
Improving Collaboration Efficiency in
Fork-based Development

Shurui Zhou

May 2020
CMU-ISR-20-103

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christian Kästner (Advisor)

James D. Herbsleb
Laura A. Dabbish

Andrzej Wąsowski (IT University of Copenhagen)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

c©2020 Shurui Zhou

This research was sponsored by the National Science Foundation (awards 1318808, 1552944, and 1717022) and
AFRL and DARPA (FA8750-16-2-0042). Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the Center for the Future of Work or the National Science Foundation

Keywords: Collaborative Software Development, Distributed Collaboration, Fork-Based
Development, Social Coding, GitHub, Open-Source

Abstract
Fork-based development is a lightweight mechanism that allows developers to

collaborate with or without explicit coordination. Recent advances in distributed
version control systems (e.g., ‘git’) and social coding platforms (e.g., GitHub) have
made fork-based development relatively easy and popular by providing support for
tracking changes across multiple forks with a common vocabulary and mechanism
for integrating changes back. However, fork-based development has well-known
downsides. When developers each create their own fork and develop independently,
their contributions are usually not easily visible to others, unless they make an active
attempt to merging their changes back into the original project. When the number
of forks grows, it becomes very difficult to keep track of decentralized development
activity in many forks. The key problem is that it is difficult to maintain an overview
of what happens in individual forks and thus of the project’s scope and direction.
Furthermore, the problem of lacking an overview of forks can lead to several addi-
tional problems and inefficient practices: lost contributions, redundant development,
fragmented communities, and so on.

In this dissertation, I mixed a wide range of research methods to understand the
problem space and the solution space. Specifically, I first design measures to quan-
tify how serious are these inefficiencies, then I developed two complementary strate-
gies to alleviate the problem: First, during the process of sampling 1311 GitHub
projects and quantifying the inefficiencies, also by opportunistically reaching out
to developers who have used forks, I recognized that there are differences among
projects. Therefore, I identified existing best practices and suggesting evidence-
based interventions for projects that are inefficient. Moreover, I observed that the
notion of forking has changed since the invention of fork-based development, so I
conducted mixed-method experiment to understand the perception of forking by in-
terviewing developers and identified future research directions. Second, as we found
that the lack of an overview problem that we observed in fork-based development
environment is essentially the same as the lack of awareness problem that have been
studied previously in other distributed software development scenarios but with new
challenges, I designed awareness tool to improve the awareness in the fork-based
development environment and help developers to detect redundant development to
reduce developers’ unnecessary effort. To evaluate the effectiveness and usefulness
of these awareness tools, I conducted both quantitative and qualitative studies.

My dissertation work focuses on improving collaboration efficiency for distributed
software teams, but the research method has a lot wider applicability. For example,
in the future, I will study other forms of collaboration, such as the collaboration of
interdisciplinary software teams.

iv

Acknowledgments
I would not have finished this thesis without the help and support from my pro-

fessors, my family, and my friends, and my colleagues.
First and foremost, I would like to thank my advisor, Prof. Christian Kästner,

who is always supportive and patient, provides me guidance, and challenges me. I
could have never been here without his countless and significant support for the last
6 years. Through him, I learned the spirit of academics. I will never forget when I
was struggling with research, mentoring experiences, and my future plans, he said
“I am here to help”. I wish I could be a great advisor as Christian in the future.

I would like to express my thanks to my ‘informal’ advisor and collaborator Prof.
Bogdan Vasilescu, who is always positive, supportive, and optimistic. From him, I
learned the power of passion and perseverance.

I would like to say ‘thank you’ to Prof. Andrzej Wąsowski, who is a terrific
collaborator, a mentor, and has been helping me since 2015, and always provides me
valuable and helpful feedback.

I would like to thank my thesis committee members Prof. James D. Herbsleb
and Prof. Laura A. Dabbish. I have learned a great deal from this joyful experience.

I am so grateful to Prof. Yingfei Xiong at Peking University. Without Yingfei’s
support, I would not have the chance to join Carnegie Mellon. Without his help and
willing to sacrifice rest time over 2 years to attend my weekly meetings at night, I
could not publish my first ICSE paper and get the motivation of pursuing my aca-
demic dream.

I would like to express my deepest gratitude to Prof. Yuan Rao at Xi’an Jiaotong
University who helped me, supported me, guided me for the last 12 years, in Xi’an
and in Pittsburgh, as an advisor, a friend and family.

I would like to thank my professors in ISR – Prof. Claire Le Goues, Prof. Eunsuk
Kang, Prof. Fei Fang, Prof. David Garlan, Prof. Michael Hilton, Prof. Heather
Miller, who gave me millions of valuable advice and help during my Ph.D.

I would like to give thanks to my wonderful and perfect parents Xiling Wang and
Lingguo Zhou, who give me endless and selfless love and always cheer me on, just
as they have every step of the way. They gave me the ability to maintain hope for a
brighter morning, even during our darkest night. It is time to repay my parents.

I am so lucky to have my husband Xilin Liu, who is my knight in shining armor
and a gift. He always supports me and has been amazing during my Ph.D. Xilin, we
are best friends, best buddies, and you can always count on me.

I would like to thank my best friend Shengchen Du, who has been the definition
of what a friend is. For the past 12 years, you always support me and trust me no
matter whether we are in the same city or miles apart. I promise I will be supportive
to you as always and treasure our friendship like my favorite lyrics in Friends – “I’ll
be there for you, like I’ve been there before; I’ll be there for you, because you’re
there for me too”.

vi

Special thanks to my friend and colleague, Chu-Pan Wong, who is always pos-
itive and reliable. Thank you for being on this journey with me. I wish you all the
best in your future.

I would like to thank my brilliant girls and roommates, Zhuyun Dai and Fuchen
Liu. Without their support, my life in Pittsburgh would be boring and lonely. Thank
you for sticking by me.

I would like to thank my kindred spirit, Ang Liu, who is always by my side and
would explore this brave new world with me.

I would like to also thank my officemates and colleagues, Jaspreet Bhatia, He-
mank Lamba, Ştefan Stănciulescu, Gabriel Ferreira, Jens Meinicke, Pooyan Jamshidi,
Miguel Velez, Olaf Leßenich, Connie Herold, Jamie Lou Hagerty, and Jennifer
Cooper, and all other people who shared their expertise and great ideas and always
provided me prompt support so that I could enjoy such an open and collaborative
environment.

Thank you all.

Contents

1 Introduction 1
1.1 Inefficiencies in Social Forking . 2
1.2 Possible Solutions . 7
1.3 Thesis . 8
1.4 Summary of Contribution . 8
1.5 Outline . 9

2 Distributed Collaboration of Software Development 11
2.1 History of Forking . 11
2.2 Collaboration in Software Engineering Projects 13
2.3 Importance of Awareness in Distributed Collaboration 14

3 Natural Interventions 17
3.1 Identifying Potential Context Factors and Deriving Hypotheses 18

3.1.1 Modularity affects forking practices . 19
3.1.2 Coordination mechanisms affect forking practices 20
3.1.3 Contribution barriers affect community fragmentation 21
3.1.4 Summary . 22

3.2 Operationalization . 22
3.2.1 Outcome: Ratio of contributing forks. 24
3.2.2 Outcome: Ratio of merged pull requests. 24
3.2.3 Outcome: Ratio of duplicate pull requests. 25
3.2.4 Outcome: Presence of hard forks. 25
3.2.5 Predictor for modularity: Logic coupling index. 26
3.2.6 Predictor for modularity: Additive contribution index. 26
3.2.7 Predictor for coordination: Centralized management index. 26
3.2.8 Predictor for coordination: Pre-communication index. 26
3.2.9 Control variables. 27

3.3 Data Collection . 27
3.4 Statistical Analysis . 29
3.5 Threats to Validity . 29
3.6 Result . 30

3.6.1 When do forks attempt to contribute back? (H1, H3) 30
3.6.2 When are more contributions integrated? (H2, H4) 31

vii

viii CONTENTS

3.6.3 When is duplicate work more common? (H5) 31
3.6.4 When does the community risk fragmentation? (H6–H8) 32

3.7 Discussion . 32
3.7.1 Modularity . 32
3.7.2 Coordination . 33
3.7.3 Redundant development. 34

3.8 Implications . 34
3.8.1 Implications for practitioners . 34
3.8.2 Implications for researchers and tool builders 34

3.9 Summary . 35

4 Hard Forks 37
4.1 Motivation . 37
4.2 Research Questions and Methods . 39

4.2.1 Instrument for Visualizing Fork Activities 39
4.2.2 Identifying Hard Forks . 40
4.2.3 Classifying Evolution Patterns . 41
4.2.4 Interviews . 43
4.2.5 Threats to Validity and Credibility . 45

4.3 Results . 45
4.3.1 Frequency of Hard Forks . 47
4.3.2 Why Hard Forks Are Created (And How to Avoid Them) 47
4.3.3 Interactions between Fork and Upstream Repository 49
4.3.4 Perceptions of Hard Forking . 50

4.4 Summary . 52

5 New Intervention: INFOX 53
5.1 Motivation . 53
5.2 Method . 54

5.2.1 Generating a dependency graph . 56
5.2.2 Identifying features by clustering the graph 57
5.2.3 Labeling features . 59

5.3 Implementation & User Interface . 61
5.4 Evaluation . 62

5.4.1 Quantitative Study (RQ1 & RQ2) . 63
5.4.2 Human-subject study (RQ3 & RQ4) . 67

5.5 Related Work . 70
5.6 Discussion . 71
5.7 Productization: forks-insight.com . 72
5.8 Summary . 73

CONTENTS ix

6 New Intervention: Identifying Redundancies 75
6.1 Motivation . 75
6.2 Application Scenarios . 77
6.3 Research Method . 78

6.3.1 Identifying Clues to Detect Redundant Changes 78
6.3.2 Clues for Duplicate Changes . 79

6.4 Identifying Duplicate Changes in Forks . 83
6.4.1 Calculating Similarities for Each Clue 83
6.4.2 Predicting Duplicate Changes Using Machine Learning 85

6.5 Evaluation: Effectiveness . 86
6.5.1 Dataset . 86
6.5.2 Analysis and Results . 87

6.6 Related Work . 94
6.7 Summary . 95

7 Future Work 97
7.1 Improving coordination capability in fork-based development 97
7.2 Exploring Different Forms of Collaboration . 99

8 Conclusion 101

Bibliography 103

x CONTENTS

List of Figures

1.1 Outline of thesis . 1
1.2 Existing solutions for the problem of lack of overview in fork-based development. 3
1.3 Density plots of inefficient forking practices. 4

2.1 Timeline of some popular open-source forking events 12

3.1 Outline of studying natural intervention . 18
3.2 Eight Hypothesis . 23
3.3 Determining the origin of commits. 23
3.4 Density plots for our main predictors . 28

4.1 An example of commit history graph of fork tmyroadctfig/jnode 39
4.2 Statistics on identified candidate hard forks and actual hard forks 42

5.1 Complementary solutions for lack of overview problem in fork-based development. 55
5.2 Edge examples of an email system. 57
5.3 Three steps of INFOX . 58
5.4 Source code excerpt from Marlin. 60
5.5 Examples of identified features in fork DomAmato/ofxVideoRecorder 61
5.6 Extracting preprocessor-based ground truth and simulating forks. 64
5.7 Accuracy of INFOX and CLUSTERCHANGES (CC) for 10 projects 66
5.8 Accuracy across all 1560 simulated forks for different variations. 66
5.9 User Interface of FORKS INSIGHT. This example shows searching “cuda” in

repository of tensorflow/tensorflow. 73

6.1 Pull requests rejected due to redundant development. 76
6.2 Duplicate Pull Request Detector: A GitHub Bot 77
6.3 Research Method of INTRUDE . 78
6.4 Screenshot - Duplicate pull requests with similar text information 80
6.5 Screenshot - Duplicate pull requests with similar code change information 81
6.6 Calculating similarity for description / patch content 84
6.7 Similarity of changed files and code change location (loc: Lines of code). 85
6.8 RQ1: Precision & Recall . 89
6.9 Simulating commit history of a pair of pull requests 90
6.10 RQ2: Can we detect duplication early? . 91

xi

xii LIST OF FIGURES

6.11 RQ3: INTRUDE vs the state-of-the-art . 93
6.12 RQ4: Sensitive analysis . 93

7.1 Future work: Improving coordination capability in forks 98

List of Tables

3.1 How we stratified our sample. 28
3.2 Contributing forks model (R2 = 17%). 30
3.3 External PR merge ratio model (R2 = 27%). 31
3.4 Duplicate PR ratio model (R2 = 4%). 32
3.5 Hard forks model (R2 = 10%). 33

4.1 Background information of participants. 44
4.2 Evolution patterns of hard forks . 46

5.1 Subject projects . 65
5.2 Participants of our user study and their projects 68

6.1 Clues and corresponding machine learning features 83
6.2 subject projects and their duplicate PR pairs. 87
6.3 RQ1: Simulating PR history . 88
6.4 RQ1, precision at default threshold . 89
6.5 RQ1, recall at default threshold . 90

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

In this dissertation, I study how to improve collaboration efficiency for distributed software teams
using fork-based development mechanism. Fork-based development is a innovation that pro-
vides developers the flexibility to implement ideas without affecting each other and has com-
pletely changed the way of collaboratively building software systems, however it has downsides.
For example, when the number of forks increases, developers find it is difficult to maintain an
overview of the activities of the team, which further leads to collaboration inefficiencies like lost
contribution, redundant development, and fragmented community (shown as the problem space
in Figure 1.1). Facing these problems, I design complementary solutions to address correspond-
ing problems (shown as the solution space in Figure 1.1): First, I study natural interventions
to identify best practices; Second, I design new interventions to improve the fork-based devel-
opment mechanism. Last but not least, I mix a wide range of research method to evaluate the
solutions from different perspectives.

Identifying Feature

Identifying Redundancies

Identifying Best Practices

Natural Intervention

New Intervention

Lost Contribution

Redundant Development

Fragmented Community

Lack of Overview

Social Fork
Hard Fork

Effectiveness
Usefulness

Effectiveness
Usefulness

Ch. 4 [ICSE 2020]

Ch. 5 [ICSE 2018]

Ch. 6 [SANER 2019]

Ch. 3 [FSE 2019]

Problem Solution Analysis/Evaluation

Figure 1.1: Outline of the thesis. (Arrows present the mapping between solution and its targeting
problems)

Collaboration is essential for software development at scale, in both industrial and open-
source projects. As the software teams become increasingly distributed, many of the mecha-
nisms that support coordination in a co-located setting are absent or disrupted in a distributed
project [103, 106, 139]. Geographic distance profoundly affects the ability to collaborate [165],

1

2 CHAPTER 1. INTRODUCTION

and leads to various disruptions to different degrees, such as much less communication, lack of
awareness, and incompatibilities [106].

Fork-based (known as branch-based or pull-based) development is an emerging paradigm
and a lightweight mechanism that supports distributed software development. Developers could
start with an independent development from an existing codebase by simply copying code files
and creating a fork or a branch [36], while having the freedom to make any modifications [37, 71,
81, 230]. Recent advances in distributed version control systems [2, 223] (e.g., ‘git’) and social-
coding platforms (e.g., GITHUB, Bitbucket, and GITLAB) have made fork-based development
relatively easy and popular [97, 179] by providing support for tracking changes across multiple
forks, and using a common vocabulary and mechanism for integrating changes back [61]. More
and more projects, both closed source and open source, are being migrated to these code hosting
sites [24]. As of January 2020, GitHub reports having over 40 million users and more than 100
million repositories (including at least 28 million public repositories), making it the largest host
of source code in the world [14].

Forking has become very common: As we measured from the GHTorrent [96] data, over
114,120 GITHUB projects have more than 50 forks, and over 9,164 projects have more than
500 forks as of June 2019, with numbers rising quickly. The large population of forks in the dis-
tributed software development comes at costs to open-source (such as lacking of an overview, lost
contribution, redundant development, and fragmented communities), which may even threaten
the sustainability of the open-source communities, as we will explain later. Moreover, inadequate
models of collaboration can stifle innovation, hurt common infrastructure, and lead to inefficient
development process, for example, when team members lack of awareness of what others are
doing [70, 103], when code structure does not align with team structure [107], or when the struc-
ture of governance of a community is inefficient [64]. Improving this situation is the core goal
of this thesis.

Before the rise of social coding, forking traditionally referred to the intention of splitting an
independent development line, competing with the original repository, often with a new name.
We use the term (social) fork in the sense of creating a public copy of a git repository and refer
to the traditional definition of splitting of a new independent project as a hard fork. We explain
the history of forking in Section 2.1.

1.1 Inefficiencies in Social Forking
Modern tools and platforms (e.g.,GITHUB, Bitbucket, and GITLAB) have made forking easier
(1) to track and integrate changes across multiple forks without central management and (2) to
publish changes, including incomplete and experimental ones. Forking has become very com-
mon and popular [97, 179] as we described previously. Social forking has been broadly studied
from different perspectives [61, 62, 97, 99, 100, 147, 226].

While easy to use and popular in practice, fork-based development has well-known down-
sides. When developers each create their own fork and develop independently, their contributions
are usually not easily visible to others, unless they make an active attempt to merge their code
changes back into the original project. When the number of forks grows, it becomes difficult to
keep track of decentralized development activity in many forks. The key problem is that it is dif-

1.1. INEFFICIENCIES IN SOCIAL FORKING 3

ficult to maintain an overview of what happens in individual forks and thus of the project’s scope
and direction. Also, for fork-based development in industrial contexts, both Berger et al. and
Duc et al. found that it is hard for individual teams to know who is doing what, which features
exist elsewhere, and what code changes are made in other forks [28, 72].

(a) GITLAB’s fork list view. (b) GITHUB’s fork list view.

(c) GITHUB’s network graph shows commits across known forks, but is difficult to use to gain an overview
of activities in projects with many forks [249].

Figure 1.2: Existing solutions for the problem of lack of overview in fork-based development.

4 CHAPTER 1. INTRODUCTION

StDev = 0.22

0% 25% 50% 75% 100%
% Forks contributing back

de
ns

ity

(a)

StDev = 0.19

0% 25% 50% 75% 100%
PR merged ratio

de
ns

ity

(b)

StDev = 0.059

0% 25% 50% 75% 100%
% Duplicate PRs among rejected PRs

de
ns

ity

(c)

StDev = 0.02

0.0% 2.5% 5.0% 7.5% 10.0%
% Hard forks among all forks

de
ns

ity

(d)

Figure 1.3: Among 1311 GITHUB projects, both efficient and inefficient forking practices are
common, motivating us to understand what influences inefficiencies. Plots are density plots
indicating which outcomes are common in many projects; the arrow indicates more efficient
outcomes; the dash line indicates the median [250].

Open-source developers (including the ones that we interviewed for this project) indicated
that they are interested in what happens in other forks [231], but cannot effectively explore them
with current technologies [7]. Code hosting platforms invented different solutions to resolve this
problem. For example, GITHUB and GITLAB list all the forks of a project in one page (see Fig-
ure 1.2a and Figure 1.2b). In addition, GITHUB’s network graph shown in Figure 1.2c visualizes
the history of commits over time across all branches and forks of a project [61]. Although the
fork list view helps people to know the existing forks, it is hard to figure out whether these forks
are still active and what are the code changes. While the network view is a good starting point
to understand how the project evolves, it is tedious and time consuming to use if a project has
many forks. In order to see older history, users click and drag within the graph, and if users want
to see the commit information, they hover the mouse over each commit dot and read the commit
message. Also, they complain that they “have to scroll back a lot to find the fork point and then
go to the end again for seeing what changed since then in the parent and in the fork” [7]. If
developers want to investigate the code changes of certain forks, they have to manually open and
check each fork. The GITHUB network view does not even load when there are over 1000 forks,
no matter whether they are active or inactive. As we measured from the GHTorrent [96] data,
over 2,236 GITHUB projects have more than 1000 forks as of June 2019.

Furthermore, the lack of overview of forks can lead to several additional problems and inef-
ficient practices:

• Lost contributions: Developers may explore interesting ideas, fix bugs, or add useful fea-
tures in forks, but unless they contribute those changes back to the original project, those
contributions are easily lost to the larger community, although these changes are tech-
nically public [249]. Fung et al. [91] report that only 14 percent of all active forks of

1.1. INEFFICIENCIES IN SOCIAL FORKING 5

nine popular JavaScript projects on GITHUB integrated back any changes; extrapolating to
open-source in general, this can amount to significant inefficiencies regarding development
talent and lost effort. Developers are often interested in activities by other developers, but
simply are not able to follow details in that many forks proactively—for example, one of
the developers in our user study discovered a feature in a fork and said “If it only exists in
this fork, then I want to somehow get this feature into my fork.” Only very recently tools
have been proposed to help developers monitor many forks [12, 184, 249]. In our study,
we regard a community in which more developers attempt to contribute their changes to
the upstream as more efficient. In our sample of 1311 GITHUB projects, we identified
the fraction of forks that attempt to contribute any changes back among all active forks.
And results shown that this problem is pervasive: a median of 50% active forks never
contribute back to the upstream (see Figure 1.3a). Lost contributions even happen in co-
ordinated software product line when people often struggle to identify which of multiple
existing forks/branches to select as a starting point [71].

• Rejected pull requests. Not all attempted contributions are accepted by project maintain-
ers. When developers submit a pull request that gets rejected, they can perceive this as a
waste of their effort and get discouraged from contributing further [212]. One important
factor that affects the decision of merging a pull request or not is project fit, which means
whether the proposed pull request is in line with the goals and target of the project, and
also the technical fit – does the code fit the technical design of the project [18, 100, 212].
From the community’s perspective, a project in which most pull requests are accepted can
be considered as most effective with regard to contributor efforts. Observing the rate of
rejected pull requests among all closed pull requests in our 1311 GITHUB projects (see Fig-
ure 1.3b), we see that in most projects a majority of pull requests are accepted, but also note
the high variance. Again, we would like to identify whether different project characteris-
tics or practices can explain why some projects accept most pull requests whereas others
accept only a small percentage, and how project maintainers can strive for more efficiency.

• Redundant development: Unaware of activities in other forks, developers may re-
implement functionality already developed elsewhere. A developer we interviewed in
our study (Chapter 5) [249] also confirmed the problem as follows: “I think there are a
lot of people who have done work twice, and coded in completely different coding style.”
Gousios et al. [97] summarized nine reasons for rejected pull requests in 290 projects
on GITHUB, in which 23% were rejected due to redundant development (either parallel
development or superseded other pull requests). Redundant development further leads
to merging conflicts, which would demotivate or prevent developers from continuously
contributing to the repository [97, 212] and significantly increases the maintenance effort
for maintainers [71, 214]. In analyzing the fraction of pull requests rejected due to
redundancies, we found that redundant development is a small but pervasive problem:
about 1–5 % of all pull requests and 5–50 % of rejected pull requests (see Figures 1.3c).

• Fragmented Communities: Diffusion of efforts can be observed on GITHUB in the many
secondary forks (i.e., forks of forks) that contribute to other forks, but not to the original
repository [91, 211]. This fragmentation can seriously threaten the sustainability of open
source projects when scarce resources are additionally scattered across multiple projects.
In fragmented communities, we see multiple related repositories receive contributions,

6 CHAPTER 1. INTRODUCTION

but those contributions are rarely shared. For example, Ultimaker was originally a fork
of the Marlin project aimed at certain hardware, but has evolved into an independently
managed hard fork with over 190 own forks and no interaction with Marlin anymore;
inefficiencies can be observed, for example, in a pull request for Marlin for an issue that
was independently fixed with a different pull request in Ultimaker two years earlier.1 There
are different reasons for community fragmentation. For example, one of the developers
who have second level forks explained that he implemented a feature and submitted a pull
request. After it was rejected, he started to focus on his fork, and then more and more
developers started to fork his fork. Hard forks are rare, but potentially expensive for a
community. In analyzing the percentage of hard forks among all the sampled forks of
each project, the numbers show that a median of 5% sampled projects have hard forks
(see Figure 1.3d). Although this only happens to some projects, but the problem is severe.

Note that not all the practices that we described above (including unmerged code changes
in forks, rejected pull requests, similar implementations from different developers, and
fragmented communities) are inefficient and should be eliminated. For example, not all of
the unmerged code changes in forks are reusable, and they could be changes done for some other
reasons, like experimenting, getting familiar with the project, or for customization. It might be
more efficient not to send the owner a pull request that would take up the owner’s time and effort
to review a useless change. Moreover, these practices could even be beneficial. For example,
duplication could stimulate better solutions if two developers communicate and collaborate ear-
lier. However, currently there is no tool to notify developers who are working on similar features
or bug-fixes. Therefore, instead of collaborating upfront, developers compete at the end. Simi-
larly, community fragmentation could be beneficial for exploring new and larger ideas or testing
whether there is sufficient support for features and ports for niche requirements or new target
audiences (see Section 4.3.2). However, current technology does not support coordination across
multiple hard forks well.

We have evidence showing that a large portion of communities treat these as inefficiencies,
and would like to address these to some extent (see Chapter 3). And studies have found that there
are many chances that developers could be notified about these cases earlier and collaborate more
efficiently (Chapter 5 and 6). Therefore, as the first step, in this thesis, we treat lost contribution,
rejected pull requests, redundant development, and fragmented communities as indicators of
collaboration inefficiencies and design complementary solutions to address them. In the future,
we could design approaches to detect the intention behind each developer’s activity and come
up with a more targeted method to help community members to achieve higher collaboration
efficiency, but this is out of the scope of this thesis.

1https://github.com/MarlinFirmware/Marlin/pull/10119
https://github.com/Ultimaker/Ultimaker2Marlin/pull/118

https://github.com/MarlinFirmware/Marlin/pull/10119
https://github.com/Ultimaker/Ultimaker2Marlin/pull/118

1.2. POSSIBLE SOLUTIONS 7

1.2 Possible Solutions
We would like to alleviate these inefficiencies. We developed two complementary strategies:
Identifying natural interventions and designing new interventions.2 First, by quantifying the
inefficiencies in a large number of GITHUB projects and by discussing with multiple develop-
ers regarding their experiences of using forks, we recognized that there are differences among
projects in terms of the degree of inefficient practices. These strong differences raise the ques-
tion of why these projects are so different and whether we could find natural interventions that
already exist and are correlated with higher collaboration efficiency, and then recommend these
best practices to other communities with lower collaboration efficiency. Second, since there is
a lot of information that is publicly available but not easily accessible, we saw opportunities of
building awareness tools to help people to gain a better understanding of the activities of others
and a context for their own activity in collaborative software development.

Identifying natural interventions. During discussions with developers from different open-
source communities, we observed that some communities have fewer problems with inefficien-
cies than others. In quantifying the inefficiencies of our sampled projects set, we found that
projects are indeed very different regarding the degree of collaboration inefficiencies. Specif-
ically, the degree of fork owners attempting to contribute their changes back to the upstream
varies, ranging from projects in which almost no fork attempts to contribute back, to projects
where almost all forks are used for attempted contributions (see Figure 1.3a). Figure 1.3b shows
that in most projects a majority of pull requests are accepted, but again with large differences.
Similarly, by plotting the fraction of pull requests rejected due to redundancies in Figures 1.3c,
we observe the differences that some projects have more redundant development cases than oth-
ers. And Figure 1.3d shows the percentage of hard forks among all the sampled forks of each
project, we again observe that their frequency varies significantly across projects.

These strong differences in observed inefficiencies raise the question of why these projects
are so different, and bring us the opportunity of improving collaboration efficiencies for open-
source communities by identifying actually occurring interventions from some projects that are
more efficient.

Designing new interventions to improve awareness. As the fork-list view (GITHUB and
GITLAB) and the network view (GITHUB) shown in Figure 5.1 are not good enough to pro-
vide developers an overview of the activities in the community, we would like to design new
interventions to improve current situation. Through literature analysis, we found that the lack
of an overview problem that we observed in fork-based development environment is essentially
the same as the lack of awareness problem that have been studied previously in other distributed
software development scenarios [48, 63, 70, 103, 200, 224], but with new challenges.

As there is a lot of information that is publicly available but not easily accessible in the fork-
based development environment, we saw opportunities for designing new intervention – building
awareness tools – to help team members to gain an understanding of the activities of others,

2The term intervention is used in social studies and social policy to refer to the decision making problems of
intervening effectively in a situation in order to secure desired outcomes [3].

8 CHAPTER 1. INTRODUCTION

which also provides a context for each developer’s own activity [70], and ultimately mitigate
the collaboration inefficiency. Specifically, we designed an approach INFOX [249] to summarize
un-merged code changes in forks in order to generate a better overview of the community. We
also designed an approach INTRUDE [185] to identify potentially redundant code changes to save
both project maintainers’ and developers’ effort.

Summary. We observe inefficiencies in fork-based development and different communities
has different inefficient practices, so we would like to understand how efficiently developers
use forks in different communities, and to what degree project characteristics and practices of
open-source communities associate with inefficiencies. Then we propose two complementary
strategies to mitigate those issues: First, we would like to identify existing best practices and
suggest evidence-based interventions to projects that are inefficient; second, we would like to
build tools that could improve the awareness of a community, and help developers to detect
redundant development to unnecessary effort. To evaluate the effectiveness and usefulness of
these approaches, we conducted both quantitative and qualitative studies. The research setting
for this study is the “social coding” platform GITHUB, which is a very popular contemporary
example of a fork-based development environment.

1.3 Thesis
My dissertation work is about alleviating the inefficiencies in fork-based development, by identi-
fying interventions from existing best practices and building awareness tools that could improve
the awareness of a community using fork-based development, and reduce developers’ unneces-
sary effort. The following is my thesis statement:

I study how communities using forks, design measures to quantify inefficiencies in fork-based
development. In order to mitigate the inefficiencies, I propose two strategies: first, I conduct
a cross-sectional, correlational study to identify existing best practices and generate evidence-
based recommendations that could improve collaboration efficiency; second, I design awareness
tools to generate a better overview of code changes in an open-source community, and detect
redundant development to reduce waste of maintenance and development effort.

The research questions we asked in this thesis are:
• RQ1: What characteristics and practices of a project associate with efficient forking prac-

tices?
• RQ2: How have perceptions and practices around hard forks changed?
• RQ3: Can awareness tools help fork-based development to mitigate collaboration ineffi-

ciencies?

1.4 Summary of Contribution
The contributions of this thesis include the following:

• Measures of inefficiencies in open source communities, and observations of strong dif-
ferences among projects in terms of lost contributions, rejected pull requests, redundant

1.5. OUTLINE 9

development, and fragmented communities. Result shows that projects are different in
terms of the degree of collaboration efficiencies (Chapter 2).

• A cross-sectional, correlational study that test hypotheses whether certain context factors
of a project are correlated with inefficient practices by fitting statistical models with across
1311 GITHUB projects. The findings show that management strategy of the community
and project modularity is correlated with higher efficiency but with trade-offs. Based on
the findings, we derived evidence-based guidance to practitioners, and future research di-
rections and tooling ideas (Chapter 3).

• A mix-methods empirical design, combining repository mining with developer interviews
to investigate the evolution patterns of hard forks, and study the perceptions of hard forks
comparing to 20 years ago. Our finding show that hard forks are a significant concern, even
though their relative numbers are low. In addition, we find that the ‘stigma’ often reported
around hard forks is largely gone, indeed forks including hard forks are generally seen as a
positive. Furthermore, with social forking encouraging forks as contribution mechanism,
we find that many hard forks are not deliberately planned but evolve slowly from social
forks (Chapter 4).

• INFOX, an approach and the corresponding tool, which automatically identifies and sum-
marizes features in forks of a project, using source code analysis, community detection,
and information retrieval techniques. And we provide evidence that INFOX improves ac-
curacy over existing techniques and provides meaningful insights to maintainers of forks.
Furthermore, we developed a web service forks-insight.com to improve our research im-
pact in practice (Chapter 5).

• INTRUDE, an approach that automatically identifies duplicate code changes using natural
language processing and machine learning. We develop clues for indicating redundant
development, beyond just title and description. And we designed quantitative study to
prove that the approach outperforms the state-of-the-art (Chapter 6).

1.5 Outline
In this thesis, we first study the problem space by quantifying the efficiencies in fork-based
development: Lost contribution, rejected pull requests, redundant development, and fragmented
community (already described in Chapter 1). Chapter 2 grounds our work by discussing the
history of forking, and the importance of awareness of a distributed collaborative environment.

Next, we propose two complementary strategies to mitigate these problems (Chapter 3-
6): First, we identified existing best practices and suggesting evidence-based interventions to
projects that are inefficient (marked as the Natural Intervention in Figure 1.1); second, we built
tools that could improve the awareness of a community using fork-based development and help
developers to detect redundant development to reduce developers’ unnecessary effort (marked as
New Intervention in Figure 1.1). To evaluate the effectiveness and usefulness, we conducted both
quantitative and qualitative studies. Chapter 7 discusses potential future research directions.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Distributed Collaboration of Software
Development

In this thesis, we discuss different approaches to improving collaboration efficiency for dis-
tributed software teams using fork-based development mechanism. In this chapter, we first give
a brief introduction of the history of forking and then compare the old notion of forking with the
recent social forking phenomenon, which also lays the foundation to one of the projects (Chap-
ter 4) – identifying different types of forks to understand the community fragmentation problem.
Furthermore, we discuss the importance of awareness in a collaborative environment, from which
we got inspirations and then design new interventions to improve fork-based mechanisms.

2.1 History of Forking

Traditionally, the processes of collaboration in distributed software development is through patch
submission and acceptance [34, 35, 156, 235]. With the advances in distributed version control
systems (e.g., git) and social coding platforms (e.g., GITHUB, GITLAB, and Bitbucket), fork-
based development became relatively easy and popular for the last 12 years, both in open-source
and in industry [97, 179].

