
Identifying Redundancies in Fork-based
Development

Luyao Ren
Peking University, China

Shurui Zhou, Christian Kästner
Carnegie Mellon University, USA

Andrzej Wąsowski
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Abstract—Fork-based development is popular and easy to use,
but makes it difficult to maintain an overview of the whole
community when the number of forks increases. This may lead
to redundant development where multiple developers are solving
the same problem in parallel without being aware of each
other. Redundant development wastes effort for both maintainers
and developers. In this paper, we designed an approach to
identify redundant code changes in forks as early as possible
by extracting clues indicating similarities between code changes,
and building a machine learning model to predict redundancies.
We evaluated the effectiveness from both the maintainer’s and
the developer’s perspectives. The result shows that we achieve
57–83% precision for detecting duplicate code changes from
maintainer’s perspective, and we could save developers’ effort
of 1.9–3.0 commits on average. Also, we show that our approach
significantly outperforms existing state-of-art.

Index Terms—Forking, Redundant Development, Natural Lan-
guage Processing, Machine Learning

I. INTRODUCTION

Fork-based development allows developers to start develop-
ment from an existing codebase, while having the freedom
and independence to make any necessary modifications [1]–
[4], and making it easy to merge changes from forks into
upstream repository [5]. Although fork-based development is
easy to use and popular in practice, it has downsides: When
the number of forks of a project increases, it becomes difficult
to maintain an overview of what happens in individual forks
and thus of the project’s scope and direction [6]. This further
leads to additional problems, such as redundant development,
which means developers may re-implement functionality
already independently developed elsewhere.

For example, Fig. 1(a) shows two developers coincidentally
working on the same functionality, where only one of the
changes was integrated.1 And Fig. 1(b) shows another case in
which multiple developers submitted pull requests to solve the
same problem.2 And developers we interviewed previously by
researchers also confirmed the problem as follows: “I think
there are a lot of people who have done work twice, and
coded in completely different coding style[s]” [6]. Gousios
et al. [7] summarized nine reasons for rejected pull requests
in 290 projects on GITHUB, in which 23% were rejected
due to redundant development (either parallel development or
superseded other pull requests).

Existing works show that redundant development signifi-
cantly increases the maintenance effort for maintainers [1],

1https://github.com/foosel/OctoPrint/pull/2087
2https://github.com/BVLC/caffe/pull/6029

(a) Two developers work on same functionality

(b) Multiple developers work on same functionality

Fig. 1. Pull requests rejected due to redundant development.

(a) Helping maintainers to detect duplicate PRs

(b) Helping developers to detect early duplicate development

Fig. 2. Mock up bot: Sending duplication warnings.

[8]. Specifically, Yu et al. manually studied pull requests from
26 popular projects on GITHUB, and found that on average 2.5
reviewers participated in the review discussions of redundant
pull requests and 5.2 review comments were generated before
the duplicate relation is identified [9]. Also, Steinmacher et
al. [10] analyzed quasi-contributors whose contributions were
rejected from 21 GITHUB projects, and found that one-third of
the developers declared the nonacceptance demotivated them
from continuing to contribute to the project. However, redun-
dant development might not always be harmful (just as Nicolas
et al. pointed out that duplicate bug report provides additional
information, which could help to resolve bugs quicker [11]).
We argue that pointing redundant development out, will help
developers to collaborate, creating better solutions overall.

Facing this problem, our goal is (1) to help project maintain-
ers to automatically identify redundant pull request in order
to decrease workload of reviewing redundant code changes,
and (2) to help developers detect redundant development as

https://github.com/foosel/OctoPrint/pull/2087
https://github.com/BVLC/caffe/pull/6029


early as possible by comparing code changes with other forks
in order to eliminate potentially wasted effort and encourage
developers to collaborate. Specifically, we would like to build a
bot to send warnings when duplicate development is detected,
which could assist maintainers’ and contributors’ work in open
source projects. This idea also matches one of the desired
features of a bot that contributors and maintainers want [12].
A mock up of the bot’s output is shown in Fig. 2.

