. (2 points) Which part of your code computes gradients (i.e. give the line of code that causes
the gradients to be computed). Explain, in a general way, what this line must cause to happen
to compute the gradients, and how PyTorch ‘knows’ how to compute the gradients.

4. (4 points) Give the training/validation plot versus epoch, and the accuracy vs. epoch for the
three cases required in Section 6: a too-slow learning rate, a too-fast learning rate, and a
‘just-right’ learning rate.


https://pytorch.org/

	Problem To Solve
	Neural Network Classifier Method to Solve Problem
	Solve by Inspection (Total Points: 10)
	Training from Data
	Guidance
	Experiments and Outputs to Hand In (40 points)
	Re-Implement the Same Classifier Using PyTorch
	Set up your Environment
	Installing PyTorch (if not using Google Colab)

	Re-implementation of Classifier in PyTorch (10 points)