Traditionally, forking was the practice of copying a project and splitting off new independent
development; in the past, forking was rare and was often intended to compete with or supersede
the original project [85, 131, 161, 181]. For example, when OpenOffice was acquired by Oracle
in 2010 but did not fit anywhere in Oracle’s grand plans, developers in the community decided to
fork OpenOffice and created LibreOffice in the same year. Similarly, in 2011, Hudson was forked
as Jenkins because of the governance disagreements with Oracle [9]. In 2014, “after a public
spat with the “steward” of the framework” [199, 240], a number of Node.js developers started
their own fork of the framework called io.js, but after a year, the Linux Foundation announced
that Node.js and io.js officially merge codebases back.

Nowadays, forks are typically understood to be public copies of repositories in which devel-
opers can make changes, potentially, but not necessarily, with the intention of integrating those
changes back into the original repository. With the rise of social coding and explicit support in
distributed version control systems, forking of repositories has become very popular [97, 179].

11

12 CHAPTER 2. DISTRIBUTED COLLABORATION OF SOFTWARE DEVELOPMENT

‘99 ‘08 ‘11‘05 ‘17

Since
1977

‘93

Hard fork

‘14‘02

Popularity Trend since 2014

Figure 2.1: Timeline of some popular open-source forking events; popularity approximated with Google
Trends.

In this thesis, we use the term (social) fork in the sense of creating a public copy of a git
repository with the intention of integrating those changes back into the original repository and
refer to the traditional definition of the splitting of a new independent project as a hard fork.

Forking research focused primarily on hard forks in open-source, where a popular topic was
understanding the motivations [51, 69, 81, 131, 162, 190, 232], the controversial perceptions
around hard forks [42, 85, 131, 161, 181, 237], and the outcomes of hard forks (including study-
ing factors that influence such outcomes) [190, 237]. Specifically, Nyman et al. [162] analyzed
self-described reasons for hard forks and found that variants targeting specific needs or user seg-
ments are the most common, followed by variants for different hardware (porting), bug fixes, and
reviving abandoned projects. Researchers also found that forking can be a suitable practice for
variant management [81] and to overcome governance disputes [93].

Hard forks have been discussed controversially: The right for hard forks (codified in open
source licenses) was seen as essential for guaranteeing freedom and useful for fostering dis-
ruptive innovations [85, 161, 164], encouraging a survival-of-the-fittest model [234], but hard
forks themselves were often seen as antisocial and as risky to projects since they could fragment
a community and lead to confusion for both developers and users [85, 131, 161, 181]. Also,
Yoo [243] studies the tension between freedom of forking with the challenge of fragmenting the
community. There are not many cases where both communities survived after a hard fork, with
a prominent but relatively rare example of the BSD variants [163, 179, 180, 190].

However, essentially all that research has been conducted before the rise of social coding,
much of it on SourceForge (GITHUB was launched in 2008 and became the dominant open-
source hosting site around 2012; cf. Fig 2.1).

In recent years, researchers started studying collaborative development with forks on social
coding platforms. The openness of social coding creates transparency [61, 62] by making devel-
opment activities in forks public and making pull request (PR) contributions visible. Prior work
studied GITHUB’s pull-request model to investigate the reasons and factors that affect the PR
evaluation process [97, 99, 227, 244]. Among the findings, both technical and social factors af-
fect the chance of acceptance, such as the quality of the PR and the submitters’ social connection

2.2. COLLABORATION IN SOFTWARE ENGINEERING PROJECTS 13

to core members of the community.
As the notion of forking has changed over the last 20 yeas, we argue that perceptions and

practices around forking could have changed significantly since SourceForge’s heydays. In con-
trast to the strong norm against forking back then, we conjecture that the promotion of social
forks on sites like GITHUB, and the often blurry line between social and hard forks, may have
encouraged forking and lowered the bar also for hard forks.

Therefore, in this thesis we revisit, replicate, and extend research on hard forks to update
and deepen our understanding regarding practices and perceptions around hard forks in order to
inform the design of better tools and management strategies to facilitate efficient collaboration.

Also, prior work confirmed that forking provides increased opportunities for community
engagement [61, 62, 97, 99, 149]; e.g., over half of the commits in the Marlin project come
from forks [214]. Biazzini et al. defined three collaboration models of open source projects on
GITHUB by understanding the dispersion of commits created by forks in the community, and re-
vealed that collaboration patterns may differ significantly among projects [31]. More generally,
it has been observed that communities often adopt a shared culture of common practices, but
cultures can differ significantly between communities [38].

Overall, most prior works focused on hard forks, though understanding the acceptance of
individual contributions through PRs has recently come in focus. In this thesis, we study forks as
a contribution mechanism at the project level and focus on factors associated with project-wide
inefficiencies.

2.2 Collaboration in Software Engineering Projects
Software engineering projects are inherently collaborative, requiring many software engineers
to coordinate their efforts to produce a software system. To ensure the collaboration efficiency,
team members are developing shared understanding surrounding multiple artifacts [132, 238].
As the number of people working on a project increases, the potential for communication in-
creases “multiplicatively in proportion to the square of the number of people taking part” [145].
Bandinelli points out that due to the co-operative nature of software development, success is de-
pendent upon “the quality and effectiveness of the communication channels established within
the development team” [21]. Thus communication is important.

Research into computer-supported co-operative working (CSCW) suggests a two dimen-
sional model for collaborative work [210]: distance vs. time separation (i.e., same-time same-
place, same-time different-place, different-time same-place, or different-time different-place).
The work presented in this thesis focuses on examples of different-time different-place distribu-
tion, and many of the findings are applicable to the other components of the model. The purpose
of our study is to form an understanding of collaborative working issues for distributed software
teams using fork-based development mechanisms in order to inform future software engineering
tools to facilitate efficient collaboration.

Software engineering research has proposed methods aiming for collaboration problems from
different perspectives, including documenting and enforcing programmers’ intentions [101],
physically co-locating development teams to improve communication[105, 220], and improv-
ing awareness in the collaborative development environment (see details in Sec. 2.3). This thesis

14 CHAPTER 2. DISTRIBUTED COLLABORATION OF SOFTWARE DEVELOPMENT

is focusing on improving awareness for distributed software teams using fork-based development
to collaborate by designing new interventions (Chapter 5 and 6).

2.3 Importance of Awareness in Distributed Collaboration
As described in Section 1.1, when the number of forks grows, it becomes difficult to maintain
an overview of what happens in individual forks and thus of the project’s scope and direction.
This lack of an overview problem is similar to the lack of awareness problem that has been
studied previously in other distributed software development scenarios [48, 63, 70, 103, 200, 202,
224], but with new challenges. For example, most of the previous works focused on industrial
settings, in which all the team members are working on the same project. While in fork-based
development, especially in open-source, the number of forks is much bigger than the industry
setting, and fork owners are not necessarily contributing to the same projects, which makes
creating an overview for the community and identifying the useful information for individual
developer even harder. Therefore it is necessary to design awareness tool under the fork-based
development environment.

Dourish et al. defined awareness as “an understanding of the activities of others, which pro-
vides a context for your own activity”, and demonstrate that awareness of individual and group
activities are critical to successful collaboration because it helps group members to better un-
derstand of sequence and timing of things and the temporal boundaries of their actions [70]. In
the software development environment, awareness means that team members can become aware
of the work of others that is interdependent with their current tasks, therefore enabling better
coordination of teams.

Developers may be globally distributed [171] while collaborating on the same project. Dis-
tance creates an additional challenge to software development processes, because of fewer op-
portunities for rich interaction and lower frequencies of direct communication [108]. Especially,
for an open-source project, it is common to require distributed software developers to coordinate
their efforts [156]. The distance affects collaboration issues, such as awareness and communica-
tion [109, 198]. Thus, it is important to keep awareness of the activity of the projects and other
developers in such a distributed collaboration situation [102, 103].

There are many kinds of information need to be aware of, such as the technical and social as-
pects of the development [65], current and upcoming articulation work [151], the overall status of
their projects and critical deadlines, understand current priorities and bottlenecks, dependencies
between components and teams, and need to be informed of changes to tasks they are working
on in a real-time manner [224]. For example, there are awareness tools for software development
to focus on low-level code-specific tasks [204], like seesoft [76] and Augur [89].

Gutwin et al. [103] defined workspace awareness as the up-to-the-moment understanding
of another person’s interaction with the shared workspace, which means an understanding of
actions on shared artifacts. Correspondingly, researchers have investigated different approaches
to provide workspace awareness [22, 89, 166, 201]. For instance, FastDASH [32] shows when
two developers are working concurrently on a file, allowing them to preempt merge conflicts;
Palantír [202] follows a similar approach by notifying developers when changes are made to
relevant work artifacts. In addition, there are tools presenting the high-level activities, like

2.3. IMPORTANCE OF AWARENESS IN DISTRIBUTED COLLABORATION 15

project management issues, change requests and social and historical patterns in the develop-
ment process [78]. For example, the World View in Palantír also addresses “awareness in the
large” [200], which provides a comprehensive view of the team dynamics of a project especially
for the geographical location of developers. Furthermore, practitioners designed toolsets target-
ing distributed and collaborative software development, such as IBM’s Jazz [90], Microsoft’s
CollabVS [104].

Workspace awareness is also important for open-source software development. Developers
need to seek out information about their fellow developers in order to stay aware of their work
activities [226]. Specifically, people seek awareness information such as who is working on
what part of the project from simple text communication such as mailing lists and text chat
to stay aware of the work of other developers on the project [103]. Newcomers need to seek
similar awareness information from text communication tools in order to “recruit” core project
developers towards supporting their contributions [73]. Also, developers on a project used similar
work awareness information from the mailing list in order to select code contributions to review.

Gutwin et al. [102] present techniques that address the visibility problem, when the workspace
is larger than a member’s screen and when people can move their views independently. The paper
shows that overview representation that shows the entire workspace in miniature and provides a
high-level perspective on artifacts and events in unseen areas of the workspace, is the most useful
view to help people to maintain workspace awareness. Because of visual awareness information
makes it easier to communicate useful information without talking, and awareness information
gives people confirmation about the other person’s activities [102].

However, too much awareness could be a problem leading to information overload [187].
In our project, we also found that developers think it is hard to quickly get an overview of the
community, except checking each fork one by one, although, with the advent of transparent de-
velopment environments, all the information is publicly available [61]. Communication happens
when transparency break down – there was certain information developers could not directly ob-
serve [61]. Thus, there is an opportunity for extracting useful information and summarizing the
activity of each fork to provide an overview.

Furthermore, an uncoordinated team – with lack of communication – tends to lose the notion
of who is changing which parts of the system (awareness), which leads to merging conflicts and
duplicated work [63]. In our work, we also found inefficiencies, such as redundant development,
lost contribution (described in Chapter 1), happened in fork-based development mechanism be-
cause of a lack of awareness.

Thus, in order to help globally distributed developers to gain a better overview, better commu-
nicate, and find the potential collaborator, we will design awareness tools in fork-based develop-
ment to mitigate inefficiencies because of lacking awareness, such as summarizing information
of un-merged code changes information in forks, and detecting potentially redundant develop-
ment (see details in Chapter 5 and 6).

16 CHAPTER 2. DISTRIBUTED COLLABORATION OF SOFTWARE DEVELOPMENT

Chapter 3

Identifying Natural Interventions from
Best Practices

This chapter shares material with the FSE’19 paper “What the Fork: A Study of Inefficient and
Efficient Forking Practices in Social Coding” [250].

As we discussed in Chapter 1, modern tools and platforms (e.g.,GITHUB, Bitbucket, and
GITLAB) have made forking easier (1) to track and integrate changes across multiple forks with-
out central management and (2) to publish changes, including incomplete and experimental ones.
Forking has become very common and popular [97, 179].

While easy to use and popular in practice, fork-based development has well-known down-
sides. In this dissertation, we study one of the problems – a lack of an overview and correspond-
ing inefficiencies: lost contribution, redundant development, rejected pull requests, and frag-
mented communities. In this chapter, we study the differences among open source communities
in terms of forking practices, identify and measure inefficiencies, and model how characteristics
and practices, such as modularity and centralized management, are associated with these ineffi-
ciencies. Specifically, we investigate the research question: What characteristics and practices
of a project associate with efficient forking practices? Understanding what influences ineffi-
ciencies correlated with higher collaboration efficiency.

Concretely, we derived potential characteristics and practices that could affect forking (in) ef-
ficiency by (1) asking open-source developers about their forking practices and (2) exploring
exiting theories on distributed collaboration. We then designed a cross-sectional correlational
study to test these hypotheses at scale on GITHUB data (study overview is shown in Figure 3.1).
Specifically, we designed measures for four inefficiencies and potential characteristics and prac-
tices, collected data from 1311 GITHUB projects with different number of forks, and used mul-
tiple regression modeling.

We found that better modularity of the project structure and more centralized management
practices for contributions are strong predictors of more contributions and more merged pull
requests. Interestingly, our models also reveal a tradeoff: centralized management also associates
with higher risk of community fragmentation through hard forks, as does a low pull request
acceptance rate. Our results suggest best practices that project maintainers can adopt if they want

17

18 CHAPTER 3. NATURAL INTERVENTIONS

4

Interviewing Stakeholders

Literature/Theory Search
Deriving

Hypotheses

Modeling

Sampling

Test
HypothesesQuantifying

Inefficiencies
Practices
Context Factors

Figure 3.1: Outline of studying natural intervention.

to make fork-based development more efficient. Our operationalizations and results also lay the
foundation for future tool support, such as benchmarking projects and highlighting inefficient
practices [40].

In a nutshell, here we study the natural interventions that are correlated with efficient fork-
ing practices, and identify the best practices that are potentially helpful to improve collaboration
efficiencies for other projects.

3.1 Identifying Potential Context Factors and Deriving Hy-
potheses

To identify potential context factors of a project that are potentially correlated with forking effi-
ciency, we pursued two strategies in parallel: interviews with active open-source contributors and
analysis of the literature on distributed collaboration (shown in Figure 3.1). This way, we col-
lect perceptions of inefficiencies and their causes from practitioners and can contrast practices
in different open-source systems, while at the same time also considering theories describing
factors for efficient distributed collaboration, albeit established in contexts outside of fork-based
development.

Specifically, we interviewed 15 maintainers and fork owners of several popular open-source
projects, including Bitcoin, Marlin, Smoothieware, and scikit-learn (the number of forks ranged
from 60 to 18.2K; all interviewees had public email addresses on their GITHUB profiles), about
efficient and inefficient practices and what might influence them. We stratified our sample of
interviewees to include maintainers of projects with many forks, maintainers of projects with
many duplicate pull requests, developers who contributed to many open-source projects, and
developers who made changes in forks without attempting to contribute back. We conducted 12
interviews over Skype or email and 3 in person at two mixed academic-practitioner conferences.
To analyze the transcripts, we conducted axial coding. This way we identified context factors that
may affect the collaboration efficiencies, considering also the theories we found in the literature
on distributed collaboration.

3.1. IDENTIFYING POTENTIAL CONTEXT FACTORS AND DERIVING HYPOTHESES19

3.1.1 Modularity affects forking practices
Interviews. Discussions with contributors familiar with both Marlin and Smoothieware re-
vealed an interesting contrast: Marlin and Smoothieware are both frequently forked open-source
firmware projects for 3D printers (Marlin has over 8,800 forks on GITHUB and Smoothieware
has over 821 forks), but contributors perceive practices in both projects as very different. Learn-
ing from Marlin’s maintenance problem due to crosscutting implementations, Smoothieware was
designed modularly and emphasizes loose coupling and extension through separate modules, so
that developers can add functionality without having to modify Smoothieware’s core implemen-
tation. A developer who is familiar with both projects indicated that Smoothieware follows more
professional and industrial development practices, such as submitting smaller and more cohesive
changes. Another developer who has developed significant Marlin extensions in a fork without
attempting to merge them back mentioned that one of the reasons for not merging is that Marlin’s
structure causes high integration effort. Interestingly, some GITHUB projects have an extremely
modular structure, e.g., a collection of scripts or plug-ins that are assembled automatically (such
as homebrew package descriptions), such that many contributions simply add files instead of
modifying existing ones.

Modularity was not entirely uncontroversial in our interviews though, e.g., one Smoothieware
contributor suggested that modularity helped with some extensions, but made others harder: “So
many restrictions that you can’t just modify anything in the base code. [...] All this makes
the code upgradeable, clean, and manageable, but the development progress is much slower
because [...] some functions cannot be integrated with those restrictions.” This suggests tradeoffs
regarding the rigidity that modularity imposes on developers, making certain changes hard or
impossible.

Literature. Our interview observations align with theory (outside of social forking contexts)
about the importance of modularity for (distributed) collaboration. For example, Conway’s law
postulated that structure of the code mirrors the structure of the organization [55]. Parnas de-
fined a module as “a responsibility assignment rather than a subprogram”, which indicates that
dividing a software system is simultaneously a division of labor [169]. In addition, Herbsleb
et al. revisited Conway’s law by conducting a user study and found that integration turned out
to be the most difficult part of a geographically distributed software project [107]. The result
shows that in order to reduce the need for cross-site communication as much as possible, it is
better to assign work to different sites according to the architectural separation in a design that is
as modular as possible, and only split the development of well-understood products (or parts of
products), where plans, processes, and interfaces are established and likely to be very stable.

Researchers and practitioners have also emphasized the importance of modularity for open-
source development [128, 152, 222]. For example, Torvalds [222] claims “for without [mod-
ularity], you cannot have people working in parallel” and Midha and Palvia [152] found that
modularity is positively associated to technical success of open-source projects. Specifically,
MacCormack et al. [143] suggested that more modular projects could be more attractive to poten-
tial contributors. Similarly, Baldwin et al. found that a greater number of modules can yield more
design options, which creates more opportunities for the exchange of valuable work among de-
velopers and increases developers’ incentives to work on the codebase [19]. It is hence plausible

20 CHAPTER 3. NATURAL INTERVENTIONS

that modularity also has positive effects on collaboration efficiency in fork-based development
among loosely-connected developers on social coding platforms.

In summary, modularity is important for both technical and organizational perspectives, so
we suspect modularity as a collaboration mechanism could be also a good practice for fork-based
development. This aligns with our hypothesis that projects with a better modular design have a
larger portion of contributing forks.

Hypotheses. Despite raised concerns, we hypothesize that a modular design of the software
would make it easier to contribute to a project, which influences both whether developers attempt
to contribute and to what degree maintainers accept contributions:
H1. Projects with a better modular design have a larger fraction of contributing forks.
H2. Projects with a better modular design have a larger fraction of merged pull requests.

3.1.2 Coordination mechanisms affect forking practices
Interviews. Interviewees of many projects, including Marlin and Smoothieware, indicated that
their communities welcome all pull requests that may benefit the larger community and that they
are interested in activities in various forks, though they find it hard to monitor them. In con-
trast, an interviewee from the cryptocurrency project Bitcoin (25,200 forks) expressed a different
view: Bitcoin has adopted a central management style, in which a relatively stable team of core
developers decides the direction of the project, and in which features are discussed and decided
upfront in an issue tracker (often political and hard fought among different camps [140]). The
issue tracker records which forks contain the corresponding code changes for each issue; other
forks are of little interest to maintainers and unsolicited pull requests remain ignored for years.
Similarly, one of the maintainers of the Python machine-learning project scikit-learn (19,300
forks) indicated that developers have little chance of integrating their changes upstream unless
they talk to the maintainers first.

Developers also perceive explicit coordination as a key mechanism to avoid redundant devel-
opment. Certain open-source communities perceived redundancies as a significant problem and
promoted explicit coordination to combat it; e.g., Django adopted a policy requiring contribu-
tors to communicate with the core team upfront to claim issues before submitting patches [5].
A maintainer of scikit-learn was even surprised about the existence of duplicate pull requests,
because in their project explicit coordination (developers discuss with the core team before doing
any work) is the norm.

Literature. Researchers have long studied different degrees of explicit coordination and their
tradeoffs in distributed collaboration, often in corporate settings, e.g., Brandts et al. [41] found
that central coordination makes it easier to manage a division’s product types but more diffi-
cult to take advantage of each division’s private information. Comparing Linux and Wikipedia
to traditional organizations, Puranam et al. [176] observed that Linux uses a centralized task-
division strategy in which the initial problem formulation is defined by the founder of a project,
while Wikipedia’s task division is decentralized, which the researchers associate with problems
of misinformation and duplication contributions.

3.1. IDENTIFYING POTENTIAL CONTEXT FACTORS AND DERIVING HYPOTHESES21

Regarding task allocation, Linux and Wikipedia are both decentralized, so that tasks are al-
located through voluntary, self-selection of members into roles. Shaikh and Henfridsson [205]
studied the version control history of Linux and observed that Linux changed its management
strategies as the community evolved—from centralized to decentralized: The authors argued
that the governance strategy is a configuration of coordination processes, and governance varies
across open source communities. This matches our observation of different communities with
different coordination strategies. We expect to see similar tradeoffs among coordination strate-
gies also in new forms of collaboration with forks in open source.

As more design options justify multiple efforts directed at the same target, implicitly create
tournaments in which developers can compete to provide the best design, which developers may
intentionally duplicate each other’s efforts in order to obtain a higher best outcome [19]. To mit-
igate this problem, Baldwin et al. studied that different programmers can communicate to avoid
redundant work. Since workers share costs, a collective effort with adequate communication is
always preferable to coding in isolation.

Hypotheses. We hypothesize that projects coordinating contributions upfront in an issue tracker
reduce inefficiencies by encouraging more focused development activities that are more fre-
quently integrated, and rejecting fewer pull requests because fewer pull requests misalign with
the maintainer’s vision. We also hypothesize that pre-communication, i.e., developers discussing
their contributions before submitting pull requests, associates with fewer redundant pull requests:
H3. Projects pursuing a centralized management strategy have a larger fraction of contributing
forks.

H4. Projects pursuing a centralized management strategy have a larger fraction of merged pull
requests.

H5. Projects in which external developers tend to discuss or claim an issue before submitting
pull requests have a lower frequency of redundant development.

3.1.3 Contribution barriers affect community fragmentation

Interviews. Some interviewees indicated that contribution barriers led them to create a hard
fork, e.g., the owner of a video recording project explained “I submitted a pull request but they
rejected it. Because it is incompatible to the maintainer’s vision [...] so I think, fine, I will keep
my own fork.” Later, this fork started to attract its own external contributions. Also, as one
Smoothieware interviewee said (quote above), the rigidity that modularity imposes on develop-
ers makes integrating certain changes hard or impossible, leading in some cases to active but
unmerged development; Bitcoin, with its rigorous centralized management, is one of the projects
that has the most hard forks. Disagreements between maintainers and contributors can lead to
hard forks and fragment communities.

Literature. As discussed in Section 2.1, reasons for hard forks have been well studied (be-
fore the rise of social coding and distributed version control), and conflicts between the project
leader’s vision and the needs of community members were a common cause [18, 160].

22 CHAPTER 3. NATURAL INTERVENTIONS

Also, researchers found that rejected contributions demotivate developers and discouraging
them from submitting contributions in the future [212]. Then developers decide to continue on
their own, rather than merging their changes this may fragmented communities, which hurts the
sustainability of a community. Thus, we explore related work about understanding the trade-offs
between different management strategies.

Meanwhile, researchers have found that many aspects of a software system are difficult to
implement modularly [219] and that too rigid compatibility requirements might hinder innova-
tion [38]; also, modularity does not always align with how developers think [167].

Hypotheses. We hypothesize that a low rate of accepted external contributions, modularity
restrictions, and centralized management all can trigger community fragmentation:
H6. Projects with a lower pull request merge ratio have higher likelihood of having at least one
hard fork.

H7. Projects with a more modular design have higher likelihood of having at least one hard fork.

H8. Projects pursuing a centralized management strategy have higher likelihood of having at
least one hard fork.

Note that H6 uses the pull request merge ratio (the predicted outcome in H2 and H4) as a
factor. That is, we expect potential tradeoffs, in that factors that improve efficiency regarding
merged pull requests could at the same time reduce efficiency regarding community fragmenta-
tion.

3.1.4 Summary

Modularity and coordination are established theories in software engineering. After reviewing
the literature and interviewing open source contributors, we derived eight hypotheses about con-
text factors informed by the two theories (see Figure 3.2), that are expected to associate with
inefficient outcomes in a domain where the theories have not been tested before fork-based de-
velopment. To test these hypotheses, we operationalize our context factors in GITHUB trace data
and model their effects at scale across many open source projects. This way, we not only test
the limits of the two theories and expand them in the new domain of fork-based development,
but also provide quantitative empirical evidence on the effects of the different context factors on
relevant outcomes, where previously there were only beliefs. This step of providing data-driven
empirical evidence to popular theories is particularly important, as beliefs and evidence often
misalign in software engineering practice [26, 66].

3.2 Operationalization

To quantitatively test our hypotheses, we subsequently operationalize measures for context fac-
tors and inefficiencies, collect data from 1131 GitHub repositories. Specifically, we iteratively
developed outcome measures for the inefficiencies (lost contribution, redundant development,

3.2. OPERATIONALIZATION 23

H1
H2 H3

H4

H5
H7

H8

-H6

Better Modularity

Centralized
management

More contributing forks

Less duplicate PRs

More merged PRs

Higher likelihood of
community fragmentation

Efficiency

Efficiency

Efficiency

Inefficiency

Figure 3.2: Eight Hypothesis of characteristics and practices that could affect forking (in) effi-
ciency.

rejected pull requests, and fragmented communities), measures for context factors (modular-
ity, coordination mechanisms, and contribution barriers), and measures for control variables.
We first developed an initial measure and subsequently validated construct validity by manually
checking samples and outliers, repeating the process with a refined measure as needed. Several
measures are nontrivial and are built on top of significant prior research, as we will discuss. We
share implementations for all measurements as part of our replication package [13].

(a) Commit history of fork and upstream

(b) Only_F: only exist in fork; Only_U: only exist in upstream; F2U: merged from fork to upstream;
U2F: pulled from upstream to fork.

Figure 3.3: Determining the origin of commits.

24 CHAPTER 3. NATURAL INTERVENTIONS

3.2.1 Outcome: Ratio of contributing forks.

To assess inefficiencies regarding lost contributions (see Section 1.1), we measure the fraction of
active forks in which developers have submitted pull requests or otherwise integrated their code
changes into the upstream project (higher values indicate higher efficiency). Specifically, we
query the GITHUB API to identify whether pull requests have been issued for any commits from
a fork. We also analyze the commit histories to identify whether commits have been merged
without publicly visible pull requests.

Unfortunately, reliably detecting active forks and merged changes is not trivial. Forks may
pull changes from upstream, upstream repositories can merge changes also without pull requests,
commits are often merged across various branches, and commit timestamps are not generally
reliable. Hence, we developed a new approach to identify from which fork a commit originates
and how it has been merged across branches and forks.

To this end, we analyze the joint commit graph of the fork and the upstream repository
(nodes are commits, edges are parent relationships, merge commits have multiple parents). Since
commits may be merged multiple times and in different directions across branches and forks, we
analyze the number of merge commits and assign a commit as originating in the fork from which
it was merged the fewest times, as follows:

• Each branch in the fork and the upstream repository corresponds to a commit node in the
graph (usually a node without children). For merge commits, we distinguish between the
direct parent (first parent) and the merged parents (other parents) of a commit.

• We assign a weight of 1 to an edge between a merge commit and its merge parents and a
weight of 0 to all other edges.

• For every commit node, the shortest path from that node to a commit node mapped to a
branch indicates the branch and thus the repository the commit originates from.

• If there is no path from a commit to any branch of a repository, it has not been merged into
that repository yet.

We illustrate an example in Figure 3.3(a): Commit node 5 has been merged from a branch into
another branch and from the fork into the upstream master; by counting the merge edges, we can
identify that it originates from the fork because more merge edges need to be traversed to reach
a branch from the upstream repository; similarly, we can identify that commit node 2 originates
from upstream; there is no path from commit node 7 to the upstream repository, indicating that
the commit originates from the fork and has not been merged yet. Note, a similar mechanism to
recognize the origin of commits was suggested in prior work [31], but without a description of
how to perform it and without releasing an implementation.

To measure the ratio of contributing forks, we determine which forks are active (i.e., have
commits originating from the fork), then identify successful and attempted contributions from
merged commits in the commit graph and from pull requests originating from the fork.

3.2.2 Outcome: Ratio of merged pull requests.

To assess inefficiencies regarding rejected pull requests (see Section 1.1), we measure the fraction
of closed pull requests that have been accepted (higher values indicate more efficient outcomes).
The resolution status reported by GITHUB is often not reliable [97], as many developers integrate

3.2. OPERATIONALIZATION 25

pull requests through other mechanisms than GITHUB’s user interface, thus closing them without
marking them as accepted. We follow Gousios’ heuristics [97] to identify accepted contributions,
but refine them to account for frequent practices we observed:

• If the pull request is marked as merged on GITHUB, we mark it as accepted. (83.2% of all
merged pull requests).

• If a commit closes the pull request (using certain phrase conventions advocated by GITHUB,
e.g., fixes #1234) and that commit appears in the target project’s branch, we consider the
pull request as accepted. Different from Gousios’ work, we use GITHUB’s issue events
timeline API, rather than analyzing textual comments, to detect links to pull requests in
commit messages. (8.8% of all merged pull requests).

• If any of the last 3 discussion comments of the pull request refers to a commit SHA, we
consider the pull request as accepted. Specifically, we follow Gousios’ criteria: (1) the
comment contains a reference to a specific commit identifier (SHA), (2) this commit SHA
appears in the project’s master branch, and (3) the comment can be matched by the reg-
ular expression (merg|apply|appl|pull|push|integrat|land|cherry(-|\s+)pick|

squash)(ing|i?ed). We extended this by making sure that no second linked pull request
appears in the comment, indicating a competing or superseding PR. (0.15% of all merged
pull requests).

• If the last comment before closing the pull request matches both rules (1) and (2) above,
or matches only rule (3), we consider the pull request as accepted, unless a link to another
pull request appears in the comment. (7.9% of all merged pull requests).

If no heuristic identifies a pull request as accepted, we mark it as rejected.

3.2.3 Outcome: Ratio of duplicate pull requests.

To assess inefficiencies regarding duplicate development (see Section 1.1), we measure the frac-
tion of closed pull requests rejected due to redundant work (lower values indicate higher effi-
ciency). To identify duplicate pull requests, we refined heuristics, summarized and validated
by Yu et al. [245], based on regular expressions to identify duplicate-related keywords in pull
request comments and links to other pull requests. We also found many cases in which a pull
request is redundant to a commit so we extend the link detection to include commit SHAs. After
several rounds of refinement, we arrived at six patterns for detecting pull requests rejected due to
redundant development that can be found in the implementation [13].

3.2.4 Outcome: Presence of hard forks.

To assess inefficiencies regarding community fragmentation, we measure whether projects have
at least one hard fork (see Section 1.1). We consider a fork as a hard fork if (a) it has attracted
its own external contributions (at least two pull requests submitted by other contributors) or (b)
it has substantial unmerged changes (at least 100 commits, as identified from our commit graph,
see Figure 3.3) and the project’s name has been changed (with Levenshtein distance > 2). In our
sample, 28 % of the projects have at least one hard fork, as per our operationalization.

26 CHAPTER 3. NATURAL INTERVENTIONS

3.2.5 Predictor for modularity: Logic coupling index.
Researchers have proposed different metrics to measure the modularity of a project, taking dif-
ferent perspectives. For example, many approaches use program analysis to detect dependencies
among program structures [33, 79]; others measure logic coupling from co-change patterns ob-
served in the project’s revision history [25, 45, 252]. To measure modularity uniformly across
projects in different programming languages, we adopt a light-weight previously validated mea-
surement of logic coupling, ROSE [252]: We define the logic coupling index of a commit as
the fraction of file pairs that have been changed together in that commit out of all file pairs in
the project. We aggregate this measure at the project level by computing the median of recent
commits. To focus on modularity relevant to external contributors and avoid bias from past
but now changed practices, for each project, we analyze the last 50 commits whose authors are
external contributors (the results are robust for different operationalizations with the last 100
or 500 commits). A lower logic coupling index indicates better modularity, as fewer files are
changed together.

3.2.6 Predictor for modularity: Additive contribution index.
In addition to logic coupling, we also measure the modularity of contributions in terms of whether
they add or modify code. This measure is motivated by observations, discussed above, that some
GITHUB projects have an extreme form of modularity in that they primarily collect extensions or
plug-ins and are extended by contributing additional files rather than editing existing ones. Thus,
we define a second modularity measure, the additive contribution index, that measures to what
degree external contributions are additive: We measure the fraction of new files added out of all
files touched per commits. We compute the median over results of all commits from external
contributors in a project. A higher additive contribution index indicates that more changes were
additive in nature, indicating better modularity from a contributors perspective.

3.2.7 Predictor for coordination: Centralized management index.
We measure the degree developers use the issue tracker to coordinate what to work on before
submitting a pull request: We observe which new pull requests are linked to existing issues
(typically by referring to the issue number in the text of the PR) by parsing the event timeline of
the pull request provided by the GITHUB API. We define the centralized management index of
a project as the fraction of pull requests that link to issues out of all closed pull requests from
external contributors. A higher centralized management index indicates that upfront coordination
on what to work on through issues is more common in a project.

3.2.8 Predictor for coordination: Pre-communication index.
We additionally measure to what degree developers coordinate who will work on an issue before
submitting a pull request by observing whether developers ‘claim’ an issue before completing the
work. Specifically, we look for two commonly recommended practices of pre-communication
before submitting a final PR: (1) Developers might leave a comment on the issue to which they

3.3. DATA COLLECTION 27

later respond, indicating their plan to work on the issue and possibly linking to their fork. (2) Fol-
lowing explicit recommendations from GITHUB [6], developers might submit an incomplete pull
request clearly marked as ‘work in progress’ (e.g., using labels) and later update that pull request
once they finish their work. Both practices publicly announce that a developer is working on
an issue. We define the pre-communcation index of a project as the fraction of pull requests for
which the author has commented under the linked issue before submitting the pull request or in
which the pull request was marked as work in progress in its history out of all closed pull requests
by external contributors that are linked to issues. A higher pre-communcation index indicates that
the practice of coordinating who will work on an issue is more common in a project.