In this paper, we lay the technical foundation for such
a bot by designing an approach to identify redundant code
changes in fork-based development and evaluating its detection
strategy. We first identify clues that indicate a pair of code
changes might be similar by manually checking 45 duplicate
pull request pairs. Then we design measures to calculate the
similarity between changes for each clue. Finally, we treat the
list of similarities as features to train a classifier in order to
predict whether a pair of changes is a duplicate. Our dataset
and the source code are available online.3

We evaluate the effectiveness of our approach from
different perspectives, which align with the application
scenarios introduced before for our bot: (1) helping project
maintainers to identify redundant pull requests in order to
decrease the code reviewing workload, (2) helping developers
to identify redundant code changes implemented in other
forks in order to save the development effort, and encouraging
collaboration. In these scenarios, we prefer high precision
and could live with moderate recall, because our goal is to
save maintainers’ and developers’ effort instead of sending
too many false warnings. Sadowski et al. found that if a tool
wastes developer time with false positives and low-priority
issues, developers will lose faith and ignore results [13]. We
argue that as long as we show some duplicates without too
much noise, we think it is a valuable addition. The result
shows that our approach could achieve 57–83% precision
for identifying duplicate pull requests from the maintainer’s
perspectives within a reasonable threshold range (details in
Section IV). Also, our approach could help developers save
1.9–3.0 commits per pull request on average .

We also compared our approach to the state-of-the-art show-
ing that we could outperform the state-of-the-art by 16–21%
recall. Finally, we conducted a sensitive analysis to investigate
how sensitive our approach is to different kinds of clues in
the classifier. Although we did not evaluate the bot that we
envision in this paper, our work lays the technical foundation
for building a bot for the open-source community in the future.

To summarize, we contribute (a) an analysis of the re-
dundant development problem, (b) an approach to automat-
ically identify duplicate code changes using natural language
processing and machine learning, (b) clues development for
indicating redundant development, beyond just title and de-
scription, (c) evidence that our approach outperforms the state-
of-the-art, and (d) anecdotal evidence of the usefulness of
our approach from both the maintainer’s and the developer’s
perspectives.

3https://github.com/FancyCoder0/INTRUDE

II. IDENTIFYING CLUES TO DETECT REDUNDANT
CHANGES

In this paper, we refer to changes when developers make
code changes in a project. There are different granularities of
changes, such as pull requests, commits, or fine-grained code
changes in the IDE (Integrated Development Evironment). In
this section, we show how we extracted clues that indicate
the similarity between pull requests. Although we use pull
requests to demonstrate the problem, note that the examples
and our approach are generalizable to different granularities
of changes: For example, we could detect redundant pull
requests for an upstream repository, redundant commits
in branches or forks, or redundant code changes in IDEs
(detailed application scenarios are described in Sec. III-C).

A. Motivating Examples

We present two examples of duplicate pull requests from
GITHUB to motivate the need for using both natural language
and source code related information in redundant development
detection.

Case 1: Similar Text Description but Different Dode
Changes: We show a pair of duplicate pull requests that are
both fixing the bug 828266 in the mozilla-b2g/gaia repository
in Fig. 3. Both titles contained the bug number, copied the
title of the bug report, and both descriptions contain the link
to the bug report. It is straightforward to detect duplication
by comparing the referred bug number, and calculating the
similarity of the title and the description. However, if we check
the source code,4 the solutions for fixing this bug are different,
although they share two changed files. Maintainers would
likely benefit from automatic detection of such duplicates,
even if they don’t refer to a common bug report. It could
also prevent contributors from submitting reports that are
duplicates, lowering the maintenance effort.

Case 2: Similar Code Changes but Different Text Descrip-
tion: We show a pair of duplicate pull requests that implement
similar functionality for project mozilla-b2g/gaia in Fig. 4.
Both titles share words like ‘Restart(ing)’ and ‘B2G/b2g’, and
both did not include any other textual description beyond the
title. Although one pull request mentioned the bug number, it
is hard to tell whether these two pull requests are solving the
same problem by comparing the titles. However, if we include
the code change information, it is easier to find the common
part of the two pull requests: They share two changed files,
and the code changes are not identical but very similar except
the comments at Line 8 and the code structure. Also, they
changed the code in similar locations.