3.2.9 Control variables.
Finally, we measure a number of controls that might co-vary with our efficiency outcomes.
Specifically, we collect form the GITHUB API the project age, size (in bytes), and number of
forks – older, bigger, or more heavily forked projects are likely to adopt different practices. We
additionally collect project-level aggregate statistics about all closed pull requests by external
(non-core) contributors, modeled closely after factors that prior research found to correlate with
the chance of accepting individual pull requests [97, 227]: (1) SubmitterPriorExperience – a
dummy encoding whether at least half of the pull requests in the project are submitted by people
with prior experience submitting and having merged pull requests in the same project in the past;
pull requests from people with prior experience are more likely to be accepted [97]. (2) Ratiopull
requestsWithTests – the ratio of pull requests containing test cases; pull requests containing test
cases are more likely to be accepted [97]. We reused our measure to identify tests [225] based on
file name patterns maintained by the package search service npms.io, such as matching file paths
containing test or spec. (3) PRHotness – the median over pull requests of the number of commits
on files touched by each pull request during the previous three months prior to the pull request
creation; pull requests touching “hot” files, changed frequently in the recent past, are more likely
to be accepted [97]. and (4) SubmitterSocialConnections – a dummy encoding whether at least
half of the pull requests in the project are submitted by people who followed (already at pull re-
quest creation time) the maintainer who closed each respective PR; pull requests by more socially
connected submitters, who follow the maintainers, are more likely to be accepted [227].

3.3 Data Collection
We assembled a multidimensional dataset of actively-developed GITHUB open-source projects
with at least a moderate number of forks. Starting from a list of 137,424 projects with at least 20
forks in the March 2018 GHTorrent [96] dump, we filtered projects based on the a list of criteria:

• Projects should be developing software applications or frameworks. Interested in under-
standing software-development practices, we remove projects using GITHUB for docu-
ment storage or course project submission. We search for keywords like ‘homework’, ‘as-
signments’, ‘course’ to find online courses, remove projects starting with ‘awesome-’ (usu-
ally document collections), and remove projects with no programming-language-specific
files.

28 CHAPTER 3. NATURAL INTERVENTIONS

Table 3.1: How we stratified our sample.

Group #forks #projects on GITHUB #projects in sample

A [3,000 , +] 231 200
B [1,000 , 3,000) 847 300
C [20 , 1,000) 116,532 1300

• Projects should have at least 10 commits, 10 active forks, and 1 closed pull request. We
are interested in active projects with some development history and some collaboration, so
we set a minimum threshold of 10 commits, 10 active forks (i.e., those with at least one
own commit after forking), and at least one pull request by an external contributor.

• Projects should have at least one closed issue. Finally, we exclude projects that do not use
the issue tracker, because we cannot establish coordination practices for those.

To not bias our analysis by practices applied only by the largest or by many small projects,
we stratify across projects with different numbers of forks, sampling 200 very frequently forked
projects, 300 frequently forked, and 1300 moderately forked, as shown in Table 3.1; in each stra-
tum we select a random sample. Finally, we exclude all projects from which we have previously
interviewed developers and duplicate projects, resulting in 1311 projects for our analysis.

For each project, we need to analyze forks, external commits, external pull requests, and
issues. We only consider external pull requests and external commits by developers who are not
project owners and have not closed pull requests of others in the project.

Since computing the flow graph in Figure 3.3 requires locally cloning all forks in a project
and is computationally expensive, we sample 100 active forks per project, that were forked more
than 30 days before our analysis, to allow for time for developers to attempt to contribute changes
back. We use the GITHUB API to fetch the history of each issue and links among issues and pull
requests.

In Figure 3.4, we show the ranges and distributions of the four operationalized measures
of modularity and coordination in our dataset. Note the large variance across projects for all
variables.

StDev = 0.21

0.00 0.25 0.50 0.75 1.00
Modularity Index

de
ns

ity

StDev = 0.086

0.00 0.25 0.50 0.75 1.00
Additive Contribution Index

de
ns

ity

StDev = 0.13

0.00 0.25 0.50 0.75 1.00
Centralized Mngmt Index

de
ns

ity StDev = 0.24

0.00 0.25 0.50 0.75 1.00
Ratio Precommunicated PRs

de
ns

ity

Figure 3.4: Density plots for our main predictors. The dashed line denotes the median.

3.4. STATISTICAL ANALYSIS 29

3.4 Statistical Analysis
We use multiple regression modeling to test, for each outcome, whether it is significantly asso-
ciated with the different hypothesized context factors, while controlling for known confounding
variables, cf. prior work. The multivariate nature of our analysis is especially relevant when
modeling the pull request merge ratio, which is known to be impacted by the presence of tests
and the prior experience of the pull request submitters [97, 227].

Note that we perform our analysis at project level (each row of data aggregates information
about one project), i.e., we compare how projects with different characteristics and practices tend
to differ regarding forking inefficiencies, on average.

For the binary outcome variable (presence of hard forks), we build a standard logistic re-
gression model. Notably, we also build logistic regression models for the other three ratio out-
come variables. Logistic regression is more appropriate when trying to estimate probabilities of
frequencies (ratios) than linear regression, because in the latter case the binomial probabilities
would become increasingly spiked as the number of observations increases; e.g., the case with 50
pull requests merged out of 100 submitted gives more information than the case with 1 merged
out of 2 submitted. In a GLM, the denominator from the ratio (e.g., 100 for the former exam-
ple and 2 for the latter) can be specified explicitly as the weights parameter when using the glm
function in R.

When building the regression models, we take several steps to ensure robustness and validity.
First, we conservatively remove the top up to 1 % of the data for variables with exponential
distributions; these outliers tend to have high leverage, decreasing the models’ robustness. We
also test for high-leverage points using Cook’s distance measure, and exclude additional projects
from each model as needed; below each regression model summary table in Section 3.6 we show
the exact number of data points modeled. Second, we test and correct for multicollinearity using
the variance inflation factor (VIF). Third, we evaluate the goodness-of-fit of our models using
McFadden’s pseudo-R2 measure. Finally, we report, for each model variable, its exponentiated
coefficient (i.e., its odds ratio – the factor by which a one unit increase in a predictor increases
– if greater than 1 – or decreases – if less than 1 – the odds of the outcome occurring), standard
error, significance level (p-value), and effect size (i.e., η2 – the fraction of deviance explained by
the model that can be attributed to that predictor, as per an ANOVA type-II analysis; see columns
“LR Chisq” in the model tables for the absolute amounts of deviance explained).

3.5 Threats to Validity
As usual, our operationalized measures can only capture some aspect of the underlying quality.
For example, logic coupling at the file level may miss some more granular dependencies that
may make changes challenging and our centralized-management index may miss rare practices
such as coordinating in a separate channel. In addition, the history of Git repositories is not
reliable, as users can rewrite histories after the fact, and merges are difficult to track if code
changes are merged as a new commit or through ‘squashing’ and ‘rebasing’ rather than through
a traditional merge commit. As a consequence, despite best efforts, there will be inaccuracies
in our operationalization of ratio of contributing forks, which we expect will lead to some mis-

30 CHAPTER 3. NATURAL INTERVENTIONS

classification of merged code.
As discussed, we manually validated construct validity of each measure on a sample of

projects to avoid systematic errors and explored different operationalizations to ensure robust-
ness. While we cannot exclude some noise, regression across over one thousand projects will
likely pick up on signals despite some noise in measurements. Nonetheless, our results must be
interpreted in the context of our operationalization. To this end, we share an R notebook detailing
our analysis [13].

Finally, one must be careful to generalize our results beyond the context of our analysis
of social coding in open-source projects on GITHUB. Although many companies increasingly
adopt practices from open-source development [126], they likely do not share the same context
of loosely-coordinated distributed contributions from developers outside a core team.

3.6 Result
In the following, we discuss results from hypothesis testing organized by forking inefficiency
(outcomes).

Table 3.2: Contributing forks model (R2 = 17%).

Ratio contributing forks
Coeffs (Errors) LR Chisq

(Intercept) 0.94 (0.05)
NumForks 0.78 (0.01)

∗∗∗
2631.77∗∗∗

Size 1.14 (0.00)
∗∗∗

1109.29∗∗∗

ProjectAge 1.00 (0.00)
∗∗∗

147.27∗∗∗

CentralizedMngmtIndex 6.03 (0.06)
∗∗∗

868.03∗∗∗

ModularityIndex 1.23 (0.03)
∗∗∗

35.72∗∗∗

AdditiveContributionIndex 0.97 (0.11) 0.09
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 N = 1131

3.6.1 When do forks attempt to contribute back? (H1, H3)
To test our hypotheses that modularity (H1) and coordination practices (H3) associate with higher
rates of attempted contributions, we modeled a project’s ratio of contributing forks as a function
of the two modularity indices and the centralized management index, while controlling for the
overall number of forks, the project size, and the project age.

In Table 3.2, we show a summary of the regression model. Interpreting the coefficients, we
first note a strong positive effect for the centralized management index, explaining approximately
18 % of the deviance explained by the model: projects with stronger coordination practices, as
evidenced by advanced planning of what work needs to be done through issue linking, tend to
have a higher fraction of contributing forks that submit patches upstream. Modularity in terms of
logic coupling also has a positive effect, albeit weaker, accounting for about 1 % of the deviance
explained by the model: projects with more modular architecture, in which changes can be made

3.6. RESULT 31

in relative isolation, without touching many files, tend to have a higher fraction of contributing
forks. Therefore, we find evidence in support of both H1 and H3.

Table 3.3: External PR merge ratio model (R2 = 27%).

Ratio merged PRs
Coeffs (Errors) LR Chisq

(Intercept) 2.82 (0.04)
∗∗∗

NumForks 0.82 (0.00)
∗∗∗

3001.50∗∗∗

Size 1.08 (0.00)
∗∗∗

862.77∗∗∗

ProjectAge 1.00 (0.00)
∗∗∗

355.78∗∗∗

SubmitterPriorExperienceTRUE 1.33 (0.01)
∗∗∗

1084.06∗∗∗

SubmitterSocialConnectionsTRUE 1.10 (0.01)
∗∗∗

124.74∗∗∗

PRHotness 1.01 (0.01)
∗

5.99∗

RatioPRsWithTests 1.35 (0.06)
∗∗∗

23.07∗∗∗

CentralizedMngmtIndex 1.67 (0.03)
∗∗∗

226.64∗∗∗

ModularityIndex 1.50 (0.02)
∗∗∗

308.46∗∗∗

AdditiveContributionIndex 1.47 (0.07)
∗∗∗

30.28∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 N = 1125

3.6.2 When are more contributions integrated? (H2, H4)

To test our hypotheses whether modularity (H2) and coordination mechanisms (H4) may also
facilitate the integration of changes originating in forks back into the upstream project, we mod-
eled the ratio of merged pull requests submitted by external contributors, as a function of the
modularity and centralized management indices. In the regression we control for known con-
founding factors, as per prior work: the total number of forks, the project size and age, the prior
experience of the pull request submitters, the ratio of pull requests containing test cases, and the
median pull request hotness.

In Table 3.3, we summarize the regression results. As expected, most (90%) of the deviance
explained by the model is attributed to the control variables. Still, even after controlling for
confounds, all three main predictors have sizeable, positive effects on the average pull request
merge ratio. Modularity, operationalized as low logical coupling and high ratio of added files
to modified files, has the strongest effect (6% of the deviance explained for the two variables
together): the more modular the architecture, the higher the fraction of merged pull requests.
Coordination also has a positive and comparably large effect (4% of the deviance explained):
the more planned the pull requests are, i.e., in response to open issues, the higher the average
acceptance rate, other variables held constant. Together, these results provide strong support for
both H2 and H4.

3.6.3 When is duplicate work more common? (H5)

To test whether discussing or claiming an issue before submitting a pull request correlates with
less redundant development (H5), we modeled the average rate of duplicate pull requests per
project, as a function of the rate of pre-communicated pull requests, controlling for project age,

32 CHAPTER 3. NATURAL INTERVENTIONS

project size, and number of forks (older projects and bigger projects, with more forks, can be
expected to experience more duplication, on average).

Table 3.4: Duplicate PR ratio model (R2 = 4%).

Ratio duplicate PRs
Coeffs (Errors) LR Chisq

(Intercept) 0.01 (0.09)∗∗∗

NumForks 1.16 (0.01)∗∗∗ 245.03∗∗∗

Size 0.97 (0.01)∗∗∗ 19.03∗∗∗

ProjectAge 1.00 (0.00)∗∗∗ 29.45∗∗∗

RatioPrecommunicatedPRs 0.84 (0.06)∗∗ 7.81∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 N = 1127

The regression summary in Table 3.4 suggests that the higher the rate at which pull requests
are pre-communicated, the lower the overall rate of duplication among pull requests. However,
we model rare events (both duplicates and pre-communication are relatively rare in our dataset),
the model fit is rather poor (R2 = 4 %), and our pre-communication index explains only 3 % of
the deviance explained by the model. We conclude cautiously that: there is only weak evidence
that claiming pull requests before working on them associates with lower risk of duplicate work.

3.6.4 When does the community risk fragmentation? (H6–H8)
To test whether projects that reject many external contributions (H6), have a more modular design
(H7), or have higher coordination requirements (H8), correlate with fragmented communities and
hard forks, we modeled the likelihood of a project having hard forks as a function of the average
external pull request merge ratio and the modularity and centralized management indices, while
controlling for project size and the overall number of forks.

Our model, summarized in Table 3.5, confirms a sizeable negative effect for the pull request
merge ratio (35 % of the deviance explained), strongly supporting H6: the lower the pull re-
quest acceptance rate, the higher the chance of a project having hard forks, on average. The
centralized management index also has a statistically significant positive effect (12 % of the de-
viance explained), supporting H8: more coordination requirements are associated with a higher
risk of community members fragmenting into various hard forks. We do not find a statistically
significant effect though for the modularity associating with hard forks (H7).

3.7 Discussion

3.7.1 Modularity
Modularity has been widely recognized as an important quality that facilitates software evolu-
tion and eases division of labor and collaboration [20, 55, 150, 169]. Our study confirms that
better modularity is associated with higher efficiency of distributed fork-based development,

3.7. DISCUSSION 33

Table 3.5: Hard forks model (R2 = 10%).

Has hard forks (T/F)
Coeffs (Errors) LR Chisq

(Intercept) 0.19 (0.49)∗∗∗

NumForks 1.25 (0.05)∗∗∗ 23.74∗∗∗

Size 1.09 (0.04)∗ 5.76∗

CentralizedMngmtIndex 4.92 (0.58)∗∗ 7.39∗∗

ModularityIndex 0.66 (0.32) 1.57
AdditiveContributionIndex 4.32 (0.93) 2.43
PRMergeRatio 0.14 (0.42)∗∗∗ 22.24∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 N = 1131

specifically higher fraction of developers contributing their changes back (H1) and higher rate
of integration of external contributions (H2). Note that logic coupling was beneficial in general,
whereas extreme modularity where contributions are mostly additive do not seem to encourage a
higher percentage of developers to contribute back but it significantly eases integration.

While there are some concerns about limiting effects of modularity for certain changes, even
to the extent we could hypothesize potential fragmentation of communities through hard forks,
we did not find in our models any direct evidence supporting these concerns (H7). However,
there is a noteworthy indirect effect: higher modularity is associated with higher pull request
acceptance ratios (H2); in turn, higher pull request acceptance ratios are associated with higher
likelihood of community fragmentation through hard forks (H6). More research is needed to
disentangle the effects of modularity more precisely from those of lower pull request acceptance
rates; we suggest this as a promising direction for future research.

In short, our results suggest a net-positive impact of modularity in fork-based collaborative
development, a new domain lacking the empirical evidence.

3.7.2 Coordination

Our study also indicates the importance of active coordination among developers. Even though
fork-based development on a transparent platform allows all developers to freely fork projects,
make changes without coordination, and suggest pull requests once done [61], coordination is
associated with significant improvements to the efficiency of a community regarding forking
outcomes specifically. Projects with a practice to coordinate work through issues upfront have a
higher rate of developers who attempt to integrate their changes (H3) and have a higher rate of
accepted pull requests (H4).

However, coordination is known to incur some costs and could potentially be annoying to
some. Our models provide support for these concerns, suggesting that higher levels of coordina-
tion might actually encourage hard forks (H8). Again, note a similar tradeoff as with modularity,
albeit this time more clearly visible in our models: coordination is directly and positively (H8)
associated with likelihood of hard forking, but also indirectly and negatively (H4), through its
effect on pull request acceptance rates (hard forks are associated more with projects that are

34 CHAPTER 3. NATURAL INTERVENTIONS

more selective in accepting external pull requests; H6). We suspect that developers have to make
deliberate tradeoff decisions about how inclusive they want to be in accepting community con-
tributions, potentially at the cost of discouraging contributors and fragmenting their community
if their standards are too rigid.

3.7.3 Redundant development.

Finally, our models of duplicate pull requests are not sufficiently well fitting to conclude there
is strong evidence supporting different interventions; we found some evidence, but weaker com-
pared to the other hypotheses, that claiming an issue upfront is associated with a lower chance
of redundant work (H5). Duplicates are rare in most projects, but may still cause substantial fric-
tion, especially for new developers; also, despite many recommendations, claiming issues is not a
common practice yet in most projects. Interestingly, anecdotally, we found cases where develop-
ers triggered duplicate work by posting an issue before addressing the issue themselves without
actually claiming the issue, which encouraged others to work on the same issue in parallel. More
research is needed to develop and evaluate interventions. Recently suggested awareness tools
that might detect duplicate work quickly rather than expecting upfront coordination [136, 185]
might be an interesting alternative strategy.

3.8 Implications

3.8.1 Implications for practitioners

Our results encourage practitioners to strive for implementations that are modularly extensible
and to adopt guidelines for contributors that suggest coordinating planned changes through an
issue tracker. Though some open-source developers might dislike the rigidness and effort of
central coordination, our results show that projects that do so receive a higher fraction of pull
requests from their active forks, end up integrating more changes, and likely frustrate fewer
contributors in the process. Maintainers might want to point newcomers especially to work on
problems which can be completed with modular changes. All of this can improve sustainability
and the perception of having a strong community for a project. Finally, while hard forks are
rare in practice, they can be expensive for a community and have gotten much easier on social
coding platforms—maintainers should consider carefully to what degree they can remain open
to various external contributions and how modularity can help to integrate contributions more
easily or to what degree they are willing to accept some degree of fragmentation.

3.8.2 Implications for researchers and tool builders

While we explored how project characteristics and existing practices influence efficiency out-
comes, there are many opportunities to design and study further interventions. For example,
improved tooling to navigate and understand changes in forks or to oversee large numbers of

3.9. SUMMARY 35

pull requests [10, 11, 12, 184, 249] can help both maintainers and contributors to explore not-
integrated forks and detect work in progress, to detect interesting extensions and avoid redundant
development. Explicit GITHUB mechanisms rather than conventions to claim issues as work in
progress have been suggested [8], as have community tooling for coordination [10], which would
be worth evaluating. There may be research opportunities to detect redundant pull requests auto-
matically to reduce the maintainers’ effort [136, 185, 245] or even to detect redundant develop-
ment early before developers finished their work [185]. Research on mentoring [47, 82] might
further establish good and efficient practices.

Furthermore, we suspect that many members of an open-source community are not aware of
their practices and how they relate to other projects (e.g., some interviewees where surprised that
some projects largely coordinate work in the issue tracker whereas others were surprised that not
all projects do that). We suspect that making practices transparent, for example, through repos-
itory badges [225] or metric dashboards [40, 46] can help community members to understand
their practices and how it relates to other (possibly more efficient) projects.

Finally, we argue that researchers should revisit hard forks and the cost of community frag-
mentation, given that new ease of forking on social-coding platforms may have changed dynam-
ics from the feared hard forks of the past. Many tools to manage distributed development with
forks can also be useful for industrial settings, where forks are also frequently used for collabora-
tion and for variant management [71], and recently several researchers have explored lightweight
tooling to support fork-based variant management [17, 84, 211].

3.9 Summary
In this chapter, we investigated the research question: What characteristics and practices of
a project associate with efficient forking practices? Specifically, we interviewed stakehold-
ers and conducted literature search to derive eight hypotheses about project characteristics and
practices that could affect forking (in) efficiency. We then designed cross-sectional correlational
study to test the hypotheses. Through large-scale statistical modeling of factors operationalized
in GITHUB traces, we found that many of these inefficiencies associate with common project
characteristics and practices, especially modularity and coordination practices. We found that
better modularity of the project structure and more centralized management practices for contri-
butions are strong predictors of more contributions and more merged pull requests. Moreover,
our models also reveal a tradeoff: centralized management also associates with higher risk of
community fragmentation through hard forks, as does a low pull request acceptance rate. Our
results suggest best practices that project maintainers can adopt if they want to make fork-based
development more efficient. Our operationalizations and results also lay the foundation for future
tool support, such as benchmarking projects and highlighting inefficient practices. This is one of
the solutions that we studied to mitigate collaboration inefficiencies when using fork-based de-
velopment mechanisms, which is identifying natural interventions. And this is a complementary
solution to the new interventions that we designed and described in Chapter 5 and 6.

36 CHAPTER 3. NATURAL INTERVENTIONS

Chapter 4

A Study of Hard Forks on GitHub

This chapter shares material with the ICSE’20 paper “How Has Forking Changed in the Last 20
Years? A Study of Hard Forks on GitHub” [251].

As discussed in Chapter 2.1, the common notion of a fork has changed: Traditionally, forking
was the practice of copying a project and splitting off new independent development, and often
intended to compete with or supersede the original project [85, 131, 161, 181]. Nowadays,
forks are typically understood to be public copies of repositories in which developers can make
changes, potentially, but not necessarily, with the intention of integrating those changes back
into the original repository. In this dissertation, we define the former as hard fork, which would
leads to the inefficiency of fragmented community; and we define the latter as (social) fork.

In chapter 3, we identified hard forks by the name change, number of unmerged commits, or
whether the fork is receiving external pull requests over 1311 projects, and studied the commu-
nity fragmentation phenomena as an indicator of collaboration inefficiency. In this chapter, we
take one step further to study hard forks over a larger number of GITHUB projects.

Since we observe the change of the notion of forking, we argue that perceptions and practices
around forking could have changed significantly since SourceForge’s heydays. In contrast to the
strong norm against forking back then, we conjecture that the promotion of social forks on sites
like GITHUB, and the often blurry line between social and hard forks, may have encouraged
forking and lowered the bar also for hard forks. Therefore, in this chapter, we update and deepen
our understanding regarding practices and perceptions around hard forks can inform the design
of better tools (see chapter 5 and 6) and management strategies to facilitate efficient collaboration
(see chapter 3).

4.1 Motivation

Prior research into forking of free and open-source projects focused on the motivations behind
hard forks [51, 69, 81, 131, 162, 190, 232], the controversial perceptions around hard forks [42,
85, 131, 161, 181, 237], and the outcomes of hard forks (including studying factors that influence
such outcomes) [190, 237]. However, essentially all that research has been conducted before the

37

38 CHAPTER 4. HARD FORKS

rise of social coding, much of it on SourceForge (GITHUB was launched in 2008 and became
the dominant open-source hosting site around 2012; cf. Figure 2.1). Therefore, we argue that it
is time to revisit, replicate, and extend research on hard forks, asking the central question of this
work: How have perceptions and practices around hard forks changed?

In this chapter, we describe a mixed-methods empirical design, combining repository min-
ing with 18 developer interviews, the goal is to further investigate the frequency, common
evolution patterns, and perceptions of hard forks in the current social coding environment.

In this chapter, we investigate:

• Frequency of hard forks: We attempt to quantify the frequency of hard forks among all
the (mostly social) forks on GITHUB. Specifically, we design and refine a classifier to
automatically detect hard forks. We find 15,306 instances, showing that hard forks are a
significant concern, even though their relative numbers are low.

• Common evolution patterns of hard forks: We classify the evolution of hard forks and
their corresponding upstream repository to observe outcomes, including whether the fork
and upstream repositories both sustain their activities and whether they synchronize their
development. We develop our classification by visualizing and qualitatively analyzing
evolution patterns (using card sorting) and subsequently automate the classification process
to analyze all detected hard forks. We find that many hard forks are sustained for extended
periods and a substantial number of hard forks still at least occasionally exchange commits
with the upstream repository.

• Perceptions of hard forks: In interviews with 18 open-source maintainers of forks and
corresponding upstream repositories, we solicit practices and perceptions regarding hard
forks and analyze whether those align with ones reported in pre-social-coding research.
We find that the ‘stigma’ often reported around hard forks is largely gone, indeed forks
including hard forks are generally seen as a positive, with many hard forks complement-
ing rather than competing with the upstream repository. Futhermore, with social forking
encouraging forks as contribution mechanism, we find that many hard forks are not delib-
erately planned but evolve slowly from social forks.

Overall, we contribute (1) a method to identify hard forks, (2) a dataset of 15,306 hard forks
on GITHUB, (3) a classification and analysis of evolution patterns of hard forks, and (4) results
from interviews with 18 open source developers about the reasons for hard forks, interactions
across forks, and perceptions of hard forks.

Our research focuses on development practices on GITHUB, which is by far the dominant
open-source hosting platform (cf. Figure 2.1) and has been key in establishing the social forking
phenomenon. Even large projects primarily hosted on other sites often have a public mirror on
GITHUB, allowing us to gather a fairly representative picture of the entire open-source commu-
nity. Our main research instruments are semi-structured interviews with open-ended questions
and repository mining with GHTORRENT [98] and the GITHUB API. While our research is not
planned as an exact replication of prior work and exceeds the scope of prior studies by compar-
ing social and hard forks, many facets seek to replicate prior findings (e.g., regarding motivations
and outcomes of hard forks) and can be considered a conceptual replication [125, 203].

4.2. RESEARCH QUESTIONS AND METHODS 39

4.2 Research Questions and Methods
As described in Sec. 2.1, the conventional use of the term forking as well as corresponding
tooling have changed with the rise of distributed version control and social coding platforms,
and we conjecture that this also influenced hard forks. Hence, our overall research question is
How have perceptions and practices around hard forks changed?

We explore different facets of hard forks, including motivations, outcomes, and perceived
stigma (cf. Sec. 2.1). We also attempt to identify how frequent hard forks are across GITHUB,
and discuss how developers navigate the tension and often blurry line between social and hard
forks. We adopt a concurrent mixed-method exploratory research strategy [57], in which we
combine repository mining – to identify hard forks and their outcomes – with interviews of
maintainers of both forks and upstream projects – to explore motivations and perceptions. Mixing
multiple methods allows us to explore the research question simultaneously from multiple facets
and to triangulate some results. In addition, we use some results of repository mining to guide
the selection of interviewees.

We explicitly decided against an exact replication [125, 203] of prior work, because contexts
have changed significantly. Instead, we guide our research by previously explored facets of hard
forks, revisit those as part of our repository mining and interviews, and contrast our findings with
those reported in pre-GITHUB studies. In addition, we do not limit our research to previously
explored facets, but explicitly explore new facets, such as the tension between social and hard
forks, that have emerged from technology changes or that we discovered in our interviews.

4.2.1 Instrument for Visualizing Fork Activities

'3-2 '3-3 '3-4 '4-1 '4-2 '4-3 '4-4 '5-1 '5-2 '5-3 '5-4 '6-1 '6-2 '6-3 '6-4 '7-1 '7-2 '7-3 '7-4 '8-1 '8-2 '8-3 '8-4 '9-1 '9-2 '9-3 '9-4 '10-1 '10-2 '10-3 '10-4 '11-1 '11-2 '11-3 '11-4 '12-1 '12-2 '12-3 '12-4 '13-1 '13-2 '13-3 '13-4 '14-1 '14-2 '14-3 '14-4 '15-1 '15-2 '15-3 '15-4 '16-1 '16-2 '16-3 '16-4 '17-1 '17-2 '17-3 '17-4 '18-1 '18-2 '18-3 '18-4 '19-1 '19-2

"tmyroadctfig.jnode"

Figure 4.1: An example of commit history graph of fork tmyroadctfig/jnode

We created commit history graphs, a custom visualization of commit activities in forks, as
illustrated in Figure 4.1, to help develop and debug our classifiers (Sec. 4.2.2 and 4.2.3), but also
to prepare for interviews. Given a pair of a fork and corresponding upstream repositories, we
clone both and analyze the joint commit graph between the two, assigning every commit two
one of five states: (1) created before the forking point, (2) only upstream (not synchronized),
(3) only in fork (unmerged), (4) created upstream but synchronized to the fork, and (5) created
in the fork but merged into upstream. Technically, in a nutshell, we build on our prior commit
graph analysis [250], where merge edges are assigned weight 1 and all other edges weight 0, and
the shortest path from the commit to any branch in either fork or upstream repository identifies
where the commit originates and whether it has been merged (and in which direction).1

1There are a few nuances in the process due to technicalities of Git and GITHUB. For example, if the upstream
repository deletes a branch after forking, the joint commit graph would identify the code as exclusive to the fork; to
that end, we discard commits that are older than the forking timestamp on GITHUB. Such details are available in
our open-source implementation (https://github.com/shuiblue/VisualHardFork).

https://github.com/shuiblue/VisualHardFork

40 CHAPTER 4. HARD FORKS

We subsequently plot activities in the two repositories over time, aggregated in three-month
intervals; larger dots indicate more commits. In these plots, we include additional arrows for
synchronization (from upstream into the fork) and merge (from fork to upstream) activities. With
these plots, we can quickly visually inspect development activities before and after the forking
point as well whether the fork and the upstream repository interact.

4.2.2 Identifying Hard Forks

Identifying hard forks reliably is challenging. Pre-GITHUB work often used keyword searches in
project descriptions, e.g., ‘software fork’, or relied on external curated sources (e.g., Wikipedia) [190].
Today, on sites like GITHUB, hard forks use the same mechanisms as social forks without any
explicit distinction.

Classifier development. For this work, we want to gather a large set of hard forks and even
approximate the frequency of hard forks among all 47 million forks on GITHUB. To that end,
we need a scalable, automated classifier. We are not aware of any existing classifier except our
own prior work [250], in which we classified forks as hard forks if they have at least two own
pull requests or at least 100 own, unmerged commits and the project’s name has been changed.
Unfortunately, we found that this classifier missed many actual hard forks (false negatives), thus
we went back to the drawing board to develop a new one.

We proceeded iteratively, repeatedly trying, validating, and combining various heuristics.
That is, we would try a heuristic to detect hard forks and manually sample a significant number of
classified forks to identify false positives and false negatives, revising the heuristic or combining
it with other steps. Commit history graphs (cf. Sec. 4.2.1) and our qualitative analysis of forks
(Sec 4.2.3 below) were useful debugging devices in the process. We iterated until we reached
confidence in the results and a low rate of false positives.

Our final classifier proceeds in two steps: first, we use multiple simple heuristics to identify
candidate hard forks; second, we use a more detailed and more expensive analysis to decide
which of those candidates are actual hard forks.

In the first step, we identify as candidate hard forks, among all repositories labeled as forks
on GITHUB, those that:

• Contain the phrase “fork of” in their description (H1). We use GITHUB’s search API to
find all repositories that contain the phrase “fork of” in their project description and are a
fork of another project. The idea, inspired by prior work [162], is to look for projects that
explicitly label themselves as forks (defined as “self-proclaimed forks”), i.e., developers
explicitly change their description after cloning the upstream repository. To work around
GITHUB’s API search limit of 1000 results per query, we partitioned the query based on
different time ranges in which the repository was created. Next, we compare the descrip-
tion of the fork and its upstream project to make sure the description is not copied from
the upstream, i.e., that the upstream project is not already a self-proclaimed fork.

• Received external pull requests (H2). Using the June 2019 GITHUB dataset [96], we iden-
tified all GITHUB repositories that are labeled as forks and have received at least three pull
requests (excluding pull requests issued by the fork’s owner to avoid counting developers

4.2. RESEARCH QUESTIONS AND METHODS 41

who use a process with feature branches). We consider external contributions to a fork as
a signal that the fork may have attracted its own community.

• Have substantial unmerged changes (H3). Using the same GHTORRENT dataset, we iden-
tify all forks that have at least 100 own commits, indicating significant development activ-
ities beyond what is typical for social forks.

• Have at least 1-year of development activity (H4). Similar to the previous heuristic, we
look for prolonged development activities beyond what is common for social forks. Specif-
ically, we identify those forks as candidates in which the time between the first and the last
commit spans more than one year.

• Have changed their name (H5). We check if the fork’s name in GITHUB has been changed
from the upstream repository’s name (with Levenshtein distance ≥ 3). This heuristic
comes from the observation that most social forks do not change names, but that forks
intending to go in a different direction and create a separate community tend to change
names more commonly (e.g., Jenkins forked Hudson).

Each repository that meets at least one of these criteria is considered as a candidate. We show
how many candidates each heuristic identified in the second column of Figure 4.2c. Note, for all
heuristics that use GHTORRENT, we additionally validated the results by checking whether the
fork and upstream pair still exist on GITHUB and whether the measures align with those reported
by the GITHUB API.2

In the second step, we performed more detailed (and expensive) analyses of commit graphs
and repository metadata in each candidate hard fork, to filter false positives (details of the filtering
criteria in the paper [251]).

Classifier validation. To validate the precision of our classifier, we manually inspected a ran-
dom sample of 300 detected hard forks. By manually analyzing the fork’s and the upstream
repository’s history and commit messages, we classified 14 detected hard forks as likely false
positives, suggesting an acceptable accuracy of 95 %. Note that manual labeling is a best effort
approach as well, as the distinction between social and hard fork is not always clear (see also our
discussion of interview results in Sec. 4.3.4).

Analyzing false negatives (recall) is challenging, because hard forks are rare, projects listed
in previous papers are too old to detect in our GitHub dataset, and we are not aware of any other
labeled dataset. We have manually curated a list of known hard forks from mentions in web
resources and from mentions during our interviews. Of the 3 hard forks of which both the fork
and the upstream repository are on GitHub, we detect all with our classifier, but the size of our
labeled dataset is too small to make meaningful inferences about recall.

4.2.3 Classifying Evolution Patterns

We identified different evolution patterns among the analyzed forks using an iterative approach
inspired by card sorting [209]. Evolution patterns describe how a hard fork and the corresponding

2We include this step after identifying occasional errors in GHTORRENT in our validation steps, such as switched
fork-upstream relations between two repositories.

42 CHAPTER 4. HARD FORKS

(a) Overlap between the heuristics (with detailed intersections).

H4
H5

H1 H3

H2

(b) Overlap between the heuristics (Proportional).

Rule Candidates Actual

H1 10,609 551
H2 23,109 7,043
H3 14,956 810
H4 33,073 11,268
H5 20,358 5,568

Total 63,314 15,306

(c) Hard forks identified.

Figure 4.2: Statistics on identified candidate hard forks and actual hard forks.

4.2. RESEARCH QUESTIONS AND METHODS 43

upstream project coevolve and can help to characterize forking outcomes. In addition, we used
evolution patterns to diversify interviewees.

Specifically, we printed cards with commit history graphs of 100 randomly selected hard
forks (see Sec. 4.2.2), then all three authors jointly grouped the cards and identified a few com-
mon patterns. Our card-sorting was open, meaning we had no predefined groups; the groups
emerged and evolved during the analysis process. Afterward, we manually built a classifier that
detects the forks for each identified pattern. We then applied this classifier to the entire dataset,
inspected that the automatically classified forks actually fit the patterns as intended (refining the
classifier and its thresholds if needed). We then picked another 100 hard forks that fit none of the
previously defined patterns and sorted those again, looking for additional patterns. We similarly
proceeded within each pattern, looking at 100 hard forks to see whether we can further split the
pattern. We repeated this process until we could not identify any further patterns.

After several iterations, we arrived at a stable list of 15 patterns with which we could classify
97.7 % of all hard forks. We list all patterns with a corresponding example commit history graph
in Table 4.2. The patterns use characteristics that relate to previously found outcomes, such as
fork or upstream being discontinued, but also consider additional characteristics corresponding
to features that were not available or easily observable before distributed version control, e.g.,
whether the fork and upstream merge or synchronize. We present the patterns in a hierarchi-
cal form, because our process revealed a classification with a fairly obvious tree structure, not
because we were specifically looking for a hierarchical structure.

4.2.4 Interviews

To solicit views and perceptions, we conducted 18 semi-structured interviews with developers,
typically 20 to 40 minutes. Despite reaching fewer developers, we opted for interviews rather
than surveys due to the exploratory nature of our research: Interviews allow more in-depth ex-
ploration of emerging themes.

Interview protocol. We designed a protocol [15] that covers the relevant dimensions from
earlier research and touches on expected changes, including reasons for forking, perceived stigma
of forking, and the distinction and possible tensions between social and hard forks. We asked
fork owners about their decision process that lead to the hard fork, their practices afterward (e.g.,
why they renamed the projects), their current relationship to the upstream project (e.g., whether
they still monitor or even synchronize), and their future plans. In contrast, we asked owners of
upstream projects to what extent they are aware of, interact with, or monitor hard forks; and to
what degree they are concerned about such forks or even take steps to avoid them. In addition,
we asked all participants with a long history of open-source activity if they observed any changes
in their practices or perceptions and that of others over time.

All interviews were semi-structured, allowing for exploration of topics that were brought up
by the participants. Our interview protocol evolved with each interview, as we reacted to confu-
sion about questions and insights found in earlier interviews. That is, we refined and added ques-
tions to explore new insights in more detail in subsequent interviews – for example, after the first
few interviews we added questions about the tradeoff between being inclusive to changes versus

44 CHAPTER 4. HARD FORKS

Table 4.1: Background information of participants.

Par. Domain #Stars(U) #Stars(F) LOC Role Exp.(yr)

P1 Blockchain <20 <10 10K F 19
P2 Reinforcement learning 10K 1K 30K F 3
P3 Mobile processing - 70 20K F 6
P4 Video recording - 100 300K F 18
P5 Helpdesk system 2K <10> 800K F 5
P6 CRM system 30 200 800K F 10
P7 Physics engine - 300 100K F 15
P8 Social platform 500 230 500K F 20
P9 Reinforcement learning <20 <20 30K 2nd-F 3
P10 Game Engine 500 <10 200K 2nd-F 21
P11 Networking 300 100 500K F 10
P12 Email library - 10K 20K F/U 32
P13 Game engine 3K 70 20K F 11
P14 Machine learning 30K 50 60K F 8
P15 Image editing 70 <10 20K F 20
P16 Image editing 70 <10 20K U 10
P17 Microcontrollers 9K 1K 300K U 6
P18 Maps 400 <10 100K U 9

F: Hard Fork Owner; U: Upstream Maintainer; 2nd-F: Fork of the Hard Fork
*Some of the upstream projects are not in GITHUB,

so the number of stars is unknown. Numbers rounded to one significant digit.

risking hard forks and questions regarding practices and tooling to coordinate across repositories.
To ground each interview in concrete experience rather than vague generalizations, we focused
each interview on a single repository in which the interviewee was involved, bringing questions
back to that specific repository if the discussion became too generic.

Participant recruitment. We selected potential interviewees among the maintainers of the
15,306 identified hard forks and corresponding upstream repositories. We did consider main-
tainers with public email address on their GITHUB profile that were active in the analyzed repos-
itories within the last 2 years (to reduce the risk of misremembering). We sampled candidates
from all evolution patterns (Sec. 4.2.3) and sent out 242 invitation emails.3

Overall, 18 maintainers volunteered to participate in our study (7 % response rate). Ten opted
to be interviewed over email, one through a chat app, and all others over phone or teleconferenc-
ing. In Table 4.2, we map our interviewees to the evolution pattern for the primary fork discussed
(though interviewees may have multiple roles in different projects). Naturally, our interviewees
are biased toward hard forks that are still active. Our response rate was also lower among main-
tainers of upstream repositories, who were maybe less invested in talking about forking. In
Table 4.1, we list information about our interviewees and the primary hard fork we discussed.
All interviewees are experienced open-source developers, specifically, many with more than 10
years experience of participating in open-source community, meaning they have interacted with

3We unfortunately could not recruit interviewees in all roles for all patterns. For example, for ‘reviving a dead
project’ we would not find any upstream maintainers that were active in the last 2 years.

4.3. RESULTS 45

earlier open-source platform such as Sourceforge. Our interviews reached saturation, in that the
last interviews provided only marginal additional insights.

Analysis. We analyzed the interviews using standard qualitative research methods [196]. After
transcribing all interviews, two authors coded the interviews independently, then all authors sub-
sequently discussed emerging topics and trends. Questions and disagreements were discussed
and resolved together, if needed asking follow up questions to some interviewees.

4.2.5 Threats to Validity and Credibility

Our study exhibits the threats to validity and credibility that are typical and expected of this kind
of exploratory interview studies and the used analysis of archival GitHub data.

Distinguishing between social and hard forks is difficult, even for human raters, as the dis-
tinction is primarily one of intention. In our experience, we can make a judgment call with high
inter-rater reliability for most forks, but there are always some repositories that cannot be accu-
rately classified without additional information. We build and evaluate our classifiers based on a
best effort strategy, as discussed.

While we check later steps with data from the GITHUB API, early steps to identify candidate
hard forks may be affected by missing or incorrect data in the GHTorrent dataset. In addition, the
history of Git repositories is not reliable, as timestamps may be incorrect and users can rewrite
histories after the fact. In addition, merges are difficult to track if code changes are merged
as a new commit or through ‘squashing’ and ‘rebasing’ rather than through a traditional merge
commit. As a consequence, despite best efforts, there will be inaccuracies in our classification
of hard forks and individual commits, which we expect will lead to some underreporting of hard
forks and to some underreporting of merged code.

We analyze data with right-censored time series data, in which we can detect that projects
have seized activity in the past, but cannot predict the future, thus seeing a larger chance for older
forks to be discontinued.

Our study is limited to hard forks of which both fork and upstream repository are hosted
on GitHub and of which the forking relationship is tracked by GitHub. While GitHub is by far
the most dominant hosting service for open source, our study does not cover forks created of
(typically older) projects hosted elsewhere and forks created by manually cloning or copying
source code to a new repository. In addition, our interviews, as typical for all interview studies
in our field, is biased toward answer from developers who chose to make their email public
and chose to answer to our interview request, which underrepresented maintainers of upstream
repositories in our sample.

4.3 Results

We explore practices and perceptions around hard forks along four facets that emerged from our
interviews and data.

46 CHAPTER 4. HARD FORKS

Table 4.2: Evolution patterns of hard forks

Id Category Total Sub-category Example Count Interviewees

1
Success

(F. active > 2 Qt.)

632 Upstream remains in-
active

576 P12

2
Revive
Dead

Project
Upstream active
again

56

3
Not success

(F active <= 2 Qt)

420 420

4 only merge 26 P10

5 Both Alive 723 only sync 107 P2, P13, P15

6 merge & sync 28 P9

7 no interation 562
P1, P3, P4,
P5, P7, P14

8 only merge 174

9
Fork
Lived

Longer
7280 only sync 686

10
Forking
Active
Project

merge & sync 107

11 no interaction 6313 P6, P8, P11

12 only merge 388

13

Fork
does not
out live

upstream

6251 only sync 762

14 merge & sync 199

15 no interaction 4902

4.3. RESULTS 47

4.3.1 Frequency of Hard Forks

Our classifier identified 15,306 hard forks, confirming that hard forks are generally a rare phe-
nomenon. As of June 2019, GITHUB tracks 47 million repositories that are marked as forks over
5 million distinct upstream repositories among GITHUB’s over 125 million repositories.

Among those, the vast majority of forks has no activity after the forking point and no stars.
Most active forks have only very limited activity indicative of social forks. Only 0.2 % of
GITHUB’s 47 million forks have 3 or more stars.

As our analysis of evolution patterns (Table 4.2) reveals, cases where both the upstream
repository and the hard fork remain active for extended periods of time are not common (patterns
1, 2, and 4–7; 1157 hard forks, 8.8 %). Most hard forks actually survive the upstream project,
if the upstream project was active when the fork was created (patterns 8–11; 7280 hard forks,
47.6 %), but many also run out of steam eventually (patterns 3 and 12–15; 6671 hard forks,
43.6 %).

While most hard forks are created as forks of active projects (patterns 4–15; 14254 hard
forks, 93 %), there are a substantial number of cases where hard fork are created to revive a dead
project (pattern 1–3; 1052 hard forks, 6.8 %), in some cases even triggering or coinciding with a
revival of the upstream project (pattern 2; 56 hard forks, 0.36 %), but also here not all hard fork
sustain activity (pattern 3; 420 hard forks, 2.7 %).

Discussion and implications

Even though the percentage of hard forks is low, the total number of attempted and sustained
hard forks is not. Considering the significant cost a hard fork can put on a community through
fragmentation, but also the potential power a community has through hard forks, we argue that
hard forks are an important phenomenon to study even when they are comparably rare.

Whereas previous work typically looked at only a small number of hard forks, and research on
tooling around hard-fork issues typically focus on few well known projects, such as the variants
of BSD [180] or Marlin [138] or artificial or academic variants [84, 122], we have detected a
significant number of hard forks, many of them recent, using many different languages, that
are a rich pool for future research. We release the dataset of all hard forks with corresponding
visualizations as dataset with this paper [15].

4.3.2 Why Hard Forks Are Created (And How to Avoid Them)

At a first glance, the interviewees give reasons for creating hard forks that align well with prior
findings, including especially continuing discontinued projects or projects with unresponsive
maintainers (P1, P2, P8), disagreements around project governance (P2, P12), and diverging
technical goals or target populations (P3, P5, P6, P11, P13, P14, P17). As discussed, we identi-
fied 1052 hard forks (Table 4.2, patterns 1–3, 6.8 %) that forked an inactive project.

An interesting common theme that emerged in our interviews though was that many hard
forks were not deliberately created as hard forks initially. More than half of our interviewees
described that they initially created a fork with the intention of contributing to the upstream
repository (social fork), but when they faced obstacles they decided to continue on their own.

48 CHAPTER 4. HARD FORKS

Common obstacles were unresponsive maintainers (P1, P2, P8) and rejected pull requests (P11,
P13, P14), typically because the change was considered beyond the scope of the project. For
example, P2 described that “before forking, we started by opening issues and pull requests, but
there was a lack of response from their part. [We] got some news only 2 months after, when
our fork was getting some interest from others.” Similarly, some maintainers reported that a
fork initially created for minor personal changes evolved into a hard fork as changes became
more elaborate and others found them useful (P2, P14, P17); for example, P14 described that the
upstream project had been constantly evolving and the code base became quickly incompatible
with some libraries, so he decided to fix this issue while also adding functionality, after which
more and more people found his fork and started to migrate.

Several maintainers also had explicit thoughts about how to avoid hard forks (both main-
tainers of projects that have been forked and fork owners who themselves may be forked), and
they largely mirror common reasons for forking, i.e., transparent governance, being responsive,
and being inclusive to feature requests. For example, P2 suggests that their project is reactive
to the community, thus he considers it unlikely to be forked; similarly P16 decided to generally
“respond to issues in a timely manner and make a good faith effort to incorporate PRs and pos-
sibly fix issues and add features as the needs arrives” to reduce the need for hard forks. Beyond
these, P2 also mentioned that they created a contributing guide and issue templates to coordinate
with contributors more efficiently; P14 suggested to “credit the contributors” explicitly in release
notes in order to keep contributors stay in the community.

Discussion and Implications

Whereas forking was typically seen as a deliberate decision in pre-GITHUB days that required
explicit steps to set up a repository for the fork and find a new name, nowadays many hard forks
seem to happen without much initial deliberation. Social coding environments actively encour-
age forking as a contribution mechanism, which significantly lowers the bar to create a fork in the
first place without having to think about a new name or potential consequences like fragmenting
communities. Once the fork exists (initially created as social fork), there seems to be often a
gradual development until developers explicitly consider their fork a separate development line.
In fact, many hard forks seem to be triggered by rather small initial changes. These interview
results align with the observation that only about 36 % of the detected hard forks on GITHUB

have changed the project’s name (cf. Figure 4.2a and 4.2b).4

More importantly, a theme emerged throughout our interviews that hard forks are not likely to
be avoidable in general, because of a project’s tension between being specific and begin general.
On the one hand, projects that are more inclusive to all community contributions risk becoming
so large and broad that they become expensive to maintain (e.g., as P17 suggests, the project
maintainers need to take over maintenance of third-party contributions for niche use cases) and
difficult to use (e.g., lots of configuration options and too much complexity). On the other hand,
projects staying close to their original vision and keeping a narrow scope may remain more
focused with a smaller and easier to maintain code base, but they risk alienating users who do

4 An intervieweed hard-fork owners explained that they did not change the fork’s name as a way to give credits
to the upstream project, so not all hard forks without name changes should be automatically interpreted as being
created through a gradual transition from social forks.

4.3. RESULTS 49

not fit that original vision, who then may create hard forks. One could argue that hard forks are
a good test bed for contributions that diverge from the original project despite their costs on the
community: If fork dies it might suggest a lack of support and that it may have been a good
decision not to integrate those contributions in the main project.

In this context, a family of related projects that serve slightly different needs or target pop-
ulations but still coordinate may be a way to overcome this specificity-generality dilemma in
supporting multiple projects that each are specific to a mission, but together target a significant
number of uses cases. However, current technology does not support coordination across multi-
ple hard forks well, as we discuss next.

4.3.3 Interactions between Fork and Upstream Repository
Many interviewees indicate that they are interested in coordinating across repositories, either for
merging some or all changes back upstream eventually or to monitor activity in the upstream
repository to incorporate select or all changes. Some hard fork owners did not see themselves
competing with the upstream project, but rather being part of a larger project. For instance,
although fork owner P13 has over 1500 commits ahead of the upstream project, he still said
that “I would not consider it independent because I am relying on what they (upstream) are
doing. I could make it independent and stop getting their improvements, but it’s to their credit
they make it very easy for their many hundreds of developers to contribute patches and accept
patches from each other. They regulate what goes into their project very well, and that makes
[merging changes] into my fork much easier.” Some (P4 and P11) indicate that they would like to
merge, once the reason for the hard fork disappears (typically governance practices or personal
disputes). Also upstream maintainers tend to be usually interested in what happens in their forks;
for example, P17, a maintainer of a project with thousands of (mostly social) forks, said “I try to
be aware of the important forks and try to get to know the person who did the fork. I will follow
their activities to some extent.”

However, even though many interviewees expressed intentions, we see little evidence of ac-
tual synchronization or merging across forks in the repositories: For example, P1, P4, P8, and
P11 mention that they are interested in eventually merging back with the upstream repository,
but they have not done so yet and do not have any concrete plans at this point. Similarly, P2,
P6, and P10 indicate that they are interested in changes in upstream projects, but do not actually
monitor them and have not synchronized in a long time. Our evolution patterns similarly show
that synchronization (from upstream to fork) and merging (from fork to upstream) are rare. Only
16.18 % of all hard forks with active upstream repositories ever synchronize or merge (Table 4.2,
patterns 4–6, 8–10, and 12–14).

What might explain this difference between intentions and observed actions is that synchro-
nization and merging becomes difficult once two repositories diverge substantially and that mon-
itoring repositories can becoming overwhelming with current tools. For example, P2 reports to
only occasionally synchronize minor improvements, because the fork has diverged to much to
synchronize larger changes; P10 has experienced problems of synchronizing too frequently and
thus being faced with incomplete implementations and now only selectively synchronizes fea-
tures of interest. In line with prior observations on monitoring change feeds [38, 61, 168, 249],
interviewees report that systematically monitoring changes from other repositories is onerous

50 CHAPTER 4. HARD FORKS

and that current tools like GITHUB’s network graph are difficult to use and does not scale (P11,
P16).

Discussion and Implications

Tooling has changed significantly since the pre-GITHUB days of prior studies on hard forks
which may allow new forms of collaboration across forks: Git specifically supports merges
across distributed version histories, as well as selectively integrating changes through a ‘cherry
picking’ feature. GITHUB and similar social coding pages track forks, allowing developers
to subscribe to changes in select repositories, and generally make changes in forks transpar-
ent [61, 62, 249]. Essentially all interviewees were familiar with GITHUB’s network view [4]
that visually shows contributions over time across forks and branches.

Even though advances in tooling provide new opportunities for coordination across multi-
ple forks and project maintainers are interested in coordinating and considering multiple forked
projects as part of a larger community, current tools do not support this use case well. Current
tools work well for short-term social forks but tend to work less well for coordinating changes
across repositories that have diverged more significantly.

This provides opportunities for researchers to explore tooling concepts that can monitor, man-
age, and integrate changes across a family of hard forks. Recent academic tools for improved
monitoring [168, 249] or cross-fork change migration [180, 183] are potentially promising but
are not yet accessible easily to practitioners. Also more experimental ideas about virtual product-
line platforms that unify development of multiple variants of a project [17, 84, 157, 192, 211]
may provide inspiration for maintaining and coordinating hard forks, though they typically do
not currently support the distributed nature of development with competing hard forks. A tech-
nical solution could solve the specificity-generality dilemma (cf. Sec. 4.3.2), allowing subcom-
munities to handle more specific features without overloading the upstream project and without
fragmenting the overall community. We believe that our dataset of 15,306 hard forks can be
useful to develop and evaluate such tools in a realistic setting.

4.3.4 Perceptions of Hard Forking
Our discussion with maintainers confirmed that the line between hard forks and social forks is
somewhat subjective, but, when prompted, they could draw distinctions that largely mirror our
definition (long-term focus, extensive changes, fork with own community). For example, P2
agree that his fork is independent from the upstream project because they have different goals,
and suggests the fork has better code quality, and better community management practices; the
only remaining connection are upstream bug fixes that he incorporates from time to time. Also,
P6 considers his fork as independent, given a quicker release cycle and significant refactoring of
the code base.

For most interviewees, the dominant meaning of a fork is that of a social fork. When asked
about perceptions of forks, most interviewees initially thought of social forks and have strong
positive associations, e.g., others contributing to a project, onboarding newcomers and finding
collaborators, and generally fostering innovation. For instance, P6 described the advantages of
social forking as “it encourages developers to go in a direction that the original project may not

4.3. RESULTS 51

have gone,” and similarly P9 thought that “it could boost the creative ideas of the communities.”
One interviewee also mentioned that for young projects primarily focused on growth, being
forked is a positive signal, meaning that the project is useful to other people. Social forks were
so dominant in the interviewees’ mind as a default, that we had to frequently refocus the interview
on hard forks. When asked specifically about hard forks, several interviewees raised concerns
about potential community fragmentation (P4, P6, P17), worried about incompatibilities and
especially confusing end users (P3, P9, P14, P17), and would have preferred to see hard-fork
owners to contribute to the upstream project instead (P3, P8, P12). However, concerns were
mostly phrased as hypotheticals and contrasted with positive aspects.

Many interviewed owners of hard forks do not see themselves competing with the upstream
repository, as they consider that they address a different problem or target a different user popu-
lation. For example, P10 described his fork as a “light version” of the upstream project targeting
a different group of users.

While it is understandable that hard-fork owners see their forks as justified, also some inter-
viewed owners of upstream projects had positive opinions about such forks. For example, P17
expressed that forks are good if there is a reason (such as a focus on a different target population,
in this case beginners), and that those forks may benefit the larger community by bringing in
more users to the project; P18 suggested even that he would support and contribute forks of his
own project by occasionally contributing to them as long as it will benefit the larger community.

Discussion and Implications

Overall, we see that the perception of forking has significantly changed compared to perceptions
reported in earlier work. Forking used to have a rather negative connotation in pre-GITHUB days
and was largely regarded as a last resort to be avoided to not fragment the community and confuse
users. With GITHUB’s rebranding of the word forking, the stigma around hard forking seems to
have mostly disappeared; the word has mostly positive connotations for developers, associated
positively with external contributors and community. While there is still some concern about
community fragmentation, it is rarely a concrete concern if there are actual reasons behind a
hard fork. Transparent tooling seems to help with acceptance and with considering multiple hard
forks as part of a larger community that can mutually benefit from each other.

We expect that a more favorable view, combined with lower technical barriers (Sec. 4.3.2) and
higher expectations of coordination (Sec. 4.3.3) makes hard forks a phenomenon we should ex-
pect to see more of. However, positive expectations can turn into frustration (and disengagement
of valuable contributors to sustain open source) if fragmentation leads to competition, confusion,
and coordination breakdowns due to insufficient tooling.

With the right tooling for coordination and merging, we think hard forks can be a powerful
tool for exploring new and larger ideas or testing whether there is sufficient support for features
and ports for niche requirements or new target audiences (e.g., solving the specificity-generality
dilemma discussed in Sec. 4.3.2 with a deliberate process). To that end though, it is necessary
to explicitly understand (some) hard forks as part of a larger community around a project and
possibly even explicitly encourage hard forks for specific explorations beyond the usual scope of
social forks. We believe that there are many ways to support development with hard forks and
to coordinate distributed developers beyond what social coding site offer at small scale today.

52 CHAPTER 4. HARD FORKS

Examples include (1) an early warning system that alerts upstream maintainers of emerging
hard forks (e.g., external bots), which maintainers could use to encourage collaboration over
competition and fragmentation if desired, (2) a way to declare the intention behind a fork (e.g.,
explicit GITHUB support) and dashboard to show how multiple projects and important hard forks
interrelate (e.g., pointing to hard forks that provide ports for specific operating systems), and
(3) means to identify the essence of the novel contributions in forks (e.g., history slicing [135] or
code summarization [249]).

4.4 Summary
With the rise of social coding and explicit support in distributed version control systems, forking
of repositories has been explicitly promoted by sites like GITHUB and has become very popular.
However, most of these modern forks are not hard forks in the traditional sense. In this Chapter,
we revisited the question about the motivation for hard forks and explore whether they have
changed with the rise of social coding. We believe it is necessary to revisit hard forking after the
rise of social coding and GITHUB. Specifically, we aim to understand the hard-fork phenomenon
in a current social-forking environment, and understand how perceptions and practices may have
changed.

We automatically detected hard forks and their evolution patterns and interviewed open-
source developers of forks and upstream repositories to study perceptions and practices. We
found that perceptions and practices have indeed changed significantly: Among others, hard
forks often evolve out of social forks rather than being planned deliberately and developers are
less concerned about community fragmentation but frequently perceive hard forks a positive
noncompetitive alternatives to the original projects.

This project is a complement to the previous project described in Chapter 3 to update and
deepen our understanding regarding practices and perceptions around hard forks can inform the
design of better tools and management strategies to facilitate efficient collaboration. With the
right tooling for coordination and merging, we think hard forks can be a powerful tool for ex-
ploring new and larger ideas or testing whether there is sufficient support for features and ports
for niche requirements or new target audiences. Moreover, it is necessary to explicitly understand
(some) hard forks as part of a larger community around a project and possibly even explicitly
encourage hard forks for specific explorations beyond the usual scope of social forks.

Chapter 5

New Intervention: Identifying Features in
Forks (INFOX)

This chapter shares material with the ICSE’18 paper “Identifying Features in Forks” [249] and
ICSE’18 - Poster paper “Forks Insight: Providing an Overview of GitHub Forks” [182].

In previous chapters, we observed differences between projects regarding the degrees of col-
laboration efficiency using fork-based development mechanisms, thus, we studied natural inter-
ventions that are correlated to higher collaboration efficiency and tested the feasibility of apply-
ing such intervention to a broader population (see Chapter 3). However, we also observed that
some existing interventions (e.g., GITHUB network view and GITLAB fork list view shown in
Figure 5.1 for presenting an overview of the community) are not good enough. In this chapter,
we describe our first tooling intervention to improve the awareness of a community and generate
a better overview for fork-based development mechanism. We design an approach to identify
unmerged cohesive code changes (named features) from forks. The approach is called INFOX,
which is short for IdeNtifying Features in fOrKS.

5.1 Motivation

As described in Section 1, because the number of forks of a project is large, it is hard to maintain
an overview of the whole community, which would lead to other problems. Several open-source
developers that we interviewed for this paper indicated that they are interested in what happens
in other forks, but cannot effectively explore them with current technology, such as GitHub’s
network graph shown in Figure 5.1b: “I care, but, it is very hard to track all of the forks.” This
developer is using SourceTree, which visualizes commit history of a repository through GUI, to
explore code changes in other forks one by one, and he said “it is just difficult” [P5]; “I do not
have much visibility of the forks. They are too many, and it is overwhelming to keep track of
them” [P9]. The difficulty to maintain an overview of forks leads to several additional problems,
such as redundant development, lost contributions and suboptimal forking point (as described in
Section 1).

53

54 CHAPTER 5. NEW INTERVENTION: INFOX

GitHub’s main facility to navigate forks is the network view (Figure 5.1b), which visualizes
the history of commits over time across all branches and forks of a project. This cross-fork
visualization provides transparency to developers who want to track ongoing changes by others,
want to know who is active and what they are trying to do with the code [61]. For example, one
of the developers we have interviewed said: “I check the more updated forks. I think this view
is helpful, because I am not gonna look at all 60 forks. 60 is a lot, probably this project has
thousands, that will be ridiculous. I will never do that” [P4].

Although the network view is a good starting point to understand how the project evolves, it
is tedious and time consuming to use if a project has many forks. In order to see older history,
users click and drag within the graph, and if users want to see the commit information, they hover
the mouse over each commit dot and read the commit message. Also, they “have to scroll back
a lot to find the fork point and then go to the end again for seeing what changed since then in the
parent and in the fork” [7]. If developers want to investigate the code changes of certain forks,
they have to manually open and check each fork. As one developer stated “I don’t look at the
graphs on GitHub. . . it is very hard to find the data, you have to scroll for 5 minutes to find stuff”
[P5]. The view does not even load when there are over 1000 forks, no matter they are active or
inactive.

The goal of our work is to identify and label cohesive code changes, features, among changes
in forks to provide a compact overview of features and their implementations. This is a step to
establish an overview of development activities in various forks of a project.

In contrast to GitHub’s network view (Figure 5.1b), we deemphasize commits, which fre-
quently have unreliable descriptions and frequently are unreliable indicators of cohesive func-
tionality, as it is common that commits tangle code of multiple features and even more com-
mon that a single feature is scattered across multiple commits [23, 112, 113, 127, 135, 159].
Instead, we cluster changed code based on relationships and dependencies within those code
fragments and label each feature with representative keywords extracted from commit messages,
code, and comments. Technically, we take inspiration from CLUSTERCHANGES [23] to untan-
gle code changes during code review based on a graph of code dependencies and repurpose the
idea for our problem; furthermore we incorporate community-detection techniques [95] to refine
an initial clustering and information-retrieval techniques [197] for deriving concise labels (See
Figure 5.1a).

To summarize, we contribute (a) INFOX, an approach and corresponding tool, which auto-
matically identifies and summarizes features in forks of a project, using source code analysis,
community detection, and information-retrieval techniques, and (b) evidence that INFOX im-
proves accuracy over existing techniques and provides meaningful insights to maintainers of
forks.

5.2 Method

INFOX identifies and labels features within a larger change of a fork. It takes the code change
difference between the latest commit of the upstream (source snapshot) and the latest commit of

5.2. METHOD 55

#Active forks (within a year): 89
#Forks have un-submitted code changes: 33

(a) INFOX’s overview summarizes features in active forks.

(b) GITHUB’s network graph shows commits across known forks, but is difficult to use to gain an overview
of activities in projects with many forks.

Figure 5.1: Complementary solutions for lack of overview problem in fork-based development.

56 CHAPTER 5. NEW INTERVENTION: INFOX

the fork (target snapshot) from GitHub, which returns the non-merged changes from fork.1 Then
it proceeds in three steps (as shown in Figure 5.3):
• Identify a dependency graph among all added or changed lines of code by parsing and analyz-

ing the code for multiple kinds of dependencies (Sec. 5.2.1).
• Cluster the lines of the change based on the dependency graph using a community-detection

technique, mapping each line of code to a feature, such that lines with many connections in
the dependency graph are mapped to the same feature (Sec. 5.2.2).

• Label each cluster by extracting representative keywords with an information-retrieval tech-
nique (Sec. 5.2.3).

The first step is inspired by CLUSTERCHANGES, an approach to untangle code in commits for
code review [23]. CLUSTERCHANGES clusters changed code fragments based on a dependency
graph of lines of code. We adopt this idea for a different purpose (identifying and naming fea-
tures in multiple forks rather than untangling changes in a single commit) and we extend the
approach with additional kinds of dependency edges, additional steps in the clustering process,
and labeling of clusters, as we will explain.

5.2.1 Generating a dependency graph

We generate a dependency graph for all lines of code of the target snapshot by parsing the tar-
get snapshot and analyzing the resulting abstract syntax tree. We add edges between lines for
several kinds of relationships of code fragments within those lines that may indicate that the two
fragments are that are more likely to be related. We collect the following kinds of dependencies,
which we also illustrate on a simple excerpt of an email system in Figure 5.2:
• Definition-usage edges: We add edges between the definition and use of functions and vari-

ables in the program, and the definition and use of structs or classes and their members. We
conjecture that def-use relationships between two code fragments often point to two code frag-
ments that fulfill a joint purpose and are thus more likely to be part of the same cohesive change
in a larger change.

• Control-flow edges: We generate a control-flow graph for the source code and add edges
between two lines if there is a control dependency relation between the statements of each line.
In line with Emerson’s cohesion metrics [79], we think that the flow of control information
contributes to the cohesion of code changes.

• Adjacency and hierarchy edges: We add edges between consecutive lines and lines that rep-
resent hierarchical structures in the source code (struct/class members point to the outer struct
definition). Adjacency edges and hierarchy edges represent the structure of the source code
and indicate that code fragments that are located close to each other are more likely to belong
to the same cohesive fragment than code fragments scattered across different places.

The result is a labeled, weighted, undirected graph, in which nodes represent lines of code
and edges represent the identified dependencies listed above. We assign a low weight of 1 for
adjacency edges, and a weight of 5 for all other edges. Intuitively, semantic dependencies in the

1While developed for changes in a single fork, our approach can be technically used to cluster the changes
between any two code snapshots, including two commits in a single repository or two copies of code maintained
without a version control system.

5.2. METHOD 57

program should be stronger indicators of features than structural relations. We use an undirected
dependency graph, as our experiments showed no benefit in maintaining directionality.

struct email
{

char *subject;
char *body;
int isEncrypted;

};
void printMail (struct email *msg);

1
2
3
4
5
6
7

void printMail (struct email *msg)
{

printf (“SUBJECT:”, msg -> subject);
if (0 == (msg -> isEncrypted))

printf (“BODY:”, msg -> body);
else

printf (“Encrypted msg.”);
}

1
2
3
4
5
6
7
8

DU (printMail)

H

DU (body)

CF

File 1: Email.h

File 2: Email.c

DU (msg)

H

DU
(isEncrypted)

DU(subject)

CF

A

A

A

A

A
A

A
A

A

Figure 5.2: Edge examples of an email system.

Using a diff command between the source and the target snapshot, we identify and mark all
nodes that have been added or changed in the target snapshot (highlighted in Figure 5.3).

Compared to CLUSTERCHANGES [23], we add edges between nodes with hierarchical and
control-flow relations, and add weights.

5.2.2 Identifying features by clustering the graph

Given the labeled, weighted, undirected dependency graph of the target snapshot, we identify
clusters of nodes that have many edges within the cluster but few edges across clusters (known
as community detection in the network analysis community [86, 218]). We interpret each cluster
and the corresponding lines of code as a feature. We start with an initial simple clustering step,
but provide additional means to further split and join clusters that can be used in an interactive
tool or applied automatically using heuristics.

Initial clusters. In line with CLUSTERCHANGES [23], we establish initial clusters by remov-
ing all unlabeled nodes (see Figure 5.3) from the dependency graph (i.e., all nodes that have not
been added or changed between source and target) and by detecting connected components in
the resulting graph. Each connected component is considered as a feature.