B. Clues for Duplicate Changes

We might consider existing techniques for clone detec-
tion [14], which aim to find pieces of code of high textual
similarity on Type 1-3 clones in a system but not textual
descriptions [15]. However, our goal is not to find code
blocks originating from copy paste activities, but code changes

4https://github.com/mozilla-b2g/gaia/pull/7587/files
https://github.com/mozilla-b2g/gaia/pull/7669/files
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Fig. 3. Duplicate PRs with similar text information

written independently by different developers about the same
functionality due to a lack of an overview in the fork-based
development environment, which is conceptually close to the
Type-4 clones [15], meaning two code changes have similar
functionalities but are different in syntax.

Similarly, we have considered existing techniques for de-
tecting duplicate bug reports [16]–[21], which compare textual
descriptions but not source code (see detailed related work
in Sec. VI). Different from the scenarios of clone detection
and detecting duplicate bug reports, for detecting duplicate
pull requests we have both textual description and source
code, including information about changed files and code
change locations. Thus we have additional information that
we can exploit, and have opportunities to detect duplicate
changes more precisely. Therefore, we seek inspiration from
both lines of research, but tailor an approach to address the
specific problem of detecting redundant code changes across
programming languages and at scale.

To identify potential clues that might help us to detect if
two changes are duplicates, we randomly sampled 45 pull
requests that have been labeled as duplicate on GITHUB
from five projects using (the March 2018 version of)
GHTORRENT [22]. For each, we manually searched for the

Fig. 4. Duplicate PRs with similar code change information

corresponding pull request that the current pull request is
duplicate of. We then went through each pair of duplicate pull
requests and inspected the text and code change information
to extract clues indicating the potential duplication. The first
two authors iteratively refined the clues until analyzing more
duplicate pairs yielded no further clues.

Based on the results of the manual inspection, neither text
information or code change information was always superior
to the other. Text information represents the goal and sum-



mary of the changes by developers, while the corresponding
code change information explicitly describes the behavior.
Therefore, using both kinds of information can potentially
detect redundant development precisely. Comparing to pre-
vious work [23], which detects duplicate pull requests by
calculating the similarity only of title and description, our
approach considers multiple facets of both the text information
and the code change information.

We summarize the clues characterizing the content of a code
change, which we will use to calculate change similarity:

• Change description is a summary of the code changes writ-
ten in natural language. For example, a commit has commit
message and a pull request contains title and description.
Similar titles are a strong indicator that these two code
changes are solving a similar problem. The description may
contain detailed information of what kind of issue the cur-
rent code changes are addressing, and how. However, textual
description alone might be insufficient, as Fig. 4 shows.

• References to an issue tracker are a common practice in
which developers explicitly link a code change to an existing
issue or feature request in the issue tracker (as shown in
Fig. 3). If both code changes reference the same issue, they
are likely redundant, except for cases in which the two de-
velopers intended to have two solutions to further compare.

• Patch content is the differences of text changes in each
file by running ’git diff’ command. The content could be
source code written in different programming languages or
comments from source code files, or could be plain text
from non-code files. We found (when inspecting redundant
development) that developers often share keywords
when defining variables and functions, so that extracting
representative keywords from each patch could help us
identify redundant changes more precisely comparing to
only using textual description (as shown in Fig. 4).

• A list of changed files contains all the changed files in
the patch. We assume that if two patches share the same
changed files, there is a higher chance that they are working
on similar or related functionality. For example, in Fig. 4,
both pull requests changed the helper.js and perf.js files.

• Code change location is a range of changed lines in the
corresponding changed files. If the code change locations
of two patches are overlapping, there is a potential that they
are redundant. For example, in Fig. 4, two pull requests
are both modifying helper.js lines 8–22, which increases
the chance that the changes might be redundant.