58 CHAPTER 5. NEW INTERVENTION: INFOX

C/C++

source code AST

dependency graph
for changed code

dependency graph
for all code

splitting
clusters

joining
clusters

Step 1

Step 2 Shortest distance
between clusters

cluster 1: sd_card, z_axis, …
cluster 2: extruder, config, …

Step 3

commit message
of each line

Repo
git diff

Keyword list of each cluster

git blame

labeled, changed code
base code

Figure 5.3: Generating and clustering dependency graphs to identify features, and labeling fea-
tures [249].

This simple splitting works well for many changes, for example, grouping together adjacent
code fragments and new function definitions with their corresponding calls. Unfortunately, for
other changes, including large and tangled changes—that we see more frequently in forks than
in individual commits—this initial clustering is susceptible to problems where two unrelated
features are merged, just because their implementations share a single adjacency edge in one
place in the source code. Similarly, some code fragments may belong together but have no link
within the changed code, such as multiple scattered code fragments calling the same previously
existing logging function. For that reason, we go beyond the work of CLUSTERCHANGES [23]
and provide additional (optional) support for splitting and joining clusters further.

Splitting clusters. Community detection identifies modules in a graph according to the struc-
tural position of nodes [86]. In community detection, the key optimization criterion is to maintain
more connections within the module than across modules. We use community detection to split

5.2. METHOD 59

large clusters into smaller ones that are only loosely connected.
We adopt a state-of-the-art community-detection algorithm by Girvan and Newman [95]. Its

idea is to count the number of shortest paths between node pairs. This count, weighted by the
edge weight, is called the edge-betweenness score. The edges with higher betweenness tend to
be the bridge between communities. The clustering algorithm iteratively removes the edges with
the highest edge-betweenness score from the original graph.

In the example of Figure 5.3 (Step 1), the highlighted edge is the one with the highest be-
tweenness score, bridging two otherwise highly interconnected clusters. Our algorithm removes
this edge, splitting the large cluster into two smaller ones (Step 2).

Note that community detection has no natural stop criteria. The algorithm can continue until
the last edge is removed, creating singleton clusters. In practice, several heuristic stop criteria
exist, such as maximizing a modularity metric [95] or stopping when a given maximum number
of cut edges do not yet result in a new cluster. Since, despite experiments, we could not identify
a single robust stop criterion for our problem, we primarily envision splitting in an interactive
setting, in which developers can request to split a large feature into two using the community-
detection algorithm, if they judge this to be beneficial.

Joining clusters. Scattered implementations of a single conceptual feature may result in graph
components without any connecting edge. In our experience, this sometimes generates sets of
small clusters that appear to be highly related (e.g., call the same function, use the same vari-
able), but have no dependency edge within the changed code. To identify these as a single feature
nonetheless, we analyze how those clusters are related in the context of the entire implementa-
tion, not just the added or changed lines of code.

To this end, we compute the distance between two clusters in the entire dependency graph
that includes the unlabled nodes representing unchanged lines of code that are the same in the
source and target snapshot. Given two clusters, we compute the distance of two clusters as the
shortest distance between any pair of nodes, in which each node belongs to one of each clusters.
In our example, in Figure 5.3, the two initial clusters are separated by only a single unmarked
node, indicating that they might be joined.

Again, there is flexibility in selecting thresholds about when to join two clusters. In addition
to interactive mechanisms, we apply joins by default for pairs of clusters that are separated by a
single unlabled node when at least one of the clusters is smaller than 50 nodes (lines of code).
We arrived at this default threshold after observing, across a large number of forks, that small
clusters are more frequently affected by this, whereas large clusters are more likely to already
share an edge.

5.2.3 Labeling features

After identifying features with clusters in the dependency graph of the changed code (possibly
with additional splitting and joining), we can already show the clusters to developers. However,
to allow them to gain an overview of a fork’s changes quickly without having to read a large
amount of source code, we label each feature with representative keywords.

60 CHAPTER 5. NEW INTERVENTION: INFOX

1 if (dual_x_carriage == DXC_DUPLICATION){
2 setTarget(duplicate_extruder_temp);
3 duplicate_extruder_temp_offset = code_value();
4 duplicate_extruder_x_offset = max(i, t);
5 SERIAL_ECHO(extruder_offset[0]);
6 extruder_duplication_enabled = false;
7 }

Figure 5.4: Source code excerpt from Marlin.

In contrast to GitHub’s network graph (see Figure 5.1b), which only shows individual com-
mit messages, we compute representative keywords from multiple sources. We use commit
messages in the process, but do not rely on them, because (1) commit messages are often too
verbose to consume quickly, because (2) as discussed, commits do not always align with fea-
tures, and because (3) we do not consider the text of commit messages as reliable descriptors.
Instead, we use information-retrieval techniques to identify keywords that are distinctive for a
given feature, meaning that those keywords represent the feature better than other features or the
base implementation. Specifically, we proceed in three steps:

• First, we collect a corpus of text for each feature and an additional corpus for the un-
modified source code. For each feature, the corpus contains (verbatim) all lines of code
associated with this feature, including variable names and function names. We also include
source-code comments that may provide additional explanations. Comments are added to
corresponding clusters based on their line number. Finally, we identify the commits that
introduced the changed lines of a feature (using ‘git blame’) and add all corresponding
commit messages to the corpus.

• Second, we tokenize each corpus (e.g., splitting variable names at underscores [44]) and
perform the standard normalization techniques of stemming (e.g., unifying variations of
words such as duplicate, duplicated, and duplication) and removing stop words (specifi-
cally reserved keywords such as int, sizeof, switch, and struct).

• Third, we identify keywords that are important in one corpus as compared to all other
corpora using the well-known Term Frequency Inverse Document Frequency (TF-IDF)
scoring technique [197]. The importance of a keyword (its TF-IDF score) increases pro-
portionally to the number of times a word appears in the feature’s corpus but is offset by
the frequency of the word in the other feature’s corpora [133]. We calculate the TF-IDF
score of each word and of each 2-gram (unique sequence of two words [215]) in the fea-
ture’s corpus. We report the five highest scoring words and five highest scoring 2-grams as
labels for the feature.

For example, consider the code snippet from the Marlin 3D printer firmware2 in Figure 5.4,
which we represent by the relevant keywords duplicate_extruder, extruder_temp, offset, dual_x,
x_carriage, which are common in this code fragment but not elsewhere in the firmware imple-
mentation.

We arrived at our solution of tokenizing composed variable names (with underscore) and

2https://github.com/MarlinFirmware/Marlin

https://github.com/MarlinFirmware/Marlin

5.3. IMPLEMENTATION & USER INTERFACE 61

join

Figure 5.5: Features in fork DomAmato/ofxVideoRecorder; tree view displaying hierarchical
relation between split features; colors related code to features.

using 2-grams after some experimentation. On the one hand, composed variable names (e.g.,
duplicate_extruder_x_offset in Figure 5.4) are often too specific and dominate the TF-IDF score,
such that all keywords are long and often similar variable names. On the other hand, we do not
want to discard them entirely as they often include descriptive parts that represent the feature.
Finally, tokenizing all composed words sometimes leads to overly generic words, for example,
unable to distinguish the different kinds of extruders in 3D printers. Tokenization combined with
2-grams provides a compromise that can pick up common combinations of words without relying
too much on specific long combinations and generic short words.

5.3 Implementation & User Interface
We implemented INFOX for C and C++ code in a tool of the same name. INFOX takes a link
to a GitHub project and collects all active forks. For each fork, it downloads the latest revision
of each as target snapshot. Unless instructed otherwise, it takes the latest revision of upstream
repository as that fork’s source snapshot. As output, INFOX produces an HTML file that contains

62 CHAPTER 5. NEW INTERVENTION: INFOX

summaries of features and keywords for all analyzed forks, ranked by the time of their last
commits, as shown in Figure 5.1a. In addition, for each fork, it produces an HTML file that
maps the features to source code (using colors, similar to FeatureCommander [83]) as shown in
Figure 5.5. Navigation buttons allow to jump between scattered code fragments of a feature.

To build a dependency graph, INFOX parses C/C++ code with srcML [54] and performs a
lightweight name-resolution analysis to detect def-use edges. Since reliably identifying all such
edges in a complex language as C++ is difficult, our implementation is unsound, but provides
a fast and sufficient approximation for our experiments. For example, INFOX does not disam-
biguate function pointers or other advanced language constructs.

Splitting and joining is currently implemented such that developers can interact with the
web page and select which additional features to split and which to join. Splits are currently
precomputed for features larger than 50 lines, as are joins for small features (by generating
multiple static HTML pages through which the user navigates). This can easily be replaced by
on-demand computations on a web server. Split clusters are illustrated with a hierarchy allowing
users to track and undo splits. Our source code is publicly available at https://github.
com/shuiblue/INFOX.

5.4 Evaluation
We evaluate INFOX with regard to effectiveness and usability. Specifically, we address four
research questions:

• RQ1: To what extent do identified clusters correspond to features? We measure the
effectiveness of INFOX’s clustering approach by comparing how well the clusters match
previously labeled features in the code. To that end, we will establish a ground truth of
features in multiple code bases. We further compare the result of INFOX with the state-of-
the-art (called CLUSTERCHANGES) [23].

• RQ2: What design decisions in INFOX are significant to cluster cohesive code changes?
We aim to understand the factors that influence the effectiveness of INFOX. Specifically,
we investigate how sensitive INFOX is to different kinds of edges in the dependency graph
and to the splitting and joining steps.

• RQ3: To what extent do developers agree with INFOX’s clustering result? Comple-
menting RQ1, we explore whether fork maintainers in open-source projects agree with
how INFOX divides and labels their own contributions.

• RQ4: Can INFOX help developers to gain a better overview of repository forks? We
investigate whether INFOX helps developers to gain new and useful information about a
project’s many forks, such as recognizing useful contributions or redundant development
in other forks.

We answer the first two research questions in a controlled setting, in which we quantitatively
measure the accuracy of different clustering strategies on a number of subject systems for which
we establish some ground truth as benchmark. Subsequently, we qualitatively answer the re-
maining two research questions in a human-subject study, in which we discuss INFOX’s results
with 11 developers of forks of popular open source systems. The studies are complementary,
allowing us to both (a) systematically explore a large number of diverse scenarios while control-

https://github.com/shuiblue/INFOX
https://github.com/shuiblue/INFOX

5.4. EVALUATION 63

ling several confounds and deliberately exploring the effects of changing independent variables
(internal validity), as well as (b) validate in a practical setting how developers can benefit from
the approach in their day-to-day development (external validity).

5.4.1 Quantitative Study (RQ1 & RQ2)
In a first study, we answer RQ1 and RQ2 in a controlled setting by quantitatively comparing
clustering results of INFOX and CLUSTERCHANGES against a ground truth of known features in
a number of open-source projects.

Establishing ground truth. A key challenge in evaluating approaches that identify features
and cohesive code fragments (including a vast amount of literature on the concept-location prob-
lem) is to establish ground truth—a reliable data set defining which code fragments belong to
which features. Once such ground truth is established, it is easy to define an accuracy measure
and to compare different approaches and their variants. There are many different ways to es-
tablish ground truth, each with their own advantages and disadvantages, including (1) asking
researchers or practitioners to manually assign features to code fragments [74, 189] (possibly bi-
ased and subjective, possibly low inter-rater reliability, expensive), (2) using indirect indicators
such as code committed in a single commit or by a single author [68, 242] (questionable relia-
bility), (3) using results of other tools as reference [115, 116, 186] (questionable reliability), or
(4) using existing traceability mappings created for compliance reasons [52, 53, 58, 59, 60, 68]
(uncommon practice outside industrial safety-critical systems). In this paper, we use a new, dif-
ferent approach and use existing mappings of code fragments to features through #ifdef directives
in C/C++ code.

The preprocessor is commonly used in C/C++ code to implement optional features and sup-
port portability such that users can customize their builds by instructing the preprocessors which
features to include [80, 137, 148]. We argue that #ifdef -guarded code fragments are often good
approximations of features (extensions, alternatives) that developers might add in a fork of a
software system. In fact, in some systems like the Marlin 3D-printer firmware, developers often
add #ifdef guards around code blocks that they integrate back into the upstream repository as
pull requests [214].

Given a C/C++ project, we identify all preprocessor macros that correspond to features of the
system, excluding macros that are used for low-level portability issues. For each macro, we iden-
tify all code fragments that are guarded by this macro. We consider this macro-to-code mapping
as the ground truth for features in the experiments, as illustrated in Figure 5.6. Extracting ground
truth from preprocessor annotations has the advantage that those annotations have been added
by practitioners independently of our experiments and that they can be extracted automatically
at scale. As developers typically want to compile the code with and without those features, the
mapping is typically well maintained as part of normal development activities and the features
correspond to units of implementations that developers and users care about. Note that prepro-
cessor annotations do not map all of the project’s code to features, but this is not necessary,
because we only want to cluster the code changed in forks. We describe next how we simulate
such changes to forks.

64 CHAPTER 5. NEW INTERVENTION: INFOX

#ifdef A
#ifdef B

…
#endif
…

#endif
#ifdef C

…
#endif
#ifdef A

...
#endif

1
2
…
10
…
20
21
…
30
31
…
35

B: 3-9

C: 22-29

A: 2-19

A: 32-34

Ground truth
A: 2-19, 32-34
B: 3-9
C: 22-29

Simulated forks
1) A and C
Code changes: Line 2-19, 22-29, 32-34
2) B and C
Code changes: Line 3-9, 22-29

(a)

(b)

(c)

Figure 5.6: Extracting preprocessor-based ground truth and simulating forks.

Simulating forks. For a given project, we simulate multiple forks, of which each adds multiple
features. To that end, we select a subset of features in the project and create the source snap-
shot by removing all code corresponding to those features (based on the ground-truth mapping),
whereas we remove only the #ifdef directives but not the corresponding implementations from
the target snapshot. That is, source and target snapshot differ exactly in the implementation of
the selected features. We then evaluate whether INFOX can cluster the changed code into the
features originally defined by the project’s developers. By selecting different sets of features, we
can generate different simulated forks for the same project.

Since INFOX divides all code added in a fork into non-overlapping clusters, we avoided
nested macros in one feature combination when generating simulated forks. Technically, we
select macros incrementally and randomly, and discard any macro for which code overlaps with
previously selected macros until we found the desired number of non-overlapping macros. For
example, in Figure 5.6, macro B is nested in macro A, thus we may generate simulated forks
with A and C, and B and C, but not forks with A and B.

In order to evaluate the effectiveness and robustness of INFOX, we ran INFOX on multiple
projects and on multiple simulated forks per project. We explored all combinations of the fol-
lowing three experimental parameters and generated 10 simulated forks for each combination,
resulting in 156 simulated forks per project.

• Number of macros: We selected between 3 and 15 macros per simulated fork, simulating
smaller and larger changes.

• Proximity: We either selected all macros (a) from the same file or (b) from different files,
simulating more and less heavily tangled features.

• Feature size: We sorted all features by size (lines of code) and split them equally into
smaller and larger features. We then sampled either (a) twice as many large features than
small features or (b) twice as many small features than large features, thus further varying
simulated forks.

5.4. EVALUATION 65

Table 5.1: Subject projects

Software System Domain LOC #F F-LOC

Cherokee web server 51,878 328 7,679
clamav anti-virus program 75,345 285 10,809
ghostscript postscript interpreter 442,021 816 21,864
Marlin 3D printer firmware 190,799 280 26,395
MPSolve mathematical moftware 10,181 17 1524
openvpn security application 38,285 276 23,288
subversion revision control system 509,337 409 28,443
tcl program interpreter 135,183 2,481 26,618
xorg-server X server 527,871 1,360 95,227
xterm terminal emulator 49,621 453 19,208

LOC: lines of code; #F: number of unique features macros;
F-LOC: size of features in LOC

Subject systems. We use open-source software systems implemented in C/C++ with #ifdef
annotations. We selected projects differing in domain, size, and number of features from existing
research corpora [137, 214]. Table 5.1 lists the 10 selected systems.

Accuracy (dependent variable). To evaluate how well a clustering result matches the ground
truth, we use a standard accuracy metric from community detection [218]: Considering all pos-
sible pairs of nodes (2n(n − 1) pairs for n nodes), accuracy is the ratio of correctly clustered
pairs (denoted as CCPs) among all the pairs of nodes (accuracy = CCPs

2n(n−1)). A pair is correctly
clustered if two nodes that belong to one community in the ground truth are assigned to the same
community in the result, and if two nodes from different communities are assigned to different
communities. Let Boolean function G(i, j) denote whether, in the ground truth, node i and node
j are in the same community, and C(i, j) denote whether, in the clustering result, node i and
node j are in the same cluster. A pair is correctly clustered iff G(i, j) = C(i, j). Note that
this measure does not require a direct correspondence of clusters, but measures to what degree
pairs of lines of changed code in a simulated fork are correctly assigned to the same or differing
features.

Independent variables. For RQ1 and RQ2, we compare the accuracy of INFOX when chang-
ing which subsets of edges to consider and whether to perform splitting and joining. As auto-
mated stop criteria for splitting, we stop after 5 additional clusters; for joining, we use our default
stop criterion described in Section 5.2.2. Furthermore, we consider how CLUSTERCHANGES

would perform if used for this problem unmodified (conceptually equivalent to INFOX with-
out further splitting and joining and limited to consecutive lines and def-use dependencies in the
clustering process). We used the Paired Wilcoxon rank-sum test to establish statistic significance.

Threats to validity. External validity is bound by the use of simulated forks, that provide
ground truth for realistic settings but are not real forks. The elimination of nested macros

66 CHAPTER 5. NEW INTERVENTION: INFOX

may make simulated forks to be cleaner than real forks. Nonetheless, we select systems from
different domains with different number of macros which are heavily based on industry-strength
technologies. Besides, we did not rely on the ifdef evaluation alone, but triangulated our
results with the user study (see Sec. 5.4.2). INFOX is conceptually entirely independent of the
programming language. With respect to implementation, generalizations to other languages than
C/C++ should be done with care.

Regarding internal validity, our reimplementation of CLUSTERCHANGES may not be faith-
ful, but was unavoidable as the original tool is not publicly available. To keep the design space
manageable we do not explore different weights and stop criteria, but have only done initial sen-
sitivity analyses to establish that the results are robust with regards to other weights or minor
changes in stop criteria.

Figure 5.7: Accuracy of INFOX and CLUSTERCHANGES (CC) for 10 projects, 156 simulated
forks units each.

Figure 5.8: Accuracy across all 1560 simulated forks for different variations.

Results. We show the accuracy results in Figure 5.7 aggregated over 1560 simulated forks of all
10 subjects. Regarding RQ1, we conclude that INFOX assigned features with 90 % accuracy

5.4. EVALUATION 67

and improves accuracy over CLUSTERCHANGES by 54-92%. The results are stable across
all 10 projects and statistically significant (p < .05). In 102 simulated forks (6.5%), INFOX

achieves a much higher accuracy than CLUSTERCHANGES (e.g,. accuracy increased 0.5), of
which 61 cases are due to splitting and 41 cases are due to joining.

In Figure 5.8, we show accuracy results of all 1560 simulated forks split by different varia-
tions, specifically different kinds of dependency edges and with and without splitting and joining.
Regarding RQ2, we observe that splitting & joining steps improves accuracy by 4-14 %
(stat. sign., p < .05). Removing any kind of edges from the clustering approach significantly
affects accuracy as well (p < .05); all kinds of edges are important for the clustering quality,
but the definition-usage edges are the most influential ones.

5.4.2 Human-subject study (RQ3 & RQ4)
To evaluate the usability of INFOX, we contacted open-source developers who maintain forks
to validate identified features and explore whether the generated summaries provide meaningful
insights.

Study design. We invited developers of active forks (see selection below) for a remote inter-
view. We conducted each interview in a semi-structured fashion divided into four phases:

• Opening and introduction: We started each interview by briefly explaining our research
topic and the general purpose of our study. We asked whether the participants would share
their screen with us and whether they consent to screen and audio recording.

• Validating clustering result (RQ3): In order to help participants remember what the code
changes are, and also help us to gain domain knowledge for a better conversation, we
first asked participants to briefly describe the project and code changes. Subsequently, we
sent them the clustering result of INFOX for their own fork as a folder of HTML files (as
illustrated in Figure 5.5). Within those results, participants could split and join clusters in-
teractively. We started with an initial clustering result (without any splitting) and explained
how to read and navigate the results.
In a subsequent discussion, we pursued two questions: Whether the keywords are repre-
sentative of their feature implementation and whether the clustering of the source code is
meaningful to them. Most of the participants were communicative, and right after spend-
ing some time learning how to interact with INFOX, they started to navigate among code
changes, explaining the meaning of the code, and whether clusters made sense or not. In
line with methods for think-aloud protocols [118], we encouraged participants that were
interacting with INFOX without saying anything for a long time to speak out loud, asking
probing questions, such as “Could you tell us what are you looking at?” or “Would you
explain what this code cluster means?”

• Exploring the project overview (RQ4): Before exploring INFOX’s summary of other forks,
we transitioned the discussion with the question “Do you check what other forks are doing
in this project?” and followed up with questions on how and for what purpose they do
this. Afterward, we sent them the project overview (cf. Figure 5.1a) and encouraged
them to look through the list of forks. By clicking on the name of a fork, they could also

68 CHAPTER 5. NEW INTERVENTION: INFOX

Table 5.2: Participants of our user study and their projects

Project #Forks #Active Forks LOC Change size (LOC) Domain Participant

MarlinFirmware/Marlin 4149 1901 19,799 2-3753 3D printer P1 P3
Smoothieware/Smoothieware 566 237 61,425 19-11, 263 3D printer P5 P6 P7
grpc/grpc 2226 470 95,838 3-480,901 general-purpose RPC framework P2
timscaffidi/ofxVideoRecorder 60 24 611 7-23,228 video recording extension P4
arduino/Arduino 5592 669 112,692 23-7,643 electronic prototyping platform P4
bitcoin/bitcoin 9696 1242 99,746 6-647 experimental digital currency P8 P9 P10
ariya/phantomjs 4,921 749 10,031 45-2,358 Scriptable Headless WebKit P11

explore that fork’s code with INFOX’s results, just as they previously did for their own fork.
Participants were usually actively exploring other forks at this point without our prompting
and shared discoveries with us. When participants explored the code of a fork, we asked
whether the keyword summary provided them a reasonable approximation of what they
found in the implementation. In addition, we opportunistically asked questions about the
relevance of keywords and the accuracy of clustering results in other forks based on their
understanding (similar to questions about their own fork previously) when it fit the flow of
the exploration.

• Open discussion and closing: We concluded each session with general and open-ended
questions about further use cases and suggestions for improvement.

We compensated each participants with a $10 Amazon gift card. The interviews lasted between
30 and 90 minutes.

Participant selection. We searched for projects with active forks using two strategies. First,
we used the GitHub search to find projects written in C/C++, selecting projects with more than
30 forks. Second, we queried GHTorrent [98] for the 100 C/C++ projects with the most first-level
forks.

Among these projects, we selected forks that: (a) had at least one commit within the last
year (increasing the chance that interviewees can remember their changes), (b) have added at
least 10 lines of code (smaller changes are less likely to be a feature implementation), (c) have
a large portion of commits submitted by the fork owner (excluding forks that aggregate changes
of others), and (d) have a public email address or website of the fork owner. To enable questions
about the overview page, we excluded projects for which we could not find at least three forks
that fit these criteria.

In the end, we analyzed 58 projects on Github and found 12 projects fit our filtering criteria.
We identified 81 fork owners. We sent out an email to candidate developers briefly describing our
study. We interviewed 11 developers from 7 different projects (response rate 13.6%). We quickly
reached saturation in that additional interviews provided only marginal additional insights. In
Table 5.2 we list the characteristics of the projects from which we interviewed developers. All
developers are experienced open-source developers.

Analysis. We analyzed the interviews primarily qualitatively, analyzing what participants
learned and how they interacted with the tool. Two of the authors transcribed and coded the
interviews, following standard methods of qualitative empirical research [196].

5.4. EVALUATION 69

Threats to validity. Regarding external validity, our study may suffer from a selection bias, as
common for these kinds of studies. Many of our participants work on 3D printers, which may
have different characteristics. However, overall we reached developers from several different do-
mains and did not observe any systematic differences. Finally, we focus on open source whereas
results may differ in industrial settings in which forks are centrally managed.

Regarding internal validity, communication issues may have affected some answers; we mit-
igated this threat by refining our interview guide when questions raised confusion and involved
two researchers in each interview. Despite open-ended questions and careful design (see above),
we cannot entirely exclude confirmation bias, in which participants might avoid raising critical
points; we mitigate this by focusing on insights gained, not just claims.

Results. Regarding RQ3 (clustering quality), participants mostly confirmed that the clustering
results were appropriate, but often fine-tuned them with further splitting and joining. This further
supports the need for interactive tools. Overall, participants supported our decision to cluster
changes in a fork. For example, participant P4 said: “It is necessary to split code changes
into pieces, even though they cannot be executed in isolation.” Of the 11 participants, 10 said
that INFOX correctly identified the clusters most of the time, although there are small clusters
(containing one or two lines) should have been merged into bigger clusters. The remaining
participant pointed out a cluster containing unrelated code that was automatically generated by
libraries and should be removed.

As we discussed earlier, INFOX provides flexibility to developers by allowing them to split or
join clusters interactively. During the interviews, participants compared the splitting and joining
results carefully, and after several steps, they usually identified clusters that they agreed with. For
example a typical interaction flowed as follows, here from participant P5: “I think this blue and
yellow cluster should belong together.. [clicks the join button] ..oh, so your software correctly
identifies all of this being one thing not two different things.”

The participants identified some cases in which the clustering result could be improved, usu-
ally caused by technical limitations of the dependency analysis in our prototype (see Section 8).
For example, when P4 found a 1-line cluster that should belong to another bigger cluster, the
participant said: “I know it is related, acceleration and volumetric (are related), but looking at
just the syntax it is not, it is not using the same words. Adding check-box to manually merge
selected clusters (could solve this problem)”.

In summary, participants generally agreed that INFOX could identify correct clusters at
certain splitting or joining steps (RQ3). Participants suggested that INFOX could provide more
flexibility for manually refining the clustering result. Even though limited to few participants,
our interviews corroborate the high-accuracy results from our quantitative study in a realistic
setting.

With regard to RQ4 (overview), we looked particularly for signs that developers learned
new insights while exploring the overview. Of the 11 participants, we showed 10 participants
(P2-P11) the overview of forks in their project and eight of them gained different kinds of new
information from the overview page:

• Finding redundant development. Two participants found other forks that are working on
the same feature implementation as they did before. When they found these instances of

70 CHAPTER 5. NEW INTERVENTION: INFOX

redundant development, they explored the fork’s source code. For example, P3 said :“It
does look like somebody did a very simple one-function [...] system. I think they should use
our code, there is great reason to use it.” After skimming the overview page, P4 said: “I
can see multiple forks are working on the similar problem. This one looks like it is adding
[...] that I already added.”

• Find interesting and potentially reusable feature. When skimming all the forks, 6 partic-
ipants identified specific features of interest; For example, P5 expressed “this is all laser
stuff, this is useful.” When participants mentioned something is interesting, we asked them
why. The answers all identify features that are important to the project or that they could
reuse in their own forks, such as P5’s statement “If it is only exists in this fork, then I want
to somehow get this fork into my fork.”

Beyond these specific actionable insights, many participants more generally indicated that
this overview would be useful: By looking at the overview page, our participants found many
forks that they did not know before, and by reading the summary table of each fork, they usually
got the idea of what has happened in each fork. For example, participant P3 said: “It is going to
make it a lot easier to find the things you are looking for as a programmer.” and P6 explained “I
see all the differences for all the forks. Basically it is the same thing I am doing through GitHub,
(but) only it is summarized in the same place, I don’t have to jump and open 50 tabs to do it.”
Participant P7 expressed interest to use the tool for another project he maintained, for which he
always wanted to know what is going on in forks, but was limited by current tools.

Regarding labels for code they did not know, we could observe that they clearly gave some
initial idea to participants and could typically describe what they would expect from the im-
plementation. For example, participant P5 described “the [keywords] give me some clues of
temperature; I know which part of Smoothie is modified.” Overall, all participants thought the
interpretation of keywords is similar to their understanding of the source code.

In summary, even though we interviewed only a small number of participants, we found
frequent and concrete evidence of new insights gained from the overview page, including
redundant development and reusable contributions (RQ4). This is encouraging for the use-
fulness of the approach and its capability to provide actionable insights.

5.5 Related Work
Understanding branches and forks. Conceptually closest to our work is Bird and Zimmer-
man’s analysis of branches at Microsoft, revealing that too many branches can be an issue and
what-if analysis to explore the costs of merging can support decision making [36]. In addition,
several studies have studied forking practices in open source and industrial product line devel-
opment [71, 153, 190, 214]. Those studies have revealed the discussed problems, but did not
provide any solutions.

Untangling code changes. Technically, our work relates to work on untangling code changes.
Originally, untangling code changes was driven by biases in mining repositories and predicting
defects [67, 110]. Barnett et al. [23] proposed CLUSTERCHANGES to decompose tangled code
changes in order to identify independent parts of changes, especially large commits, to facilitate

5.6. DISCUSSION 71

understanding during the code reviewing process. A key assumption is that commits are not
always cohesive and reliable. These approaches often analyze dependencies within a change and
our implementation was inspired by and improves upon CLUSTERCHANGES, as discussed and
evaluated.

Other strategies have been explored to untangle changes, including semantic history slicing
that compares test executions [134, 135], and EpiceaUntangler [67] and Thresher [217] which
interact with developers when committing a change, to encourage more cohesive commits. All
these approaches are less applicable in our setting, as they would require test cases for all added
functionality or upfront clean commits by all developers. In fact, Herzig and Zeller [111] argue
that tangled changes are natural and should not be forbidden; we support this view and build
tooling that extracts features after the fact, but at much larger granularity of differences in forks.

Concern location. Concern location (or concept or feature location) is the challenge of identi-
fying the parts of the source code that correspond to a specific functionality, typically for main-
tenance tasks [178]. Based on a keyword or entry-point, developers or tools attempt to identify
all code relevant for that feature. Concern location typically uses either a static, a dynamic,
or an information-retrieval strategy [68, 239]: Static analyses examine structural information
such as control or data flow dependencies [50, 188], whereas dynamic analyses examine the sys-
tem’s execution [56, 77]. In contrast, information-retrieval-based analyses perform some sort
of search based on keywords [53, 68, 94, 144, 170] with more or less sophisticated natural lan-
guage processing [116, 207]. Combinations of these strategies are common [68]. Our analysis
has similarities with static concern-location approaches, but the setting is different: Instead of
identifying code related to a specific given code fragment in a single code base, we aim at divid-
ing the difference between two snapshots into cohesive code fragments without starting points.
Whereas location usually identifies one concern at a time, we identify multiple features in a fork.
At the same time, if execution traces or external keywords were available, those could likely be
integrated into a clustering process like INFOX.

Code summarization. Finally, there are many approaches to summarize source code [129,
158, 175, 213] using information retrieval to derive topics from the vocabulary usage at the
source code level. So far, we use only a standard lightweight information-retrieval technique to
identify keywords for clusters, but combinations with more advanced summarization strategies
might improve results significantly.

5.6 Discussion
Evidence from both academia and industry shows that current fork-based development is popular
but has many practical problems that can be traced to a lack of transparency. Because develop-
ers do not have an overview of forks of a project, problems like redundant development, lost
contributions and suboptimal forking point arise. To improve the transparency, we designed
an approach to identify features from forks and generate an overview of the project in order to
inform developers of what has happened in each active fork.

72 CHAPTER 5. NEW INTERVENTION: INFOX

INFOX is a first step in making transparent what happens in forks of a project, and it can be
a building block in a larger endeavor to support fork-based development, such that it keeps its
main benefits, such as ease of use and distributed and independent development, while addressing
many of its shortcomings through tool support.

This new transparency, might address problems including lost contributions and redundant
development. All participants in our human subject study had immediate ideas of who might
benefit from such a tool, including “the person who maintains the main branch” [P4] and “it
is super useful for everybody, especially for major main Smoothieware developers”[P6]. In
addition our evaluation has shown that clustering results are accurate (90 % on average) and
labels are meaningful summaries.

At the same time, INFOX is just an initial prototype with technical limitations and many
opportunities for extensions:

• The initial clustering strategy as well as the community-detection algorithm [95] are de-
signed to divide a change into disjoint clusters. Boundaries between features are not always
easy to define and features may overlap or may be split into subfeatures. Exploring other
network analysis techniques to identify overlapped features or sub-features is an interesting
avenue for further research.

• Although our clustering approach achieved high accuracy results, it would be worth to ex-
plore additional information that might provide insights about relationships of code frag-
ments (even if unreliable generally), such as data-flow dependencies, syntactic or structural
similarity between code fragments, code fragments that have been changed together in the
same commit or by the same author. To identify which of these provide useful insights and
which just create more noise.

• While INFOX currently aims at supporting exploration and navigation by summarizing
features, it lays a foundation for future interactive tool support that can refine and persist
features (e.g., for a product-line platform [17, 39, 192]) and support developers in merging
selective changes across forks (e.g., generating pull requests).

5.7 Productization: forks-insight.com
To increase the impact of INFOX, we built a more light-weight and accessible web service –
FORKS INSIGHT (available at: forks-insight.com). The user interface is shown in Fig-
ure 5.9.

FORKS INSIGHT provides facilities to explore unintegrated changes to find opportunities for
reuse, to find inspirations for further development, to potentially connect developers working on
similar topics. It analyzes each active fork of a repository by taking the code change differences
between the latest commit of both the upstream and the fork to get the commits that only exist in
forks, and extracting keywords from corresponding code changes, comments and commit mes-
sages. Users could log in with their GITHUB account and follow the project they are interested
and get an overview of each repository in fork-level granularity. Also, we support key words
searching, which potentially could help to identify interesting features and redundant develop-
ment. Besides, FORKS INSIGHT presents statistical data of unintegrated changes at different
granularities, such as commits, changed files, lines of code.

forks-insight.com

5.8. SUMMARY 73

Figure 5.9: User Interface of FORKS INSIGHT. This example shows searching “cuda” in reposi-
tory of tensorflow/tensorflow.

In addition, FORKS INSIGHT allows users to tag each fork based on their understanding of
the main activity (see the last column in Figure 5.9). As developers fork a repository for different
reasons: adding new features, fixing bugs, and changing configuration, etc [71, 153, 190, 214].
This information could help developers quickly find specific forks they want to explore. We hope
user’s input on tags could not only help themselves maintain and understand each fork, but also
help the whole community, especially for the new users who are not familiar with this repository
to get a better overview.

In order to improve the usability of FORKS INSIGHT, we plan to ask for feedback from open
source developers. And we would like to add more interactive elements and powerful functions
into our tool. There are several directions we are considering to move forward: using more
visualization to show meaningful data; identifying features in forks; summarizing the activities
of forks by natural language.

5.8 Summary
In this chapter, we described our first tooling intervention to improve the awareness of a commu-
nity and generate a better overview of fork-based development mechanism. This is complemen-
tary to the solution described in Chapter 3 – identifying natural interventions that are correlated
collaboration efficiency using fork-based development mechanisms.

To achieve our goal of generating a better overview of forks in a project, we design an ap-
proach INFOX to identify unmerged cohesive code changes (named features) from forks. To
evaluate the effectiveness and usefulness of our tool, we designed both quantitative and qualita-
tive study. To improve the research impact, we developed a lightweight, more user-friendly, and
programming language independent web service forks-insight.com.

74 CHAPTER 5. NEW INTERVENTION: INFOX

Chapter 6

New Intervention: Identifying
Redundancies in Fork-based Development

This chapter shares material with the SANER’19 paper “ Identifying Redundancies in Fork-
based Development” [185].

In previous chapters, we described our solutions to mitigate collaboration inefficiencies when
using fork-based development mechanisms: Identifying natural interventions (Chapter 3) and
designing new interventions (Chapter 5). In this chapter, we demonstrate our second new tooling
intervention design – using public information to address one of the inefficiencies emerged in
fork-based development – redundant development as we described in Chapter 1.

6.1 Motivation
As we described in Chapter 1, unaware of activities in other forks, developers may re-implement
functionality already developed elsewhere. For example, Figure 6.1(a) shows two developers
coincidentally working on the same functionality, where only one of the changes was integrated.1

And Figure 6.1(b) shows another case in which multiple developers submitted pull requests to
solve the same problem.2

A developer we interviewed in the INFOX project (Chapter 5) [249] also confirmed the prob-
lem as follows: “I think there are a lot of people who have done work twice, and coded in
completely different coding style.” Gousios et al. [97] summarized nine reasons for rejected pull
requests in 290 projects on GITHUB, in which 23% were rejected due to redundant development
(either parallel development or superseded other pull requests). In analyzing the fraction of pull
requests rejected due to redundancies over 1311 GITHUB projects (described in Chapter 1 and
3), we found that redundant development is a small but pervasive problem: about 1–5 % of all
pull requests and 5–50 % of rejected pull requests (shown in Figures 1.3c).

Existing work shows that redundant development significantly increases the maintenance ef-
fort for maintainers [71, 214]. Specifically, Yu et al. manually studied pull requests from 26

1https://github.com/foosel/OctoPrint/pull/2087
2https://github.com/BVLC/caffe/pull/6029

75

https://github.com/foosel/OctoPrint/pull/2087
https://github.com/BVLC/caffe/pull/6029

76 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

(a) Two developers work on same functionality

(b) Multiple developers work on same functionality

Figure 6.1: Pull requests rejected due to redundant development.

popular projects on GITHUB, and found that on average 2.5 reviewers participated in the review
discussions of redundant pull requests and 5.2 review comments were generated before the du-
plicate relation is identified [245]. Also, Steinmacher et al. [212] analyzed quasi-contributors
whose contributions were rejected from 21 GITHUB projects and found that one-third of the
developers declared the nonacceptance demotivated them from continuing to contribute to the
project.

Facing this problem, the goal of our research is (1) to help project maintainers to automati-
cally identify redundant pull request order to decrease the workload of reviewing redundant code
changes, and (2) to help developers detect redundant development as early as possible by compar-
ing code changes with other forks in order to eliminate wasted effort and encourage developers
to collaborate.

To achieve our goal, we first identify clues that indicate a pair of code changes might be sim-
ilar by manually checking 45 duplicate pull request pairs. Then we design measures to calculate
the similarity between changes for each clue. Finally, we treat the list of similarities as features
to train a classifier in order to predict whether a pair of changes is a duplicate (Research method
is shown in Figure 6.3).

We evaluate the effectiveness of our approach from different perspectives, which align with
the application scenarios introduced before for our bot: (1) helping project maintainers to identify
redundant pull requests in order to decrease the code reviewing workload, (2) helping developers
to identify redundant code changes implemented in other forks in order to save the development
effort, and encouraging collaboration. In these scenarios, we prefer high precision and could live
with moderate recall, because our goal is to save maintainers’ and developers’ effort instead of
sending too many false warnings. Sadowski et al. found that if a tool wastes developer time with
false positives and low-priority issues, developers will lose faith and ignore results [194]. We
argue that as long as we show some duplicates without too much noise, we think it is a valuable
addition. The result shows that our approach could achieve 57–83% precision for identifying
duplicate pull requests from the maintainer’s perspectives within a reasonable threshold range

6.2. APPLICATION SCENARIOS 77

Figure 6.2: Duplicate Pull Request Detector: A GitHub Bot

(details in Section 6.5). Also, our approach could help developers save 1.9–3.0 commits per pull
request on average . We also compared our approach to the state-of-the-art showing that we could
outperform the state-of-the-art by 16–21% recall. Finally, we conducted a sensitive analysis to
investigate how sensitive our approach is to different kinds of clues in the classifier.

6.2 Application Scenarios
Our approach could be applied to different scenarios to help different users. Primarily, we envi-
sion a GITHUB bot (shown in Figure 6.2) to monitor the incoming pull request in a repository
and compare the new pull request with all the existing pull requests in order to help project
maintainers to decrease their workload. The bot would automatically send warnings when a du-
plication is detected to send warnings when duplicate development is detected, and this could
assist maintainers’ and contributors’ work in open source projects as Wessel et al. described
[236].

In addition to monitor incoming pull request for each project, we envision a bot to monitor
forks and branches, and compare the commits with other forks and with existing pull requests,

78 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

in order to help developers detect early duplicate development. Researchers have found that
developers think it is worth spending time checking for existing work to avoid redundant devel-
opment, but once they start coding a pull request, they never or rarely communicate the intended
changes to the core team [100]. We believe it is useful to inform developers when potentially
duplicate implementation is happening in other forks, and encourage developers to collaborate
as early as possible instead of competing after submitting the pull request. Also, we could build
a plug-in for a development IDE, so we could detect redundant development in real time.

6.3 Research Method
To achieve our goal, we design a 4-step research method (shown in Figure 6.3). First, we identify
clues that indicate a pair of code changes might be similar by manually checking 45 duplicate
pull request pairs. Then we design measures to calculate the similarity between changes for each
clue. Finally, we treat the list of similarities as features to train a classifier in order to predict
whether a pair of changes is a duplicate. Our dataset and the source code are available online.3

Manually analyze
duplicate PRs

ML predicting
redundancies

Developing clues
as indicators

Operationalization

Figure 6.3: Research Method of Identifying Redundancies in Forks.

6.3.1 Identifying Clues to Detect Redundant Changes
We refer to changes when developers make code changes in a project. There are different gran-
ularities of changes, such as pull requests, commits, or fine-grained code changes in the IDE
(Integrated Development Evironment). In this section, we show how we extracted clues that
indicate the similarity between pull requests. Although we use pull requests to demonstrate the
problem, note that the examples and our approach are generalizable to different granularities of
changes: For example, we could detect redundant pull requests for an upstream repository, re-
dundant commits in branches or forks, or redundant code changes in IDEs (detailed application
scenarios are described in Sec. 6.2).

3https://github.com/shuiblue/INTRUDE-refactor

https://github.com/shuiblue/INTRUDE-refactor

6.3. RESEARCH METHOD 79

Next, we present two motivating examples of duplicate pull requests from GITHUB to moti-
vate the need for using both natural language and source code related information in redundant
development detection.

Case 1: Similar Text Description but Different Code Changes

We show a pair of duplicate pull requests that are both fixing the bug 828266 in the mozilla-
b2g/gaia repository in Figure 6.4. Both titles contained the bug number, copied the title of the
bug report, and both descriptions contain the link to the bug report. It is straightforward to
detect duplication by comparing the referred bug number, and calculating the similarity of the
title and the description. However, if we check the source code,4 the solutions for fixing this
bug are different, although they share two changed files. Maintainers would likely benefit from
automatic detection of such duplicates, even if they don’t refer to a common bug report. It could
also prevent contributors from submitting reports that are duplicates, lowering the maintenance
effort.

Case 2: Similar Code Changes but Different Text Description

We show a pair of duplicate pull requests that implement similar functionality for project mozilla-
b2g/gaia in Figure 6.5. Both titles share words like ‘Restart(ing)’ and ‘B2G/b2g’, and both did
not include any other textual description beyond the title. Although one pull request mentioned
the bug number, it is hard to tell whether these two pull requests are solving the same problem
by comparing the titles. However, if we include the code change information, it is easier to find
the common part of the two pull requests: They share two changed files, and the code changes
are not identical but very similar except the comments at Line 8 and the code structure. Also,
they changed the code in similar locations.

6.3.2 Clues for Duplicate Changes
We might consider existing techniques for clone detection [27], which aim to find pieces of
code of high textual similarity on Type 1-3 clones in a system but not textual descriptions [191].
However, our goal is not to find code blocks originating from copy-paste activities, but code
changes written independently by different developers about the same functionality due to a lack
of an overview in the fork-based development environment, which is conceptually close to the
Type-4 clones [191], meaning two code changes have function similarity but they are different in
syntax.

Similarly, we have considered existing techniques for detecting duplicate bug reports [120,
142, 174, 208, 233, 248], which compare textual descriptions but not source code. Different from
the scenarios of clone detection and detecting duplicate bug reports, for detecting duplicate pull
requests we have both textual description and source code, including information about changed
files and code change locations. Thus we have additional information that we can exploit, and
have opportunities to detect duplicate changes more precisely. Therefore, we seek inspiration

4https://github.com/mozilla-b2g/gaia/pull/7587/files
https://github.com/mozilla-b2g/gaia/pull/7669/files

https://github.com/mozilla-b2g/gaia/pull/7587/files
https://github.com/mozilla-b2g/gaia/pull/7669/files

80 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

Bug 828266: [email] black flash / email flickers
when transitioning from list to email and
back #7669

Same bug
Same title

Bug 828266 - [email] black flash / email flickers
when transitioning from list to email and
back #7587

Same
Changed

files

Figure 6.4: Screenshot - Duplicate pull requests with similar text information

6.3. RESEARCH METHOD 81

Same

Changed

files

Overlapped

Code

location

Similar keywords

Restarting B2G before running tests, unlock screen

improvements #21295

Bug 1027232 - Restart b2g at each app. Wait for

the homescreen to be ready #20806

Figure 6.5: Screenshot - Duplicate pull requests with similar code change information

82 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

from both lines of research, but tailor an approach to address the specific problem of detecting
redundant code changes across programming languages and at scale.

To identify potential clues that might help us to detect if two changes are duplicates, we
randomly sampled 45 pull requests that have been labeled as duplicate on GITHUB from five
projects using (the March 2018 version of) GHTorrent [96]. For each, we manually search for the
corresponding pull request that the current pull request is duplicate with. We then went through
each pair of duplicate pull requests and inspected the text and code change information to extract
clues indicating the potential duplication. We iteratively refined the clues until analyzing more
duplicate pairs yielded no further clues.

Based on this manual inspection result, neither text information or code change information
was always superior to the other in all cases. Text information represents the external goal
and summary of the changes by developers, while the corresponding code change information
explicitly describes the internal behavior. Thus, using both kinds of information can make it
possible to detect redundant development precisely. Comparing to previous work [136], which
detects duplicate pull requests by calculating the similarity only of title and description, our
approach considers multiple facets of both the text information and the code change information.

We summarize the clues characterizing the content of a code change, which we will use to
calculate change similarity:

• Change description is a summary of the code changes written in natural language. For
example, a commit has commit messages and a pull request contains title and description.
Similar titles lead to a strong indicator that these two code changes are solving a similar
problem. The description contains more detailed information of what kind of issue the
current code changes are addressing, and how. If the descriptions of the two code changes
are similar in terms of meaningful keywords, there is a higher chance that they are imple-
menting the same functionality. However, textual description alone might be insufficient,
as Figure 6.4 shows.

• Reference to issue tracker is a common practice that developers explicitly link the code
change to an existing issue or feature request in the issue tracker (as shown in Figure 6.4.
If both code changes reference the same issue, it is likely redundant, except for cases in
which the two developers intended to have two solutions to further compare.

• Patch content is the differences of text changes in each file by running ’git diff’ command.
The content could be source code written in different programming languages or comments
from source code files or could be plain text from non-code files. We found (when inspect-
ing redundant development) that developers often share keywords when defining variables
and functions so that extracting representative keywords from each patch could help us
identify redundant changes more precisely compared to only using textual description (as
shown in Figure 6.5).

• A list of changed files contains all the changed files in the patch. We assume that if
two patches share the same changed files, there is a high chance that they are working on
similar or related functionality. For example, in Figure 6.5, both pull requests changed the
helper.js and perf.js files.

• Code change location is a range of changed lines in the corresponding changed files. If
the code change location of two patches are overlapping, there is a potential that they are
redundant. For example, in Figure 6.5, two pull requests are both modifying helper.js lines

6.4. IDENTIFYING DUPLICATE CHANGES IN FORKS 83

Table 6.1: Clues and corresponding machine learning features

Clue Feature for Classifier Value

Change description
Title_similarity [0,1]
Description_similarity [0,1]

Patch content
Patch_content_similarity [0,1]
Patch_content_similarity_on_

[0,1]
overlapping_changed_files

Changed files list
Changed_files_similarity [0,1]
#Overlapping_changed_files N

Location of code changes
Location_similarity [0,1]
Location_similarity_

[0,1]
on_overlapping_changed_files

Reference to issue tracker Reference_to_issue_tracker {-1, 0, -1}

8–22, which increases the chance that the changes might be redundant.

6.4 Identifying Duplicate Changes in Forks
Our approach consists of two steps: (1) calculating the similarity between a pair of changes for
each clue listed previously; (2) predicting the probability of two code changes being duplicate
through a classification model using the similarities of each clue as features.

As our goal is to find duplicate development caused by unawareness of activities in other
forks, we first need to filter out pull request pairs in which the authors are aware of the existence
of another similar code change by checking the following criteria:

• Code changes are made by the same author; or
• Changes from different authors are linked on GITHUB by authors, typically used when

one is a following work of the other, or one is intended to supersede the other with a better
solution; or

• The later pull request is modifying the code on top of the earlier merged pull request.

6.4.1 Calculating Similarities for Each Clue
We calculate the similarity of each clue as features to train the machine learning model. Table 6.1
lists the features.

Change Description. To compare the similarity of the description of two changes, we first
preprocess the text through tokenization and stemming. Then we use the well-known Term Fre-
quency Inverse Document Frequency (TF-IDF) scoring technique to represent the importance of
each token (its TF-IDF score), which increases proportionally to the number of times a word
appears in the feature’s corpus but is offset by the frequency of the word in the other feature’s

84 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

Figure 6.6: Calculating similarity for description / patch content

corpora [197]. The TF-IDF score reflects the importance of a token to a document; tokens with
higher TF-IDF values better represent the content of the document. For example, in Figure 6.5,
the word ’LockScreen’ appears many times in both pull requests, but does not appear very of-
ten in the other parts of the project, so the ’LockScreen’ has a high TF-IDF score for these pull
requests.

Next, we use Latent Semantic Indexing (LSI) [130] to calculate similarity between two
groups of tokens, which is a standard natural language processing technique and has been proved
to outperform other similar algorithms on textual artifacts in software engineering tasks [49, 177].
Last, we calculate the cosine similarity of two groups of tokens to get a similarity score (see Fig-
ure 6.6).

Patch Content. We compute the token-based difference between the previous and current ver-
sion of the file of each change, e.g. if original code is func(argc1, argc2), and updated version
is func(argc1, argc2, argc3), we only extract argc3 as the code change. We do not distinguish
source code, in-line comments, and documentation files, we treat them uniformly as source code,
but assume the largest portion is source code.

In order to make our approach programming languages independent, we treat all source code
as text. So we use the same process as code change description to calculate the similarity, ex-
cept we replace LSI by Vector Space Model (VSM), shown in Figure 6.6, because VSM works
better in case of exact matches while LSI retrieves relevant documents based on the semantic
similarity [49].

However, this measure has limitations. When a pull request is duplicate with only a subset
of code changes in another pull request, the similarity between these two is small, which makes
it harder to detect duplicate code changes. During the process of manually inspecting duplicate
pull request pairs (Section 6.3.1), we found there are 28.5% pairs where one pull request is five
times larger than the other at the file level. To solve this problem, we add another feature as the
similarity of patch content only on overlapping files.

Changed Files List. We operationalize the similarity of two lists of files into computing the
overlap between two sets of files by using Jaccard similarity coefficient: J(A,B) = |A∩B|

|A∪B| (A and
B are two sets of elements). The more overlapping files two changes have, the more similar they
are. As Figure 6.7 shows, PR1 and PR2 have modified 2 files each, and both of them modified
File1, so the similarity of the two lists of files is 1/3.

6.4. IDENTIFYING DUPLICATE CHANGES IN FORKS 85

Figure 6.7: Similarity of changed files and code change location (loc: Lines of code).

Again, in case that one pull request is much bigger than the other in terms of changed files,
which leads to a small ratio of overlapping files, we add a feature defined as the number of
overlapping files.

Location of Code Changes We calculate the similarity of code change location by comparing
the size of overlapping code blocks between a pair of changes. The more overlapping blocks
they have, the more similar these two changes are. In Figure 6.7, block A overlaps with block D
in File1. We define the Location similarity as the length of overlapping blocks divided by length
of all the blocks.

Similar to our previous concern, in order to catch redundant changes between big and small
size of patches in file level, we define a feature of similarity of code change location for only
overlapping files. For example, in Figure 6.7, block A, B and D belong to File1, but block C and
E belong to different files, so the measure of Location similarity on overlapping changed files
only consider the length of block A, B and D.

Reference to Issue Tracker. Based on our observation, we found that if two changes link to
the same issue, they are very likely duplicates, while, if they link to different issues, our intuition
is that the chance of the changes to be duplicate is very low. So we defined a feature as reference
to issue tracker. For projects using the GITHUB issue tracker, we use the GITHUB API to extract
the issue link, and, for projects using other issue tracking systems (as Figure 6.4 shows), we
parse the text for occurrences from a list of patterns, such as ‘BUG’, ‘ISSUE’,‘FR’ (short for
feature request). We define three possible values for this feature: If they link to the same issue,
the value is 1; if they link to different issues, the value is -1; otherwise it is 0.

6.4.2 Predicting Duplicate Changes Using Machine Learning
The goal is to classify a pair of changes as duplicate or not. We want to aggregate these nine
features and make a decision. Since it is not obvious how to aggregate and weigh the features, we
use machine learning to train a model. There are many studies addressing the use of different ma-
chine learning algorithms for classification tasks, such as support vector machines, AdaBoost, lo-
gistic regressions, neural network, decision Trees, random forest, and k-Nearest Neighbor [121].
In this study, in order to assess the performance of these techniques for our redundancy detection
problem, we have conducted a preliminary experimental study. More specifically, we compared

86 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

the performance of six algorithms based on a small set of subject projects. We observed that the
best results were obtained when AdaBoost [88] was used. Therefore, we focused our efforts only
on AdaBoost, but other techniques could be easily substituted. Since the output of AdaBoost al-
gorithm is a probability score whether two changes are duplicate, we set a threshold and report
two changes as duplicate when the probability score is above the threshold.

6.5 Evaluation: Effectiveness
We evaluate the effectiveness of our approach from different perspectives, which align with the
application scenarios introduced in Sec. 6.2: (1) helping project maintainers to identify redundant
pull requests in order to decrease the code reviewing workload, (2) helping developers to identify
redundant code changes implemented in other forks in order to save development effort. To
demonstrate the benefit of incorportating multiple clues, we compared our approach to the state-
of-the-art that uses textual comparison only. Finally, beyond just demonstrating that our specific
implementation works, we explore the relative importance of our clues with a sensitivity analysis,
which can guide other implementations and future optimizations. Thus, we derived four research
questions:

• RQ1: How accurate is our approach to help maintainers identify redundant pull requests?
• RQ2: How much effort could our approach save for developers in terms of commits?
• RQ3: How good is our approach identifying redundant pull requests comparing to the

state-of-the-art?
• RQ4: Which clues are important to detect duplicate changes?

6.5.1 Dataset
To evaluate approaches, an established ground truth is needed—a reliable data set defining which
changes are duplicate. In our experiment, we used an established corpus named DupPR, which
contains 2323 pairs of duplicate pull requests from 26 popular repositories on GITHUB [245] (Ta-
ble. 6.2). We picked half of the Duppull request dataset, which contains 1174 pairs of duplicate
pull requests in twelve repositories as the positive samples in the training dataset (highlighted)
to calibrate our classifier (see Sec. 6.4.2), and the remaining 1149 pairs from 14 repositories as
testing dataset.

While this dataset provides examples of duplicate pull requests, it does not provide negative
cases of pull request pairs that are not redundant (which are much more common in practice [97]).
To that end, we randomly sampled pairs of merged pull requests from the same repositories, as
we assume that if two pull requests are both merged, they are most likely not duplicate. Overall,
we collected 100,000 negative samples from the same projects, 50,000 for training, and 50,000
for testing.

6.5. EVALUATION: EFFECTIVENESS 87

Table 6.2: subject projects and their duplicate PR pairs.

Repository #Forks #PRs #DupPR pairs Language

symfony/symfony 6446 16920 216 PHP
kubernetes/kubernetes 14701 38500 213 Go
twbs/bootstrap 62492 8984 127 CSS
rust-lang/rust 5222 26497 107 Rust
nodejs/node 11538 12828 104 JavaScript
symfony/symfony-docs 3684 7654 100 PHP
scikit-learn/scikit-learn 15315 6116 68 Python
zendframework/zendframework 2937 5632 53 PHP
servo/servo 1966 12761 52 Rust
pandas-dev/pandas 6590 9112 49 Python
saltstack/salt 4325 29659 47 Python
mozilla-b2g/gaia 2426 31577 38 JavaScript

rails/rails 16602 21751 199 Ruby
joomla/joomla-cms 2768 13974 152 PHP
angular/angular.js 29025 7773 112 JavaScript
ceph/ceph 2683 24456 104 C++
ansible/ansible 13047 24348 103 Python
facebook/react 20225 6978 74 JavaScript
elastic/elasticsearch 11859 15364 62 Java
docker/docker 14732 18837 61 Go
cocos2d/cocos2d-x 6587 14736 57 C++
django/django 15821 10178 55 Python
hashicorp/terraform 4160 8078 52 Go
emberjs/ember.js 4041 7555 46 JavaScript
JuliaLang/julia 3002 14556 42 Julia
dotnet/corefx 4369 17663 30 C#

* The upper half projects (highlighted) are used as training dataset,
and lower half projects are used as testing dataset.

6.5.2 Analysis and Results
RQ1: How accurate is our approach to help maintainers identify redundant contributions?

In our main scenario, we would like to notify maintainers when a new pull request is duplicate
with existing pull requests, in order to decrease their workload of reviewing redundant code
changes (e.g., a bot for duplicate pull request monitoring). So we simulate the pull request
history of a given repository, compare the newest pull request with all the prior pull requests, and
use our classifier to detect duplication: If we detect duplication, we report the corresponding pull
request number.

Research method. We use the evaluation set of the Duppull request dataset as ground truth.
However, based on our manual inspection, we found the dataset is incomplete, which means it

88 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

Table 6.3: RQ1: Simulating PR history

PR
history

Our_result DupPR
Manual

checking
Warning

correctness

1 - ?
2 - ?
3 - ?
4 2 2 X
5 - ?
6 5 ? 5 X
7 - ?
8 - 6
9 4 ? 7 7

Ground Truth
does not cover all the duplicate pull requests for each project. This leads to several problems.
First, when our approach detects a duplication but the Duppull request does not cover the case,
the precision value is distorted. To address this problem, we decided to manually check the
correctness of the duplication warnings; in another word, we complement Duppull request with
manual checking result as ground truth (shown in Table 6.3). Second, it is unrealistic to manually
identify all the missing pull request pairs in each repository, so we decided to randomly sample
400 pull requests from each repository for computing precision.

Table 6.3 illustrates our replay process. The PR_history column shows the sequence of the
coming pull requests, our_result column is our prediction result, for example, we predict 4 is
duplicate with 2, and 6 is duplicate with 5, and 9 is duplicate with 4; DupPR column shows that
2 and 4 are duplicate, and 8 and 6 are duplicate; the manual_checking column shows that the first
2 authors manually checked and confirmed 5 and 6 are duplicate, and 9 and 4 are not duplicate.
The warning correctness shows that the precision of this example is 2/3.

For calculating recall, we use a different dataset because even for 400 pull requests per
project, we need to manually check a large number of pull requests in order to find all the dupli-
cate pull request pairs, which is very labor intensive. Thus, we only use the evaluation section
of the Duppull request dataset (lower half of Table. 6.2) to run the experiment, which contains
1149 pairs of confirmed duplicate pull requests from 14 repositories.

Result. Figure 6.8 shows the precision and recall at different thresholds. We argue that within
a reasonable threshold range of 0.5925–0.62, our approach achieved 57-83% precision and 10-
22% recall. After some experiments, we pick a reasonable default threshold of 0.6175, where
our approach achieves 83% precision and 11% recall (dash line in Figure 6.8). Tables 6.4 and
6.5 show the corresponding precision and recall for each the project separately at the default
threshold.

We did not calculate the precision for lower threshold because when the threshold gets lower,
the manual check effort becomes infeasible. Here we argue that a higher precision is more
important than recall in this scenario, because our goal is to decrease the workload of maintainer,
so that we hope all the warnings that we send to them are mostly correct, otherwise, we will waste

6.5. EVALUATION: EFFECTIVENESS 89

Table 6.4: RQ1, precision at default threshold

Repository TP / TP + FP Precision

django/django 5 / 5 100%
facebook/react 3 / 3 100%
hashicorp/terraform 3 / 3 100%
ansible/ansible 2 / 2 100%
ceph/ceph 2 / 2 100%
joomla/joomla-cms 2 / 2 100%
docker/docker 1 / 1 100%
cocos2d/cocos2d-x 6 / 7 86%
rails/rails 5 / 6 83%
angular/angular.js 3 / 4 75%
dotnet/corefx 2 / 3 67%
emberjs/ember.js 2 / 4 50%
elastic/elasticsearch 1 / 2 50%
JuliaLang/julia 1 / 2 50%
Overall 38 / 46 83%

their time to check false positives. In the future, it would be interesting to interview stakeholders
or design experiment with real intervention to see acceptable levels about the acceptance rate
of false positives in the real scenario, so we could allow users to set the threshold for different
tolerance rate of false positives.

Figure 6.8: RQ1: Precision & Recall at different thresholds, dashed line shows the default thresh-
old

RQ2: How much effort could our approach save for developers in terms of commits?

The second scenario focuses on developers. We would like to detect redundant development
as early as possible to help reduce the development effort. A hypothetical bot monitors forks
and branches and compares un-merged code changes in forks against pending pull requests and
against code changes in other forks.

90 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

Table 6.5: RQ1, recall at default threshold

Repository TP / TP + FN Recall

ceph/ceph 31 / 104 30%
django/django 14 / 55 25%
hashicorp/terraform 8 / 52 15%
elastic/elasticsearch 7 / 62 11%
cocos2d/cocos2d-x 6 / 57 11%
rails/rails 20 / 199 10%
docker/docker 6 / 61 10%
angular/angular.js 11 / 112 10%
joomla/joomla-cms 12 / 152 8%
ansible/ansible 7 / 103 7%
emberjs/ember.js 3 / 46 7%
facebook/react 3 / 74 4%
JuliaLang/julia 0 / 42 0%
dotnet/corefx 0 / 30 0%
Overall 128 / 1149 11%

Research Method. To simulate this scenario, we replay the commit history of a pair of du-
plicate pull requests. As shown in Figure 6.9, when there is a new commit submitted, we use
the trained classifier to predict if the two groups of existing commits from each pull request are
duplicate.

Figure 6.9: Simulating commit history of a pair of pull requests. If PR1 is duplicate with PR2,
we first compare commit 1 and 5, if we do not detect duplication, then we compare 1 and (5,6),
and so on. If we detect duplication when comparing (1, 2, 3) with (5, 6), then we conclude that
we could save developers of PR1 one commit of effort or PR2 two commits.

We use the same testing dataset as described in Sec. 6.5.1). We calculate the number of
commits to represent the saved development effort because number of commits and lines of
added/modified code are highly correlated [229]. Since we are checking if our approach could
save developers’ effort in terms of commits, we first need to filter out pull request pairs that
have no chance to predict the duplication early. For instance, two pull requests both contain only
one commit, or the later pull request has only one commit. After this filtering, the final dataset
contains 408 positive samples and 13,365 negative samples.

6.5. EVALUATION: EFFECTIVENESS 91

(a) Distribution for prediction result on positive data (duplicate pull request pairs)

(b) False positive rate

(c) Saved #commits per pull request

Figure 6.10: RQ2: Can we detect duplication early, how much effort could we save in terms of
commits, and corresponding false positive rate at different threshold

Result. Based on the classification result, we group the pairs of duplicate pull requests (positive
dataset) into three groups: Duplicate detected early, duplication detected in the last commit, and
duplication not detected. In addition, we check how much noise our approach introduces, we
calculate the number of false positive cases among all the 13,365 negative cases, and get the
false positive rate.

We argue that within a reasonable threshold range of 0.52–0.56, our approach achieved
46–71% recall (see Figure 6.10(a)), with 0.07–0.5% false positive rate (see Figure 6.10(b)).
Also, we could save 1.9–3.0 commits per pull request within the same threshold range (see

92 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

Figure 6.10(c)).5

RQ3: How good is our approach identifying redundant pull requests comparing to the
state-of-the-art?

Research Method. Yu et al. proposed an approach to detect duplicate pull requests with the
same scenario as we described in RQ1 [136], that is, for a given pull request, identifying duplicate
pull requests among other history pull requests. However, there are three main differences be-
tween their approach and ours: (1) they calculate the textual similarity between a pair of pull re-
quests only on title and description, while we consider patch content, changed files, code change
location, and reference to issue tracking system when calculating similarities (9 features) (see
Sec. 6.3.1); (2) their approach returns top-K duplicate pull requests among existing pull requests
by ranking them by arithmetic average of the two similarity values, while our approach reports
duplication warnings only when the similarity between two pull requests is above a threshold;
(3) they get the similarity of two pull requests by calculating the arithmetic average of the two
similarity values, while we adopt a machine learning algorithm to aggregate nine features.

We argue that for this scenario, our goal is to decrease maintainers’ workload for reviewing
duplicate pull requests, instead of assuming maintainers periodically to go through a list of po-
tential duplicate pull request pairs. In our solution, we therefore also prefer high precision over
recall. But in order to make our approach comparable, we reproduced their experimental setup
and reimplemented their approach, even though it does not align with our goal.

Research Method. We follow their evaluation process by computing recall-rate@k, as per the
following definition:

recall-rate@k =
Ndetected

Ntotal
(6.1)

Ndetected is the number of pull requests whose corresponding duplicate one is detected in the
candidate list of top-k pull requests, Ntotal is the total number of pairs of duplicate pull requests
for testing. It is the ratio of the number of correctly retrieved duplicates divided by the total
number of actual duplicates. The value of k may vary from 1 to 30, meaning the potential k
duplicates.

Result. As shown in Figure 6.11, our approach achieves better results than the state-of-the-art
by 16–21% recall-rate@k. The reason is that we considered more features and code change in-
formation when comparing the similarity between two changes. Also, we use a machine learning
technique to classify based on features.

RQ4: Which clues are important to detect duplicate changes?

We aim to understand the clues that influence the effectiveness of our approach. Specifically, we
investigate how sensitive our approach is to different kinds of clues in the classifier.

5Comparing to RQ1 scenario, we set a lower default threshold in this case, and we argue that developers of forks
are more willing to inspect activities in other forks [100, 249]. But again, in the future, we would give developers
the flexibility to decide how many notifications they would like to receive.

6.5. EVALUATION: EFFECTIVENESS 93

Figure 6.11: RQ3: How good is our approach identifying redundant pull requests comparing to
the state-of-the-art?

Research Method. We design this experiment on the same scenario as RQ1, which is helping
maintainers to detect duplication by comparing new pull request with existing pull requests from
each project as testing dataset (see Sec. 6.5.2). However, we used a smaller testing dataset of 60
randomly sampled pull requests, because for calculating precision we need to manually check
the detected duplicate pull request pairs every time, which is labor intensive.

We trained the classifier five times, and we removed one clue each time. So the combined
absolute values of features change every time in the classifier’s sum. This means that using a
single cut-off thresholds for all the rounds does not make sense – the measured objective function
changes all the time. Therefore, we pick the threshold for each model such that it produces a
given recall (20%) and compare precision at that threshold.

Figure 6.12: RQ4: Sensitive analysis, removing one clue at a time. Precision at recall fixed at
20%

Result. Figure 6.12 shows that when considering all the clues, the precision is the highest
(64.3%). Removing the clue of patch content affects precision the most, which leads to 35.3%
precision, and removing the text description has the least effect (63.6% precision). The result
shows that patch content is the most important clue in our classifier, which likely explains the
improvement in RQ3 as well. In the future, we could also check the sensitivity for each feature,
or different combinations.