III. IDENTIFYING DUPLICATE CHANGES IN FORKS

Our approach consists of two steps: (1) calculating the
similarity between a pair of changes for each clue listed
previously; (2) predicting the probability of two code changes
being duplicate through a classification model using the
similarities of each clue as features.

As our goal is to find duplicate development caused by
unawareness of activities in other forks, we first need to filter
out pull request pairs in which the authors are aware of the

TABLE I
CLUES AND CORRESPONDING MACHINE LEARNING FEATURES

Clue Feature for Classifier Value

Change description Title_similarity [0,1]
Description_similarity [0,1]

Patch content
Patch_content_similarity [0,1]
Patch_content_similarity_on_ [0,1]overlapping_changed_files

Changed files list Changed_files_similarity [0,1]
#Overlapping_changed_files N

Location of code changes
Location_similarity [0,1]
Location_similarity_ [0,1]on_overlapping_changed_files

Reference to issue tracker Reference_to_issue_tracker {-1, 0, -1}

Fig. 5. Calculating similarity for description / patch content

existence of another similar code change by checking the
following criteria:
• Code changes are made by the same author; or
• Changes from different authors are linked on GITHUB by

authors, typically used when one is a following work of
the other, or one is intended to supersede the other with
a better solution; or

• The later pull request is modifying the code on top of the
earlier merged pull request.

A. Calculating Similarities for Each Clue

We calculate the similarity of each clue as features to train
the machine learning model. Table I lists the features.

1) Change Description: To compare the similarity of the
description of two changes, we first preprocess the text through
tokenization and stemming. Then we use the well-known Term
Frequency Inverse Document Frequency (TF-IDF) scoring
technique to represent the importance of each token (its TF-
IDF score), which increases proportionally to the number of
times a word appears in the feature’s corpus but is offset by the
frequency of the word in the other feature’s corpora [24]. The
TF-IDF score reflects the importance of a token to a document;
tokens with higher TF-IDF values better represent the content
of the document. For example, in Fig. 4, the word ’LockScreen’
appears many times in both pull requests, but does not appear
very often in the other parts of the project, so the ’LockScreen’
has a high TF-IDF score for these pull requests.

Next, we use Latent Semantic Indexing (LSI) [25] to
calculate similarity between two groups of tokens, which is
a standard natural language processing technique and has
been proved to outperform other similar algorithms on textual



artifacts in software engineering tasks [26], [27]. Last, we
calculate the cosine similarity of two groups of tokens to get
a similarity score (see Fig. 5).

2) Patch Content: We compute the token-based difference
between the previous and current version of the file of each
change, e.g. if original code is func(argc1, argc2), and updated
version is func(argc1, argc2, argc3), we only extract argc3 as
the code change. We do not distinguish source code, in-line
comments, and documentation files, we treat them uniformly
as source code, but assume the largest portion is source code.

In order to make our approach programming languages
independent, we treat all source code as text. So we use the
same process as code change description to calculate the
similarity, except we replace LSI by Vector Space Model
(VSM), shown in Fig. 5, because VSM works better in case
of exact matches while LSI retrieves relevant documents
based on the semantic similarity [27].

However, this measure has limitations. When a pull request
is duplicate with only a subset of code changes in another
pull request, the similarity between these two is small, which
makes it harder to detect duplicate code changes. During the
process of manually inspecting duplicate pull request pairs
(Section II-B), we found there are 28.5% pairs where one pull
request is five times larger than the other at the file level. To
solve this problem, we add another feature as the similarity of
patch content only on overlapping files.

3) Changed Files List: We operationalize the similarity
of two lists of files into computing the overlap between
two sets of files by using Jaccard similarity coefficient:
J(A,B) = |A∩B|

|A∪B| (A and B are two sets of elements). The
more overlapping files two changes have, the more similar
they are. As Fig. 6 shows, PR1 and PR2 have modified 2
files each, and both of them modified File1, so the similarity
of the two lists of files is 1/3.