94 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

6.6 Related Work
Duplicate Pull Request Detection. Li et al. proposed an approach to detect duplicate pull
requests by calculating the similarity on title and description [136], which we used as baseline
to compare with (Sec 6.5.2). Different from their approach, we considered both textual and
source code information, used a machine learning technique classify duplicates, and evaluated
our approach in scenarios from the maintainer’s and developer’s perspectives. Later, Yu et al.
created a dataset of duplicate pull request pairs [245], which we have used as part of our ground
truth data.

Zhang et al. analyzed pull requests with a different goal: They focused on competing pull
requests that edited the same lines of code, which would potentially lead to merge conflicts [241],
which is roughly in line with the merge conflicts prediction tool Palantír [202] and Crystal [43].
Even though we also look at change location, we focus on a broader picture: We detect redundant
(not only conflicting) work, and encourage early collaboration. In the future, we could report
conflicts since we already collect the corresponding data as one feature in the machine learning
model.

Duplicate Bug Report Detection. We focus on detecting duplicate pull requests, but there
have been other techniques to detect other forms of duplicate submissions, including bug reports
[29, 114, 174, 193, 208, 233] and StackOverflow questions [16]. On the surface, they are simi-
lar because they compare text information, but the types of text information is different. Zhang
et al. [246] summarized related work on duplicate-bug-report detection. Basically, existing ap-
proaches are using information retrieval to parse different types of resource separately, such as
natural-language [114, 193, 216], execution information [174, 208]. Further, Wang et al. [233]
combined execution information with natural language information to improve the precision of
the detection. Beyond information retrieval, duplicate bug-report classification [119] and the
Learn To Rank approach were also used in duplicate detection [141, 247]. In contrast, our ap-
proach focuses on duplicate implementations for features or bug fixing, where we can take the
source code into account.

Clone Detection. Our work is similar to the scenario of detecting Type-4 clones: Two or more
code fragments that perform the same computation but are implemented by different syntactic
variants [191]. We, instead, focus on detecting work of independent developers on the same fea-
ture or bug fix, which is a different, somewhat more relaxed and broader problem. Researchers
investigated different approaches to identify code clones [27]. There are a few approaches at-
tempting to detect pure Type-4 clones [92, 123, 124], but these techniques have been imple-
mented to only detect C clones, which are programming language specific. Recently, researchers
started to use machine learning approaches to detect clones [195, 206, 221, 228] including Type-
4 clones. Different from the scenario we proposed in this paper, clone detection uses source code
only, while we also consider textual description of the changes. So we customize the clone detec-
tion approaches and applied them in a different scenario, that is identifying redundant changes in
forks. As a future direction, it would be interesting to integrate and evaluate more sophisticated
clone detection mechanisms as a similarity measure for the patch content clue in our approach.

6.7. SUMMARY 95

6.7 Summary
In this chapter, we presented our second tooling intervention to address the inefficiencies of
redundant development in fork-based development environment. This is complementary to other
solutions described before (Chapter 3 and 5), and see thesis overview in Figure 1.1.

To achieve our goal, we design an approach to extract clues of similarity between code
changes and train a machine learning model to predict redundant code changes as early as pos-
sible. We evaluated the effectiveness from both the maintainer’s and the developer’s perspec-
tives. The result shows that we achieve 57–83% precision for detecting duplicate code changes
from maintainer’s perspective, and we could save developers’ effort of 1.9–3.0 commits on aver-
age. Also, we show that our approach significantly outperforms existing state-of-art and provide
anecdotal evidence of the usefulness of our approach from both maintainer’s and developer’s
perspectives.

To summarize, we contribute (a) an analysis of the redundant development problem, (b) an
approach to automatically identify duplicate code changes using natural language processing and
machine learning, (b) clues development for indicating redundant development, beyond just title
and description, (c) evidence that our approach outperforms the state-of-the-art, and (d) anec-
dotal evidence of the usefulness of our approach from both the maintainer’s and the developer’s
perspectives.

96 CHAPTER 6. NEW INTERVENTION: IDENTIFYING REDUNDANCIES

Chapter 7

Future Work

This section describes two future research directions based on this thesis, including keeping on
improving the collaboration efficiency for distributed software development (Section 7.1) and
exploring other forms of collaboration, such as in interdisciplinary software teams (Section 7.2).

7.1 Improving coordination capability in fork-based develop-
ment

The findings from the studies described previous chapters suggest research and tooling oppor-
tunities for improving fork-based development mechanism, such as assisting in finding rele-
vant artifacts, finding potential collaborators, and diagnosing particular kinds of interactions in
projects [106] as shown in Figure 7.1.

Identifying Lost Contribution in Forks. As described in Section 1, when the number of forks
increases, it is hard for developers to maintain an overview in the community. This would further
lead to problems like lost contribution and suboptimal forking point. In addition, the evaluation
result of INFOX (see Section 5.4) confirmed that there exist potentially reusable features in other
forks, but there is no way to find out based on current tool support. For example, one of our
interviewees found a fork he/she has not seen before, and said: “If it only exists in this fork, then
I want to somehow get this fork into my fork.” This motivates us to identify lost contributions in
forks, help developers find features of interests and enhance collaboration.

We will use the information of unmerged code changes of forks (which is the output of
INFOX) as input, and identify pairs of forks that have similar/related code changes by calculating
the similarity. As we have built forks-insight.com [184], and it already stored unmerged code
summary of forks of many GITHUB projects. We will calculate the similarity between two forks
to see if their code changes are similar (such as changing the same files, implementing the same
features, testing the same configuration). Once we found a pair of forks that are potentially
related, we will send out an email to inform two fork owners that there exists a fork that is
potentially feature of interests.

We will evaluate the effectiveness and usefulness of our approach by asking To what extent
do developers agree with our detection result? Can our approach help developers to find the

97

98 CHAPTER 7. FUTURE WORK

Identifying Feature

Identifying Redundancies

Identifying Best Practices

Natural Intervention

New Intervention

Identifying Lost Contribution

Identifying Relevant People

Facilitating Particular Interactions

Insufficient
Coordination Capability

Lost Contribution

Redundant Development

Fragmented Community

Lack of Overview

Social Fork
Hard Fork

Effectiveness
Usefulness

Effectiveness
Usefulness

Effectiveness
Usefulness

Problem Solution Analysis/Evaluation

Future Work

Thesis

Figure 7.1: Future work: Improving coordination capability in fork-based development (Exten-
sion of Figure 1.1.

contributions they are interested in? Can our approach enhance collaboration between devel-
opers? We would like to conduct a user study. Once we detect related fork activities, we will
reach out to corresponding fork owners, and present our prediction result to them, then we will
track their activities to see if it does help them to collaborate. We will ask for their feedback and
see if there are any actionable insights. For example, we expect to see our detection result could
help developers find contributions that they have not seen before, and they are willing to reuse
the contribution that we recommended.

In addition, after we identify the potentially reusable code changes that might benefit the
larger community, we would design method to automatically wrap code changes into pull re-
quests to help the community get more contribution without increasing the workload of project
maintainers too much.

Identifying Relevant Collaborators. Another interesting direction is finding relevant people,
rather than relevant source code, along the line of Herbsleb’s work [106], but with new chal-
lenges. Researchers have designed method to locate people with the right expertise in a dis-
tributed setting. For example, Ehrlich et al. [75] conducted a social network analysis to under-
stand how people find different kinds of expertise. Also, researchers have designed tools for
finding expertise in software development projects, using data from the version control system
about which developers have contributed to what parts of the code[146, 155]. Different from
these existing work, there are new challenges in fork-based development and new requirements

7.2. EXPLORING DIFFERENT FORMS OF COLLABORATION 99

for open-source communities. For example, open-source communities are interested in attracting
more contributors, but there might be learning curve for entering the community. Therefore, it
is important to assign newcomers a mentor and help them to get familiar with the project and
submit high quality patches [47, 82].

Facilitating Collaborating across Fragmented Communities. As we described in Chapter 3
and 4, hard forks are fragmenting the community, and from our interviews we see collaboration
opportunities among these sub-communities, which may allow new forms of collaboration across
multiple hard forks and projects as part of a larger community.

For example, Ultimaker is a hard fork of the Marlin project, we observed that in a pull
request for Marlin1 for an issue that was independently fixed with a different pull request in
Ultimaker 2 years earlier.2 Therefore, we would like to design interventions that could build a
bridge between disconnect communities, which potentially encourage the contribution within a
community to benefit the larger community.

Specifically, we could design: (1) an early warning system that alerts upstream maintainers of
emerging hard forks (e.g., external bots), which maintainers could use to encourage collaboration
over competition and fragmentation if desired, (2) a way to declare the intention behind a fork
(e.g., explicit GitHub support) and dashboard to show how multiple projects and important hard
forks interrelate (e.g., pointing to hard forks that provide ports for specific operating systems),
and (3) means to identify the essence of the novel contributions in forks.

7.2 Exploring Different Forms of Collaboration
The approach to research that I used in this thesis has a wider applicability than just the fork-
based development. One of the future research direction could be exploring other forms of
collaboration, such as in interdisciplinary software teams.

For example, the advances in machine learning (ML) have stimulated widespread interest in
integrating AI capabilities into software and services [154]. Therefore the software development
team is mixed with data scientists and software engineers, with the aim of increasing collabo-
ration and communication among developers, operations professionals, and data scientists. In a
ML pipeline, there are in general two phases: an exploratory phase and a production phase. Data
scientists mainly work in the exploratory phase to train an off-line ML model and then deliver
it to software engineers who work in the production phase to integrate the model into the pro-
duction codebase. However, since data scientists are focusing on improving ML algorithms to
have better prediction results often without thinking enough about the production environment,
software engineers need to redo some of the exploratory work in order to integrate it into pro-
duction code successfully. Additionally, once the exploratory code is integrated into production,
it is non-trivial to provide feedback from the production phase to improve the experiments phase
again. Furthermore, as the team is multidisciplinary, the communication time and barrier of co-
ordination will increase [87]. Similar problems also exist in building scientific software systems:

1https://github.com/MarlinFirmware/Marlin/pull/10119
2https://github.com/Ultimaker/Ultimaker2Marlin/pull/118

https://github.com/MarlinFirmware/Marlin/pull/10119
https://github.com/Ultimaker/Ultimaker2Marlin/pull/118

100 CHAPTER 7. FUTURE WORK

In most cases, the researchers who develop the scientific software may not have the required
knowledge on the best practices of software maintainability and sustainability which are needed
for reproducibility of simulation results.

To facilitate the collaboration within interdisciplinary teams, we could use the software en-
gineering principles and combine insights and theories from other disciplines, which could draw
insights and methods from my previous research experiences. We believe that multidisciplinary
distributed collaboration is paramount for developing modern software in the future and that we
will have good chances to facilitate the development processes in a way that stakeholders can
cope with successfully.

Chapter 8

Conclusion

By understanding how software developers collaborate in distributed settings using fork-based
development mechanisms, we have the opportunities to assist developers in both open-source and
in industry to coordinate in such environment. In this dissertation, we have used mixed-method
approaches to investigate the problem space of fork-based development by identifying the col-
laboration inefficiencies, then we proposed, designed, and evaluated interventions that aiming for
mitigating the inefficiencies. Specifically, we discussed the problem of lack of an overview in
fork-based development and corresponding inefficiencies (e.g., lost contribution, redundant de-
velopment, and fragmented community) in Chapter 1 and how we designed measures to quantify
these inefficiencies in Section 3.2. Then we described the details of the complementary solu-
tions: First, we used cross-sectional correlational study to test the feasibility of suggesting the
natural interventions that are correlated with higher collaboration efficiency to other open-source
communities that have less efficiencies (Chapter 3); Second, we designed new interventions
in the forms of tooling to improve current forking mechanism to identifying features in forks
(Chapter 5) and detecting potentially duplicate pull requests (Chapter 6). To evaluate these in-
terventions, we conducted both quantitative study to test the effectiveness in a large scale and
test the usefulness by conducting human-subjective studies with open-source developers. Dur-
ing the process of researching the problem and solution, we also borrowed insights from other
disciplines to better understand the problem from different perspectives and design evaluations,
such as from organizational theory.

There are a few limitations related to the assumptions that we made in the projects. (1) An
open question to the generalizability of the findings in this thesis is whether they still hold in
other forking platforms, such as GITLAB and Bitbucket. In this thesis, we only studied GITHUB,
which is the most popular platform that supports fork-based development. Although these plat-
forms virtually share the same features, but they have different emphasis [1, 117]. Therefore, it is
interesting to look at different and the trade-offs between platforms. As a starting point, we have
studied forks that were originated on GITHUB and then migrated to GITLAB [30] by mining the
Software Heritage Graph Dataset [172], which contains the forking history of both GITHUB and
GITLAB, although the dataset is not reliable and complete enough. Similarly, Pietri et al. [173]
has found large amount of forks that cannot be detected through GITHUB API. In the future, we
would like to build our own dataset and study the differences between different platforms and see
if there is any inefficiencies in the cross-platform environment and what are the new challenges.

101

102 CHAPTER 8. CONCLUSION

(2) Another limitation of my work is its construct validity. In particular, the method of the ap-
proximation of measuring centralized management and project modularity is representative. We
only focuses on projects that are using GITHUB issue tracker to manage planned changes, but
other issue trackers has been used with GITHUB as well. Future work improving either the mea-
surement or the indicator for project context factors would greatly further our understanding of
the concept.

There are at least two future research directions based on this thesis (Chapter 7), includ-
ing keeping on improving the collaboration efficiency for distributed software development and
exploring other forms of collaboration, such as in interdisciplinary software teams.

Bibliography

[1] Atlassian bitbucket vs. gitlab. GitLab documentation. URL https://about.
gitlab.com/devops-tools/bitbucket-vs-gitlab.html. 8

[2] A short history of git. Online Documentation. URL https://git-scm.com/book/
en/v2/Getting-Started-A-Short-History-of-Git. 1

[3] Intervention theory wikipedia. Wikipedia. URL https://en.wikipedia.org/
wiki/Intervention_theory. 2

[4] Github network view. https://help.github.com/en/articles/
viewing-a-repositorys-network, 2008. 4.3.3

[5] Requirement of ”claiming” tickets in django project, 2011. URL https:
//docs.djangoproject.com/en/dev/internals/contributing/
writing-code/submitting-patches/#claiming-tickets. 3.1.2

[6] How to write the perfect pull request, 2015. URL https://github.blog/
2015-01-21-how-to-write-the-perfect-pull-request/. 3.2.8

[7] Dear github issue 175: Better overview over forks, 2016. URL https://github.
com/dear-github/dear-github/issues/175. 1.1, 5.1

[8] Dear github issue 191: Feature: Work in progress pull requests, 2016. URL https:
//github.com/dear-github/dear-github/issues/191. 3.8.2

[9] May the fork be with you: A short history of open source forks, 2016. URL https://
thenewstack.io/may-fork-short-history-open-source-forks/. 2.1

[10] Wip app for github, 2016. URL https://github.com/apps/wip. 3.8.2

[11] Lovely forks browser extension: Show notable forks of github repositories under their
names, 2017. URL https://github.com/musically-ut/lovely-forks.
3.8.2

[12] Github pull request triage, 2017. URL http://prs.mozilla.io/. 1.1, 3.8.2

[13] Replication package, 2019. URL https://github.com/shuiblue/
ForkingEfficiencyPaper. 3.2, 3.2.3, 3.5

[14] Github wikipedia. Wikipedia, 2020. URL https://en.wikipedia.org/wiki/
GitHub. 1

[15] Appendix. https://github.com/shuiblue/
ICSE20-hardfork-appendix, 2020. 4.2.4, 4.3.1

103

https://about.gitlab.com/devops-tools/bitbucket-vs-gitlab.html
https://about.gitlab.com/devops-tools/bitbucket-vs-gitlab.html
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://en.wikipedia.org/wiki/Intervention_theory
https://en.wikipedia.org/wiki/Intervention_theory
https://help.github.com/en/articles/viewing-a-repositorys-network
https://help.github.com/en/articles/viewing-a-repositorys-network
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/submitting-patches/#claiming-tickets
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/submitting-patches/#claiming-tickets
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/submitting-patches/#claiming-tickets
https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/
https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/
https://github.com/dear-github/dear-github/issues/175
https://github.com/dear-github/dear-github/issues/175
https://github.com/dear-github/dear-github/issues/191
https://github.com/dear-github/dear-github/issues/191
https://thenewstack.io/may-fork-short-history-open-source-forks/
https://thenewstack.io/may-fork-short-history-open-source-forks/
https://github.com/apps/wip
https://github.com/musically-ut/lovely-forks
http://prs.mozilla.io/
https://github.com/shuiblue/ForkingEfficiencyPaper
https://github.com/shuiblue/ForkingEfficiencyPaper
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
https://github.com/shuiblue/ICSE20-hardfork-appendix
https://github.com/shuiblue/ICSE20-hardfork-appendix

104 BIBLIOGRAPHY

[16] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and Kevin A.
Schneider. Mining duplicate questions in stack overflow. pages 402–412, New York, NY,
USA, 2016. ACM. 6.6

[17] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas Schmor-
leiz, Ralf Lämmel, S, tefan Stănciulescu, Andrzej Wąsowski, and Ina Schaefer. Flexible
product line engineering with a virtual platform. In Comp. Int’l Conf. Software Engineer-
ing (ICSE), pages 532–535. ACM, 2014. ISBN 978-1-4503-2768-8. 3.8.2, 4.3.3, 5.6

[18] Amirhosein Emerson Azarbakht. Longitudinal Analysis of Collaboration in Forked Open
Source Software Development Projects. PhD thesis, Oregon State University, 2017. 1.1,
3.1.3

[19] Carliss Y Baldwin and Kim B Clark. The architecture of participation: Does code archi-
tecture mitigate free riding in the open source development model? Management Science,
52(7):1116–1127, 2006. 3.1.1, 3.1.2

[20] Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity, vol-
ume 1. MIT press, 2000. 3.7.1

[21] Sergio Bandinelli, Elisabetta Di Nitto, and Alfonso Fuggetta. Supporting cooperation in
the spade-1 environment. IEEE Trans. Softw. Eng. (TSE), 22(12):841–865, 1996. 2.2

[22] Jakob E Bardram and Thomas R Hansen. Context-based workplace awareness. Proc.
Conf. Computer Supported Cooperative Work (CSCW), 19(2):105–138, 2010. 2.3

[23] Mike Barnett, Christian Bird, Joao Brunet, and Shuvendu K Lahiri. Helping developers
help themselves: Automatic decomposition of code review changesets. In Proc. Int’l
Conf. Software Engineering (ICSE), volume 1, pages 134–144. IEEE, 2015. 5.1, 5.2,
5.2.1, 5.2.2, 5.4, 5.5

[24] Earl T. Barr, Christian Bird, Peter C. Rigby, Abram Hindle, Daniel M. German, and
Premkumar Devanbu. Cohesive and isolated development with branches. In Juan de Lara
and Andrea Zisman, editors, Fundamental Approaches to Software Engineering, pages
316–331, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. 1

[25] Fabian Beck and Stephan Diehl. On the congruence of modularity and code coupling.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering (ES-
EC/FSE), pages 354–364. ACM, 2011. 3.2.5

[26] Andrew Begel and Thomas Zimmermann. Analyze this! 145 questions for data scientists
in software engineering. In Proc. Int’l Conf. Software Engineering (ICSE), pages 12–23.
ACM, 2014. 3.1.4

[27] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. Compar-
ison and evaluation of clone detection tools. IEEE Trans. Softw. Eng. (TSE), 33(9), 2007.
6.3.2, 6.6

[28] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M Atlee, Krzysztof Czarnecki, and
Andrzej Wąsowski. Three cases of feature-based variability modeling in industry. In
Proc. Int’l Conf. Model Driven Engineering Languages and Systems (MoDELS), pages
302–319. Springer, 2014. 1.1

105

[29] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. Duplicate
bug reports considered harmful. . . really? In Proc. Int’l Conf. Software Maintenance and
Evolution(ICSME), pages 337–345. IEEE, 2008. 6.6

[30] Avijit Bhattacharjee, Sristy Sumana Nath, Shurui Zhou, Debasish Chakroborti, Banani
Roy, Chanchal Roy, and Kevin Schneider. An exploratory study to find motives behind
cross-platform forks from software heritage dataset. 03 2020. 8

[31] Marco Biazzini and Benoit Baudry. May the fork be with you: novel metrics to analyze
collaboration on github. In Proceedings of the 5th International Workshop on Emerging
Trends in Software Metrics, pages 37–43. ACM, 2014. 2.1, 3.2.1

[32] Jacob T Biehl, Mary Czerwinski, Greg Smith, and George G Robertson. Fastdash: a visual
dashboard for fostering awareness in software teams. pages 1313–1322. ACM, 2007. 2.3

[33] James M Bieman and Linda M Ott. Measuring functional cohesion. IEEE Trans. Softw.
Eng. (TSE), 20(8):644–657, 1994. 3.2.5

[34] Christian Bird, Alex Gourley, and Prem Devanbu. Detecting patch submission and accep-
tance in oss projects. In Fourth International Workshop on Mining Software Repositories
(MSR’07: ICSE Workshops 2007), pages 26–26. IEEE, 2007. 2.1

[35] Christian Bird, Alex Gourley, Prem Devanbu, Anand Swaminathan, and Greta Hsu. Open
borders? immigration in open source projects. pages 6–6. IEEE, 2007. 2.1

[36] Christian Bird, Thomas Zimmermann, and Tom Zimmermann. Assessing the value of
branches with what-if analysis. In Proc. Int’l Symposium Foundations of Software Engi-
neering (FSE). Association for Computing Machinery, Inc., November 2012. 1, 5.5

[37] Jürgen Bitzer and Philipp JH Schröder. The impact of entry and competition by open
source software on innovation activity. The economics of open source software develop-
ment, pages 219–245, 2006. 1

[38] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to break
an API: cost negotiation and community values in three software ecosystems. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE), pages 109–120. ACM, 2016. 2.1,
3.1.3, 4.3.3

[39] Jan Bosch. From software product lines to software ecosystems. In Proc. Int’l Software
Product Line Conf. (SPLC), pages 111–119. Carnegie Mellon University, 2009. 5.6

[40] E. Bouwers, A. van Deursen, and J. Visser. Evaluating usefulness of software metrics:
An industrial experience report. In Proc. Int’l Conf. Software Engineering (ICSE), pages
921–930, May 2013. 3, 3.8.2

[41] Jordi Brandts, David J Cooper, et al. Truth be told an experimental study of communica-
tion and centralization. Technical report, 2018. 3.1.2

[42] Pete Bratach. Why do open source projects fork? Blog Post, 2017. URL https:
//thenewstack.io/open-source-projects-fork/. 2.1, 4.1

[43] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. Proactive detection of col-
laboration conflicts. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 2011. 6.6

https://thenewstack.io/open-source-projects-fork/
https://thenewstack.io/open-source-projects-fork/

106 BIBLIOGRAPHY

[44] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Improving the tokeni-
sation of identifier names. Proc. Europ. Conf. Object-Oriented Programming (ECOOP),
pages 130–154, 2011. 5.2.3

[45] Yuangfang Cai and Sunny Huynh. An evolution model for software modularity assess-
ment. pages 3–3. IEEE, 2007. 3.2.5

[46] G. Ann Campbell and Patroklos P. Papapetrou. SonarQube in Action. Manning Publica-
tions Co., Greenwich, CT, USA, 1st edition, 2013. ISBN 1617290955, 9781617290954.
3.8.2

[47] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. Who
is going to mentor newcomers in open source projects? In Proc. Int’l Symposium Founda-
tions of Software Engineering (FSE), pages 44:1–44:11. ACM, 2012. ISBN 978-1-4503-
1614-9. 3.8.2, 7.1

[48] Marcelo Cataldo, Patrick A Wagstrom, James D Herbsleb, and Kathleen M Carley. Iden-
tification of coordination requirements: implications for the design of collaboration and
awareness tools. In Proc. Conf. Computer Supported Cooperative Work (CSCW), pages
353–362, 2006. 1.2, 2.3

[49] I. Chawla and S. K. Singh. Performance evaluation of vsm and lsi models to determine bug
reports similarity. In 2013 Sixth International Conference on Contemporary Computing
(IC3), pages 375–380, 2013. 6.4.1, 6.4.1

[50] Kunrong Chen and Václav Rajlich. Case study of feature location using dependence graph.
In Proc. Int’l Workshop on Program Comprehension (IWPC), pages 241–247. IEEE, 2000.
5.5

[51] Bee Bee Chua. A survey paper on open source forking motivation reasons and challenges.
2017. 2.1, 4.1

[52] Bredan Cleary and Chris Exton. Assisting Concept Location in Software Comprehension.
PhD thesis, University of Limerick, 2007. 5.4.1

[53] Brendan Cleary, Chris Exton, Jim Buckley, and Michael English. An empirical analysis
of information retrieval based concept location techniques in software comprehension.
Empirical Software Engineering, 14(1):93–130, 2009. 5.4.1, 5.5

[54] Michael L Collard, Michael John Decker, and Jonathan I Maletic. srcml: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool demonstration. In
Proc. Int’l Conf. Software Maintenance (ICSM), pages 516–519. IEEE, 2013. 5.3

[55] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968. 3.1.1,
3.7.1

[56] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer Koschke.
A systematic survey of program comprehension through dynamic analysis. IEEE Trans.
Softw. Eng. (TSE), 35(5):684–702, 2009. 5.5

[57] John W Creswell and J David Creswell. Research design: Qualitative, quantitative, and
mixed methods approaches. Sage publications, 2017. 4.2

[58] Davor Čubranić and Gail C Murphy. Hipikat: Recommending pertinent software devel-

107

opment artifacts. In Proc. Int’l Conf. Software Engineering (ICSE), pages 408–418. IEEE
Computer Society, 2003. 5.4.1

[59] Davor ČubraniĆ, Gail C Murphy, Janice Singer, and Kellogg S Booth. Learning from
project history: a case study for software development. In Proc. Conf. Computer Sup-
ported Cooperative Work (CSCW), pages 82–91. ACM, 2004. 5.4.1

[60] Davor Cubranic, Gail C Murphy, Janice Singer, and Kellogg S Booth. Hipikat: A project
memory for software development. IEEE Trans. Softw. Eng. (TSE), 31(6):446–465, 2005.
5.4.1

[61] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in github:
transparency and collaboration in an open software repository. In Proc. Conf. Computer
Supported Cooperative Work (CSCW), pages 1277–1286. ACM, 2012. 1, 1.1, 1.1, 2.1,
2.3, 3.7.2, 4.3.3, 4.3.3, 5.1

[62] Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. Leveraging transparency.
IEEE Software, 30(1):37–43, 2013. 1.1, 2.1, 4.3.3

[63] Daniela Damian, Luis Izquierdo, Janice Singer, and Irwin Kwan. Awareness in the wild:
Why communication breakdowns occur. In Proc. Int’l Conf. Global Software Engineering,
pages 81–90. IEEE, 2007. 1.2, 2.3

[64] Paul B. de Laat. Governance of open source software: state of the art. Journal of Man-
agement & Governance, 11(2):165–177, May 2007. 1

[65] Cleidson RB De Souza, David Redmiles, and Paul Dourish. Breaking the code, moving
between private and public work in collaborative software development. In Proceedings
of the 2003 International ACM SIGGROUP conference on Supporting group work, pages
105–114. ACM, 2003. 2.3

[66] Premkumar Devanbu, Thomas Zimmermann, and Christian Bird. Belief & evidence in
empirical software engineering. In Proc. Int’l Conf. Software Engineering (ICSE), pages
108–119. IEEE, 2016. 3.1.4

[67] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. Untangling fine-grained code changes. In Proc. Int’l Conf. Software Analysis,
Evolution, and Reengineering (SANER), pages 341–350. IEEE, 2015. 5.5

[68] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature location
in source code: a taxonomy and survey. Journal of software: Evolution and Process, 25
(1):53–95, 2013. 5.4.1, 5.5

[69] James Dixon. Forking protocol: Why, when, and how to fork an open source project.
Blog Post, 2009. URL https://jamesdixon.wordpress.com/2009/05/13/
different-kinds-of-open-source-forks-salad-dinner-and-fish/.
2.1, 4.1

[70] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared workspaces. In
Proceedings of the 1992 ACM Conference on Computer-supported Cooperative Work,
Proc. Conf. Computer Supported Cooperative Work (CSCW), pages 107–114. ACM,
1992. ISBN 0-89791-542-9. 1, 1.2, 2.3

https://jamesdixon.wordpress.com/2009/05/13/different-kinds-of-open-source-forks-salad-dinner-and-fish/
https://jamesdixon.wordpress.com/2009/05/13/different-kinds-of-open-source-forks-salad-dinner-and-fish/

108 BIBLIOGRAPHY

[71] Yael Dubinsky, Julia Rubin, Theodore Berger, Slawomir Duszynski, Matthias Becker, and
Krzysztof Czarnecki. An exploratory study of cloning in industrial software product lines.
In Proc. Europ. Conf. Software Maintenance and Reengineering (CSMR), pages 25–34.
IEEE, 2013. 1, 1.1, 3.8.2, 5.5, 5.7, 6.1

[72] Anh Nguyen Duc, Audris Mockus, Randy Hackbarth, and John Palframan. Forking and
coordination in multi-platform development: A case study. In Proc. Int’l Symp. Empirical
Software Engineering and Measurement (ESEM), pages 59:1–59:10. ACM, 2014. 1.1

[73] Nicolas Ducheneaut. Socialization in an open source software community: A socio-
technical analysis. Proc. Conf. Computer Supported Cooperative Work (CSCW), 14(4):
323–368, 2005. 2.3

[74] Marc Eaddy, Alfred V Aho, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. Cerberus:
Tracing requirements to source code using information retrieval, dynamic analysis, and
program analysis. In Proc. Int’l Conf. Program Comprehension (ICPC), pages 53–62.
Ieee, 2008. 5.4.1

[75] Kate Ehrlich and Klarissa Chang. Leveraging expertise in global software teams: Going
outside boundaries. In Proc. Int’l Conf. Global Software Engineering, pages 149–158.
IEEE, 2006. 7.1

[76] SC Eick, Joseph L Steffen, and Eric E Sumner. Seesoft-a tool for visualizing line oriented
software statistics. IEEE Trans. Softw. Eng. (TSE), 18(11):957–968, 1992. 2.3

[77] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in source code.
IEEE Trans. Softw. Eng. (TSE), 29(3):210–224, 2003. 5.5

[78] Jason B Ellis, Shahtab Wahid, Catalina Danis, and Wendy A Kellogg. Task and social
visualization in software development: evaluation of a prototype. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 577–586. ACM, 2007.
2.3

[79] Thomas J Emerson. A discriminant metric for module cohesion. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 294–303. IEEE Press, 1984. 3.2.5, 5.2.1

[80] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis of c prepro-
cessor use. IEEE Trans. Softw. Eng. (TSE), pages 1146–1170, 2002. 5.4.1

[81] Neil A Ernst, Steve Easterbrook, and John Mylopoulos. Code forking in open-source
software: a requirements perspective. arXiv preprint arXiv:1004.2889, 2010. 1, 2.1, 4.1

[82] Fabian Fagerholm, Alejandro S Guinea, Jürgen Münch, and Jay Borenstein. The role of
mentoring and project characteristics for onboarding in open source software projects. In
Proc. Int’l Symp. Empirical Software Engineering and Measurement (ESEM), page 55.
ACM, 2014. 3.8.2, 7.1

[83] Janet Feigenspan, Maria Papendieck, Christian Kästner, Mathias Frisch, and Raimund
Dachselt. Featurecommander: Colorful #ifdef world. In Proc. Int’l Software Product Line
Conf. (SPLC), page 48. ACM, 2011. 5.3

[84] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed.
Enhancing clone-and-own with systematic reuse for developing software variants. In Proc.

109

Int’l Conf. Software Maintenance (ICSM), pages 391–400. IEEE, 2014. 3.8.2, 4.3.1, 4.3.3

[85] Karl Fogel. Producing open source software: How to run a successful free software
project. " O’Reilly Media, Inc.", 2005. 2.1, 2.1, 4, 4.1

[86] Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75–174, 2010.
5.2.2, 5.2.2

[87] Frederick P Brooks. The mythical man-month. Datamation, 20(12):44–52, 1974. 7.2

[88] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. J. Comput. Syst. Sci., pages 119–139, 1997. 6.4.2

[89] Jon Froehlich and Paul Dourish. Unifying artifacts and activities in a visual tool for dis-
tributed software development teams. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 387–396. IEEE Computer Society, 2004. 2.3

[90] Randall Frost. Jazz and the eclipse way of collaboration. IEEE software, 24(6), 2007. 2.3

[91] Kam Hay Fung, Aybüke Aurum, and David Tang. Social forking in open source software:
An empirical study. In CAiSE Forum, pages 50–57. Citeseer, 2012. 1.1

[92] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones. In
Proc. Int’l Conf. Software Engineering (ICSE). ACM, 2008. 6.6

[93] Jonas Gamalielsson and Björn Lundell. Sustainability of open source software communi-
ties beyond a fork: How and why has the libreoffice project evolved? Journal of Systems
and Software, 89:128–145, 2014. 2.1

[94] Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. On the use of relevance
feedback in ir-based concept location. In Proc. Int’l Conf. Software Maintenance (ICSM),
pages 351–360. IEEE, 2009. 5.5

[95] Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.
5.1, 5.2.2, 5.6

[96] Georgios Gousios. The ghtorent dataset and tool suite. pages 233–236. IEEE Press, 2013.
1, 1.1, 3.3, 4.2.2, 6.3.2

[97] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 345–355. ACM, 2014. 1, 1.1, 1.1, 2.1, 2.1, 3, 3.2.2, 3.2.9, 3.4, 6.1, 6.5.1

[98] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman. Lean
ghtorrent: Github data on demand. pages 384–387. ACM, 2014. 4.1, 5.4.2

[99] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen. Work
practices and challenges in pull-based development: the integrator’s perspective. Techni-
cal report, Delft University of Technology, Software Engineering Research Group, 2014.
1.1, 2.1

[100] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices and
challenges in pull-based development: the contributor’s perspective. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 285–296. IEEE, 2016. 1.1, 1.1, 6.2, 5

110 BIBLIOGRAPHY

[101] Aaron Greenhouse and William L Scherlis. Assuring and evolving concurrent programs:
annotations and policy. In Proc. Int’l Conf. Software Engineering (ICSE), pages 453–463.
IEEE, 2002. 2.2

[102] Carl Gutwin and Saul Greenberg. The importance of awareness for team cognition in
distributed collaboration. 2001. 2.3

[103] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group awareness in distributed soft-
ware development. In Proceedings of the 2004 ACM conference on Computer supported
cooperative work, pages 72–81. ACM, 2004. 1, 1.2, 2.3

[104] Rajesh Hegde and Prasun Dewan. Connecting programming environments to support ad-
hoc collaboration. In Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, pages 178–187. IEEE Computer Society, 2008. 2.3

[105] James Herbsleb and Jeff Roberts. Collaboration in software engineering projects: A theory
of coordination. ICIS 2006 Proceedings, page 38, 2006. 2.2

[106] James D Herbsleb. Global software engineering: The future of socio-technical coordina-
tion. In Proc. Int’l Symposium Future of Software Engineering (FOSE), pages 188–198.
IEEE, 2007. 1, 7.1, 7.1

[107] James D Herbsleb and Rebecca E Grinter. Splitting the organization and integrating the
code: Conway’s law revisited. In Proc. Int’l Conf. Software Engineering (ICSE), pages
85–95. ACM, 1999. 1, 3.1.1

[108] James D. Herbsleb and Audris Mockus. An empirical study of speed and communication
in globally distributed software development. IEEE Trans. Softw. Eng. (TSE), 29(6):481–
494, 2003. 2.3

[109] James D Herbsleb, Audris Mockus, Thomas A Finholt, and Rebecca E Grinter. Distance,
dependencies, and delay in a global collaboration. In Proceedings of the 2000 ACM con-
ference on Computer supported cooperative work, pages 319–328. ACM, 2000. 2.3

[110] Kim Herzig and Andreas Zeller. Untangling changes. Unpublished manuscript, Septem-
ber, 37:38–40, 2011. 5.5

[111] Kim Herzig and Andreas Zeller. The impact of tangled code changes. pages 121–130.
IEEE Press, 2013. ISBN 978-1-4673-2936-1. 5.5

[112] Kim Herzig and Andreas Zeller. The impact of tangled code changes. pages 121–130.
IEEE Press, 2013. ISBN 978-1-4673-2936-1. 5.1

[113] Kim Herzig and Andreas Zeller. The impact of tangled code changes. pages 121–130.
IEEE, 2013. 5.1

[114] Lyndon Hiew. Assisted detection of duplicate bug reports. 2006. 6.6

[115] Emily Hill, Lori Pollock, and K Vijay-Shanker. Exploring the neighborhood with dora
to expedite software maintenance. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 14–23. ACM, 2007. 5.4.1

[116] Emily Hill, Lori Pollock, and K Vijay-Shanker. Automatically capturing source code
context of nl-queries for software maintenance and reuse. In Proc. Int’l Conf. Software

111

Engineering (ICSE), pages 232–242. IEEE, 2009. 5.4.1, 5.5

[117] Karl Hughes. Github vs. bitbucket vs. gitlab - help me decide.
Blog Post, 2018. URL https://stackshare.io/stackups/
bitbucket-vs-github-vs-gitlab. 8

[118] Riitta Jääskeläinen. Think-aloud protocol. Handbook of translation studies, 1:371–374,
2010. 5.4.2

[119] N. Jalbert and W. Weimer. Automated duplicate detection for bug tracking systems. In
2008 IEEE International Conference on Dependable Systems and Networks With FTCS
and DCC (DSN), pages 52–61, June 2008. 6.6

[120] N. Jalbert and W. Weimer. Automated duplicate detection for bug tracking systems. In
2008 IEEE International Conference on Dependable Systems and Networks With FTCS
and DCC (DSN), pages 52–61, June 2008. 6.3.2

[121] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to
statistical learning, volume 112. Springer, 2013. 6.4.2

[122] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. Maintaining
feature traceability with embedded annotations. In Proc. Int’l Software Product Line Conf.
(SPLC), pages 61–70. ACM, 2015. 4.3.1

[123] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally equivalent code frag-
ments via random testing. In Proc. Int’l Symp. Software Testing and Analysis (ISSTA),
pages 81–92. ACM, 2009. 6.6

[124] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scal-
able and accurate tree-based detection of code clones. In Proc. Int’l Conf. Software Engi-
neering (ICSE), pages 96–105. IEEE Computer Society, 2007. 6.6

[125] Natalia Juristo and Omar S Gómez. Replication of software engineering experiments. In
Empirical software engineering and verification, pages 60–88. Springer, 2010. 4.1, 4.2

[126] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M Ger-
man. Open source-style collaborative development practices in commercial projects using
github. In Proc. Int’l Conf. Software Engineering (ICSE), pages 574–585. IEEE Press,
2015. 3.5

[127] David Kawrykow and Martin P. Robillard. Non-essential changes in version histories. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 351–360. ACM, 2011. 5.1

[128] Bruce Kogut and Anca Metiu. Open-source software development and distributed inno-
vation. Oxford review of economic policy, 17(2):248–264, 2001. 3.1.1

[129] Adrian Kuhn, Stéphane Ducasse, and Tudor Gírba. Semantic clustering: Identifying topics
in source code. Information and Software Technology (IST), 49(3):230–243, 2007. 5.5

[130] Thomas K. Landauer and Susan Dumais. A solution to plato’s problem: The latent se-
mantic analysis theory of acquisition, induction and representation of knowledge. Psy-
chological Review, 104(2):211–240, 1997. 6.4.1

[131] Andrew M St Laurent. Understanding open source and free software licensing: guide to

https://stackshare.io/stackups/bitbucket-vs-github-vs-gitlab
https://stackshare.io/stackups/bitbucket-vs-github-vs-gitlab

112 BIBLIOGRAPHY

navigating licensing issues in existing & new software. " O’Reilly Media, Inc.", 2004.
2.1, 2.1, 4, 4.1

[132] Paul Layzell, O Pearl Brereton, and Andrew French. Supporting collaboration in dis-
tributed software engineering teams. In Proceedings Seventh Asia-Pacific Software En-
geering Conference. APSEC 2000, pages 38–45. IEEE, 2000. 2.2

[133] Sungjick Lee and Han-joon Kim. News keyword extraction for topic tracking. pages
554–559. IEEE, 2008. 5.2.3

[134] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Precise semantic history slicing
through dynamic delta refinement. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 495–506, Septermber 2016. 5.5

[135] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. Semantic slicing of software
version histories. IEEE Trans. Softw. Eng. (TSE), 44(2):182–201, 2017. 4.3.4, 5.1, 5.5

[136] Zhixing Li, Gang Yin, Yue Yu, Tao Wang, and Huaimin Wang. Detecting duplicate pull-
requests in github. In Proceedings of the 9th Asia-Pacific Symposium on Internetware,
page 20. ACM, 2017. 3.7.3, 3.8.2, 6.3.2, 6.5.2, 6.6

[137] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze. An
analysis of the variability in forty preprocessor-based software product lines. In Proc. Int’l
Conf. Software Engineering (ICSE), 2010. 5.4.1, 5.4.1

[138] Max Lillack, Ştefan Stănciulescu, Wilhelm Hedman, Thorsten Berger, and Andrzej Wą-
sowski. Intention-based integration of software variants. In Proc. Int’l Conf. Software
Engineering (ICSE), ICSE ’19, pages 831–842, Piscataway, NJ, USA, 2019. IEEE Press.
4.3.1

[139] Bin Lin, Gregorio Robles, and Alexander Serebrenik. Developer turnover in global, indus-
trial open source projects: Insights from applying survival analysis. In Proc. Int’l Conf.
Global Software Engineering, pages 66–75. IEEE, 2017. 1

[140] Alec Liu. Who’s building bitcoin? an inside look at bitcoin’s open source development.
Motherboard, 2013. 3.1.2

[141] K. Liu, H. Beng Kuan Tan, and H. Zhang. Has this bug been reported? In Proc. Working
Conf. Reverse Engineering (WCRE), pages 82–91, Oct 2013. 6.6

[142] K. Liu, H. Beng Kuan Tan, and H. Zhang. Has this bug been reported? In Proc. Working
Conf. Reverse Engineering (WCRE), pages 82–91, Oct 2013. 6.3.2

[143] Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code. Man-
agement Science, 52(7):1015–1030, 2006. 3.1.1

[144] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I Maletic. An informa-
tion retrieval approach to concept location in source code. In Proc. Working Conf. Reverse
Engineering (WCRE), pages 214–223. IEEE, 2004. 5.5

[145] Steve McConnell. Rapid development (vol. 1556159005), 1996. 2.2

[146] David W McDonald and Mark S Ackerman. Expertise recommender: a flexible recom-

113

mendation system and architecture. In Proc. Conf. Computer Supported Cooperative Work
(CSCW), pages 231–240, 2000. 7.1

[147] Nora McDonald and Sean Goggins. Performance and participation in open source soft-
ware on github. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems,
page 139–144, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450319522. 1.1

[148] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi. The
Love/Hate Relationship with the C Preprocessor: An Interview Study. In Proc. Eu-
rop. Conf. Object-Oriented Programming (ECOOP), pages 495–518. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015. 5.4.1

[149] Ines Mergel. Open collaboration in the public sector: The case of social coding on github.
Government Information Quarterly, 32(4):464–472, 2015. 2.1

[150] Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall New
York, 1988. 3.7.1

[151] Peiwei Mi, Walt Scacchi, et al. Modeling articulation work in software engineering pro-
cesses. In Proceedings. First International Conference on the Software Process,, pages
188–201. IEEE, 1991. 2.3

[152] Vishal Midha and Prashant Palvia. Factors affecting the success of open source software.
J. Syst. Softw., 85(4):895–905, April 2012. ISSN 0164-1212. 3.1.1

[153] Tommi Mikkonen and Linus Nyman. To Fork or Not to Fork: Fork Motivations in Source-
Forge Projects. Int. J. Open Source Softw. Process., 3(3):1–9, July 2011. ISSN 1942-3926.
5.5, 5.7

[154] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. The emerg-
ing role of data scientists on software development teams. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 96–107. ACM, 2016. 7.2

[155] Audris Mockus and James D Herbsleb. Expertise browser: a quantitative approach to
identifying expertise. In Proc. Int’l Conf. Software Engineering (ICSE), pages 503–512.
IEEE, 2002. 7.1

[156] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of open source
software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. (TOSEM),
11(3):309–346, 2002. 2.1, 2.3

[157] Leticia Montalvillo and Oscar Díaz. Tuning GitHub for spl development: branching mod-
els & repository operations for product engineers. In Proceedings of the 19th International
Conference on Software Product Line, pages 111–120. ACM, 2015. 4.3.3

[158] Gail Cecile Murphy. Lightweight Structural Summarization as an Aid to Software Evolu-
tion. PhD thesis, 1996. 5.5

[159] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor, and how
we know it. In Proc. Int’l Conf. Software Engineering (ICSE), pages 287–297. IEEE
Computer Society, 2009. 5.1

[160] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yun-

114 BIBLIOGRAPHY

wen Ye. Evolution patterns of open-source software systems and communities. In Pro-
ceedings of the international workshop on Principles of software evolution, pages 76–85.
ACM, 2002. 3.1.3

[161] Linus Nyman. Hackers on forking. In Proceedings of The International Symposium on
Open Collaboration, page 6. ACM, 2014. 2.1, 2.1, 4, 4.1

[162] Linus Nyman and Tommi Mikkonen. To fork or not to fork: Fork motivations in source-
forge projects. In IFIP International Conference on Open Source Systems, pages 259–268.
Springer, 2011. 2.1, 4.1, 4.2.2

[163] Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougère. Perspectives on
code forking and sustainability in open source software. Why Linux on’t fork, 1999. 2.1

[164] Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougère. Perspectives on
code forking and sustainability in open source software. Open Source Systems: Long-
Term Sustainability, pages 274–279, 2012. 2.1

[165] Gary M Olson and Judith S Olson. Distance matters. Human–computer interaction, 15
(2-3):139–178, 2000. 1

[166] Inah Omoronyia, John Ferguson, Marc Roper, and Murray Wood. Using developer ac-
tivity data to enhance awareness during collaborative software development. Proc. Conf.
Computer Supported Cooperative Work (CSCW), 18(5-6):509, 2009. 2.3

[167] Klaus Ostermann, Paolo G. Giarrusso, Christian Kästner, and Tillmann Rendel. Revisiting
information hiding: Reflections on classical and nonclassical modularity. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP), volume 6813, pages 155–178. Springer,
2011. 3.1.3

[168] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. Needfeed: Taming change notifi-
cations by modeling code relevance. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 665–676. ACM, 2014. 4.3.3, 4.3.3

[169] David Lorge Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972. 3.1.1, 3.7.1

[170] Maksym Petrenko, Václav Rajlich, and Radu Vanciu. Partial domain comprehension
in software evolution and maintenance. In Proc. Int’l Conf. Program Comprehension
(ICPC), pages 13–22. IEEE, 2008. 5.5

[171] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schneider.
Creating a shared understanding of testing culture on a social coding site. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 112–121. IEEE Press, 2013. 2.3

[172] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The Software Heritage Graph
Dataset: Large-scale analysis of public software development history. In MSR 2020: The
17th International Conference on Mining Software Repositories. IEEE, 2020. 8

[173] Antoine Pietri, Stefano Zacchiroli, and Guillaume Rousseau. Forking without clicking:
on how to identify software repository forks. 2020. 8

[174] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang Sun,
and Bin Wang. Automated support for classifying software failure reports. In Proc. Int’l

115

Conf. Software Engineering (ICSE), pages 465–475. IEEE, 2003. 6.3.2, 6.6

[175] Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with in-
formation retrieval for concept location in source code. In Proc. Int’l Conf. Program
Comprehension (ICPC), pages 37–48. IEEE, 2007. 5.5

[176] Phanish Puranam, Oliver Alexy, and Markus Reitzig. What’s “new” about new forms of
organizing? Academy of Management Review, 39(2):162–180, 2014. 3.1.2

[177] Md Masudur Rahman, Saikat Chakraborty, Gail E. Kaiser, and Baishakhi Ray. A case
study on the impact of similarity measure on information retrieval based software engi-
neering tasks. CoRR, abs/1808.02911, 2018. 6.4.1

[178] V. Rajlich and N. Wilde. The role of concepts in program comprehension. In Proc. Int’l
Conf. Program Comprehension (ICPC), pages 271–278, 2002. 5.5

[179] Ayushi Rastogi and Nachiappan Nagappan. Forking and the sustainability of the developer
community participation–an empirical investigation on outcomes and reasons. In Proc.
Int’l Conf. Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages
102–111. IEEE, 2016. 1, 1.1, 2.1, 2.1, 3

[180] Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. Detecting and charac-
terizing semantic inconsistencies in ported code. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 367–377. IEEE, 2013. 2.1, 4.3.1, 4.3.3

[181] Eric S Raymond. The Cathedral & the Bazaar: Musings on linux and open source by an
accidental revolutionary. " O’Reilly Media, Inc.", 2001. 2.1, 2.1, 4, 4.1

[182] L. Ren, S. Zhou, and C. Kästner. Poster: Forks insight: Providing an overview of github
forks. In 2018 IEEE/ACM 40th International Conference on Software Engineering: Com-
panion (ICSE-Companion), pages 179–180, 2018. 5

[183] Luyao Ren. Automated patch porting across forked projects. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE), pages 1199–1201, New York, NY, USA,
2019. ACM. ISBN 978-1-4503-5572-8. 4.3.3

[184] Luyao Ren, Shurui Zhou, and Christian Kästner. Poster: Forks insight: Providing an
overview of github forks. In Proceedings of the Companion of the International Confer-
ence on Software Engineering (ICSE), New York, NY, 2018. ACM Press. Poster. 1.1,
3.8.2, 7.1

[185] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wąsowski. Identifying redun-
dancies in fork-based development. In Proc. Int’l Conf. Software Analysis, Evolution, and
Reengineering (SANER), 2019. 1.2, 3.7.3, 3.8.2, 6

[186] Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. Using data fusion and web mining
to support feature location in software. In Proc. Int’l Conf. Program Comprehension
(ICPC), pages 14–23. IEEE, 2010. 5.4.1

[187] Peter C Rigby and Margaret-Anne Storey. Understanding broadcast based peer review on
open source software projects. In Proc. Int’l Conf. Software Engineering (ICSE), pages
541–550. ACM, 2011. 2.3

[188] Martin P Robillard. Automatic generation of suggestions for program investigation. In

116 BIBLIOGRAPHY

SIGSOFT Softw. Eng. Notes, volume 30, pages 11–20. ACM, 2005. 5.5

[189] Martin P Robillard, David Shepherd, Emily Hill, K Vijay-Shanker, and Lori Pollock. An
empirical study of the concept assignment problem. School of Computer Science, McGill
University, Tech. Rep. SOCS-TR-2007.3, 2007. 5.4.1

[190] Gregorio Robles and Jesús M. González-Barahona. A Comprehensive Study of Software
Forks: Dates, Reasons and Outcomes. In Open Source Systems: Long-Term Sustainability
- 8th IFIP WG 2.13 International Conference, OSS 2012, Hammamet, Tunisia, September
10-13, 2012. Proceedings, pages 1–14, 2012. doi: 10.1007/978-3-642-33442-9_1. 2.1,
4.1, 4.2.2, 5.5, 5.7

[191] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Science of computer
programming, 74(7):470–495, 2009. 6.3.2, 6.6

[192] Julia Rubin and Marsha Chechik. A framework for managing cloned product variants. In
Proceedings of the 2013 International Conference on Software Engineering, pages 1233–
1236. IEEE Press, 2013. 4.3.3, 5.6

[193] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect reports
using natural language processing. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 499–510, May 2007. 6.6

[194] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jas-
pan. Lessons from building static analysis tools at Google. Commun. ACM, pages 58–66,
2018. 6.1

[195] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V. Lopes.
Oreo: Detection of clones in the twilight zone. In Proc. Int’l Symposium Foundations of
Software Engineering (FSE), pages 354–365, New York, NY, USA, 2018. ACM. 6.6

[196] Johnny Saldaña. The coding manual for qualitative researchers. Sage, 2015. 4.2.4, 5.4.2

[197] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Information processing & management, 24(5):513–523, 1988. 5.1, 5.2.3, 6.4.1

[198] Raghvinder Sangwan, Matthew Bass, Neel Mullick, Daniel J Paulish, and Juergen
Kazmeier. Global software development handbook. Auerbach Publications, 2006. 2.3

[199] Anand Mani Sankar. Node.js vs io.js: Why the fork?!? Blog Post, 2015. URL http:
//anandmanisankar.com/posts/nodejs-iojs-why-the-fork/. 2.1

[200] Anita Sarma and Andre van der Hoek. Towards awareness in the large. In Proc. Int’l
Conf. Global Software Engineering, pages 127–131, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2663-2. 1.2, 2.3

[201] Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. Tesseract: In-
teractive visual exploration of socio-technical relationships in software development. In
Proceedings of the 31st International Conference on Software Engineering, pages 23–33.
IEEE Computer Society, 2009. 2.3

[202] Anita Sarma, David F. Redmiles, and André van der Hoek. Palantír: Early detection of
development conflicts arising from parallel code changes. IEEE Trans. Softw. Eng. (TSE),

http://anandmanisankar.com/posts/nodejs-iojs-why-the-fork/
http://anandmanisankar.com/posts/nodejs-iojs-why-the-fork/

117

38(4):889–908, 2012. 2.3, 6.6

[203] Stefan Schmidt. Shall we really do it again? the powerful concept of replication is ne-
glected in the social sciences. Review of General Psychology, 13(2):90–100, 2009. 4.1,
4.2

[204] Bikram Sengupta, Satish Chandra, and Vibha Sinha. A research agenda for distributed
software development. In Proceedings of the 28th international conference on Software
engineering, pages 731–740. ACM, 2006. 2.3

[205] Maha Shaikh and Ola Henfridsson. Governing open source software through coordination
processes. Information and Organization, 27(2):116–135, 2017. 3.1.2

[206] Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using machine learning.
In Machine Learning and Applications (ICMLA), 2016 15th IEEE International Confer-
ence on, pages 1024–1028. IEEE, 2016. 6.6

[207] David Shepherd, Zachary P Fry, Emily Hill, Lori Pollock, and K Vijay-Shanker. Using
natural language program analysis to locate and understand action-oriented concerns. In
Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), pages 212–224. ACM,
2007. 5.5

[208] Yoonki Song, Xiaoyin Wang, Tao Xie, Lu Zhang, and Hong Mei. Jdf: detecting duplicate
bug reports in jazz. In Proc. Int’l Conf. Software Engineering (ICSE), pages 315–316.
ACM, 2010. 6.3.2, 6.6

[209] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.
4.2.3

[210] Kathy Spurr, Paul Layzell, Leslie Jennison, and Neil Richards. Computer support for
co-operative work. John Wiley & Sons, Inc., 1994. 2.2

[211] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski. Con-
cepts, operations, and feasibility of a projection-based variation control system. In Proc.
Int’l Conf. Software Maintenance and Evolution(ICSME), pages 323–333. IEEE, 2016.
1.1, 3.8.2, 4.3.3

[212] Igor Steinmacher, Gustavo H. L. Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
Almost there: A study on quasi-contributors in open-source software projects. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 1–12, 2018. 1.1, 3.1.3, 6.1

[213] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Peter Rigby. Shared waypoints and
social tagging to support collaboration in software development. In Proc. Conf. Computer
Supported Cooperative Work (CSCW), pages 195–198. ACM, 2006. 5.5

[214] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. Forked and Integrated Vari-
ants in an Open-Source Firmware Project. In 31st International Conference on Soft-
ware Maintenance and Evolution, Proc. Int’l Conf. Software Maintenance and Evolu-
tion(ICSME), 2015. 1.1, 2.1, 5.4.1, 5.4.1, 5.5, 5.7, 6.1

[215] Ching Y Suen. N-gram statistics for natural language understanding and text processing.
IEEE transactions on pattern analysis and machine intelligence, (2):164–172, 1979. 5.2.3

[216] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more accurate

118 BIBLIOGRAPHY

retrieval of duplicate bug reports. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 253–262. IEEE, 2011. 6.6

[217] Marcel Taeumel, Stephanie Platz, Bastian Steinert, Robert Hirschfeld, and Hidehiko Ma-
suhara. Unravel programming sessions with thresher: Identifying coherent and complete
sets of fine-granular source code changes. Information and Media Technologies, 12:24–
39, 2017. 5.5

[218] Lei Tang and Huan Liu. Community detection and mining in social media. Synthesis
Lectures on Data Mining and Knowledge Discovery, pages 1–137, 2010. 5.2.2, 5.4.1

[219] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of
separation: Multi-dimensional separation of concerns. In Proc. Int’l Conf. Software Engi-
neering (ICSE), pages 107–119, Los Alamitos, CA, 1999. IEEE Computer Society. ISBN
1-58113-074-0. 3.1.3

[220] Stephanie D Teasley, Lisa A Covi, Mayuram S. Krishnan, and Judith S Olson. Rapid
software development through team collocation. IEEE Trans. Softw. Eng. (TSE), 28(7):
671–683, 2002. 2.2

[221] R. Tekchandani, R. K. Bhatia, and M. Singh. Semantic code clone detection using parse
trees and grammar recovery. In Confluence 2013: The Next Generation Information Tech-
nology Summit (4th International Conference), pages 41–46, 2013. 6.6

[222] Linus Torvalds. The linux edge. Communications of the ACM, 42(4):38–38, 1999. 3.1.1

[223] Linux Torvalds. Initial revision of git. Commit, 2005. URL https://github.com/
git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290. 1

[224] Christoph Treude and Margaret-Anne Storey. Awareness 2.0: staying aware of projects,
developers and tasks using dashboards and feeds. In Software Engineering, 2010
ACM/IEEE 32nd International Conference on, volume 1, pages 365–374. IEEE, 2010.
1.2, 2.3

[225] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. Adding sparkle
to social coding: An empirical study of repository badges in the npm ecosystem. In
Proceedings of the 40th International Conference on Software Engineering, ICSE ’18,
pages 511–522. ACM, 2018. ISBN 978-1-4503-5638-1. 3.2.9, 3.8.2

[226] Jason Tsay. Software Developers Using Signals in Transparent Environments. PhD thesis,
Carnegie Mellon University, 4 2017. 1.1, 2.3

[227] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical factors
for evaluating contribution in github. In Proceedings of the 36th international conference
on Software engineering, pages 356–366. ACM, 2014. 2.1, 3.2.9, 3.4

[228] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White,
and Denys Poshyvanyk. Deep learning similarities from different representations of source
code. pages 542–553, 2018. 6.6

[229] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian, Premku-
mar Devanbu, and Vladimir Filkov. The sky is not the limit: Multitasking on GitHub
projects. In Proc. Int’l Conf. Software Engineering (ICSE), pages 994–1005. ACM, 2016.

https://github.com/git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290
https://github.com/git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290

119

6.5.2

[230] Greg R Vetter. Open source licensing and scattering opportunism in software standards.
BCL Rev., 48:225, 2007. 1

[231] Adriano Vieira. I’d like to see all forked projects of one project. https://gitlab.
com/gitlab-org/gitlab-foss/issues/2406, 2016. 1.1

[232] Robert Viseur. Forks impacts and motivations in free and open source projects. Interna-
tional Journal of Advanced Computer Science and Applications, 3(2):117–122, 2012. 2.1,
4.1

[233] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 461–470. ACM, 2008. 6.3.2, 6.6

[234] Steve Weber. The success of open source. Harvard University Press, 2004. 2.1

[235] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small patches get in! pages 67–76,
2008. 2.1

[236] Mairieli Wessel, Bruno Mendes De Souza, Igor Steinmacher Teinmacher, Igor S Wiese,
Ivanilton Polato, Ana Paula Chaves, and Marco A Gerosa. The power of bots: Under-
standing bots in oss projects. 2018. 6.2

[237] David A. Wheeler. Why open source software/free software (oss/fs, floss, or foss)? look
at the numbers! Blog Post, 2015. URL https://dwheeler.com/oss_fs_why.
html. 2.1, 4.1

[238] Jim Whitehead. Collaboration in software engineering: A roadmap. In Proc. Int’l Sympo-
sium Future of Software Engineering (FOSE), pages 214–225. IEEE, 2007. 2.2

[239] Norman Wilde and Michael C Scully. Software reconnaissance: Mapping program fea-
tures to code. Journal of Software: Evolution and Process, 7(1):49–62, 1995. 5.5

[240] Owen Willams. Node.js and io.js are settling their differences, merging back to-
gether. Blog Post, 2015. URL https://thenextweb.com/dd/2015/06/16/
node-js-and-io-js-are-settling-their-differences-merging-back-together/.
2.1

[241] Zhang Xin, Chen Yang, Gu Yongfeng, Zou Weiqin, Xie Xiaoyuan, Jia Xiangyang, and
Xuan Jifeng. How do multiple pull requests change the same code: A study of competing
pull requests in Github. In Proc. Int’l Conf. Software Maintenance and Evolution(ICSME),
page 12, 2018. 6.6

[242] Andrew Y Yao. Cvssearch: Searching through source code using cvs comments. In Proc.
Int’l Conf. Software Maintenance (ICSM), page 364. IEEE Computer Society, 2001. 5.4.1

[243] Christopher S Yoo. Open source, modular platforms, and the challenge of fragmentation.
Criterion J. on Innovation, 1:619, 2016. 2.1

[244] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan Vasilescu.
Wait for it: Determinants of pull request evaluation latency on github. In Mining software
repositories (MSR), 2015 IEEE/ACM 12th working conference on, pages 367–371. IEEE,

https://gitlab.com/gitlab-org/gitlab-foss/issues/2406
https://gitlab.com/gitlab-org/gitlab-foss/issues/2406
https://dwheeler.com/oss_fs_why.html
https://dwheeler.com/oss_fs_why.html
https://thenextweb.com/dd/2015/06/16/node-js-and-io-js-are-settling-their-differences-merging-back-together/
https://thenextweb.com/dd/2015/06/16/node-js-and-io-js-are-settling-their-differences-merging-back-together/

120 BIBLIOGRAPHY

2015. 2.1

[245] Yue Yu, Li Zhixing, Yin Gang, Tao Wang, and Wang Huaimin. A dataset of duplicate
pull-requests in github. page 12, 2018. 3.2.3, 3.8.2, 6.1, 6.5.1, 6.6

[246] Jie Zhang, Xiaoyin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. A survey on
bug-report analysis. Science China Information Sciences, page 1–24. 6.6

[247] Jian Zhou and Hongyu Zhang. Learning to rank duplicate bug reports. In Proceedings
of the 21st ACM International Conference on Information and Knowledge Management,
CIKM ’12, pages 852–861, New York, NY, USA, 2012. ACM. 6.6

[248] Jian Zhou and Hongyu Zhang. Learning to rank duplicate bug reports. In Proceedings
of the 21st ACM International Conference on Information and Knowledge Management,
CIKM ’12, pages 852–861, New York, NY, USA, 2012. ACM. 6.3.2

[249] Shurui Zhou, Ştefan Stãnciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wąsowski, and
Christian Kästner. Identifying features in forks. In Proc. Int’l Conf. Software Engineering
(ICSE), New York, NY, 5 2018. ACM Press. 1.2c, 1.1, 1.2, 3.8.2, 4.3.3, 4.3.3, 4.3.4, 5,
5.3, 6.1, 5

[250] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the fork: A study of ineffi-
cient and efficient forking practices in social coding. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 350–361, New York, NY,
8 2019. ACM Press. 1.3, 3, 4.2.1, 4.2.2

[251] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. How has forking changed in the
last 20 years? a study of hard forks on github. In Proceedings of the 42nd International
Conference on Software Engineering (ICSE), New York, NY, 5 2020. ACM Press. 4, 4.2.2

[252] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies system
architecture (or not). pages 73–83. IEEE, 2003. 3.2.5

	1 Introduction
	1.1 Inefficiencies in Social Forking
	1.2 Possible Solutions
	1.3 Thesis
	1.4 Summary of Contribution
	1.5 Outline

	2 Distributed Collaboration of Software Development
	2.1 History of Forking
	2.2 Collaboration in Software Engineering Projects
	2.3 Importance of Awareness in Distributed Collaboration

	3 Natural Interventions
	3.1 Identifying Potential Context Factors and Deriving Hypotheses
	3.1.1 Modularity affects forking practices
	3.1.2 Coordination mechanisms affect forking practices
	3.1.3 Contribution barriers affect community fragmentation
	3.1.4 Summary

	3.2 Operationalization
	3.2.1 Outcome: Ratio of contributing forks.
	3.2.2 Outcome: Ratio of merged pull requests.
	3.2.3 Outcome: Ratio of duplicate pull requests.
	3.2.4 Outcome: Presence of hard forks.
	3.2.5 Predictor for modularity: Logic coupling index.
	3.2.6 Predictor for modularity: Additive contribution index.
	3.2.7 Predictor for coordination: Centralized management index.
	3.2.8 Predictor for coordination: Pre-communication index.
	3.2.9 Control variables.

	3.3 Data Collection
	3.4 Statistical Analysis
	3.5 Threats to Validity
	3.6 Result
	3.6.1 When do forks attempt to contribute back? (H1, H3)
	3.6.2 When are more contributions integrated? (H2, H4)
	3.6.3 When is duplicate work more common? (H5)
	3.6.4 When does the community risk fragmentation? (H6–H8)

	3.7 Discussion
	3.7.1 Modularity
	3.7.2 Coordination
	3.7.3 Redundant development.

	3.8 Implications
	3.8.1 Implications for practitioners
	3.8.2 Implications for researchers and tool builders

	3.9 Summary

	4 Hard Forks
	4.1 Motivation
	4.2 Research Questions and Methods
	4.2.1 Instrument for Visualizing Fork Activities
	4.2.2 Identifying Hard Forks
	4.2.3 Classifying Evolution Patterns
	4.2.4 Interviews
	4.2.5 Threats to Validity and Credibility

	4.3 Results
	4.3.1 Frequency of Hard Forks
	4.3.2 Why Hard Forks Are Created (And How to Avoid Them)
	4.3.3 Interactions between Fork and Upstream Repository
	4.3.4 Perceptions of Hard Forking

	4.4 Summary

	5 New Intervention: INFOX
	5.1 Motivation
	5.2 Method
	5.2.1 Generating a dependency graph
	5.2.2 Identifying features by clustering the graph
	5.2.3 Labeling features

	5.3 Implementation & User Interface
	5.4 Evaluation
	5.4.1 Quantitative Study (RQ1 & RQ2)
	5.4.2 Human-subject study (RQ3 & RQ4)

	5.5 Related Work
	5.6 Discussion
	5.7 Productization: forks-insight.com
	5.8 Summary

	6 New Intervention: Identifying Redundancies
	6.1 Motivation
	6.2 Application Scenarios
	6.3 Research Method
	6.3.1 Identifying Clues to Detect Redundant Changes
	6.3.2 Clues for Duplicate Changes

	6.4 Identifying Duplicate Changes in Forks
	6.4.1 Calculating Similarities for Each Clue
	6.4.2 Predicting Duplicate Changes Using Machine Learning

	6.5 Evaluation: Effectiveness
	6.5.1 Dataset
	6.5.2 Analysis and Results

	6.6 Related Work
	6.7 Summary

	7 Future Work
	7.1 Improving coordination capability in fork-based development
	7.2 Exploring Different Forms of Collaboration

	8 Conclusion
	Bibliography