Again, in case that one pull request is much bigger than
the other in terms of changed files, which leads to a small
ratio of overlapping files, we add a feature defined as the
number of overlapping files.

4) Location of Code Changes: We calculate the similarity
of code change location by comparing the size of overlapping
code blocks between a pair of changes. The more overlapping
blocks they have, the more similar these two changes are. In
Fig. 6, block A overlaps with block D in File1. We define the
Location similarity as the length of overlapping blocks divided
by length of all the blocks.

Similar to our previous concern, in order to catch redundant
changes between big and small size of patches in file level,
we define a feature of similarity of code change location for
only overlapping files. For example, in Fig. 6, block A, B and
D belong to File1, but block C and E belong to different files,
so the measure of Location similarity on overlapping changed
files only consider the length of block A, B and D.

5) Reference to Issue Tracker: Based on our observation,
we found that if two changes link to the same issue, they are
very likely duplicates, while, if they link to different issues,
our intuition is that the chance of the changes to be duplicate

is very low. So we defined a feature as reference to issue
tracker. For projects using the GITHUB issue tracker, we use
the GITHUB API to extract the issue link, and, for projects
using other issue tracking systems (as Fig. 3 shows), we
parse the text for occurrences from a list of patterns, such as
’BUG’, ’ISSUE’,’FR’ (short for feature request). We define
three possible values for this feature: If they link to the same
issue, the value is 1; if they link to different issues, the value
is -1; otherwise it is 0.

B. Predicting Duplicate Changes Using Machine Learning
The goal is to classify a pair of changes as duplicate or not.
We want to aggregate these nine features and make a decision.
Since it is not obvious how to aggregate and weigh the
features, we use machine learning to train a model. There are
many studies addressing the use of different machine learning
algorithms for classification tasks, such as support vector
machines, AdaBoost, logistic regressions, neural network,
decision Trees, random forest, and k-Nearest Neighbor [28].
In this study, in order to assess the performance of these
techniques for our redundancy detection problem, we have
conducted a preliminary experimental study. More specifically,
we compared the performance of six algorithms based on a
small set of subject projects. We observed that the best results
were obtained when AdaBoost [29] was used. Therefore, we
focused our efforts only on AdaBoost, but other techniques
could be easily substituted. Since the output of AdaBoost
algorithm is a probability score whether two changes are
duplicate, we set a threshold and report two changes as
duplicate when the probability score is above the threshold.

C. Application Scenarios
Our approach could be applied to different scenarios to help
different users. Primarily, we envision a bot to monitor the
incoming pull request in a repository and compare the new
pull request with all the existing pull requests in order to help
project maintainers to decrease their workload. The bot would
automatically send warnings when a duplication is detected
(see Fig. 2(a)).

Additionally, we envision a bot to monitor forks and
branches, and compare the commits with other forks and with
existing pull requests, in order to help developers detect early
duplicate development. Researchers have found that develop-
ers think it is worth spending time checking for existing work
to avoid redundant development, but once they start coding a
pull request, they never or rarely communicate the intended
changes to the core team [30]. We believe it is useful to inform
developers when potentially duplicate implementation is hap-
pening in other forks, and encourage developers to collaborate
as early as possible instead of competing after submitting the
pull request. A bot would be a solution (see Fig. 2(b)).

Also, we could build a plug-in for a development IDE, so
we could detect redundant development in real time.

IV. EVALUATION

We evaluate the effectiveness of our approach from different
perspectives, which align with the application scenarios intro-



Fig. 6. Similarity of changed files and similarity of code change location (loc: Lines of code )

duced in Sec. III-C: (1) helping project maintainers to identify
redundant pull requests in order to decrease the code reviewing
workload, (2) helping developers to identify redundant code
changes implemented in other forks in order to save devel-
opment effort. To demonstrate the benefit of incorportating
multiple clues, we compared our approach to the state-of-the-
art that uses textual comparison only. Finally, beyond just
demonstrating that our specific implementation works, we
explore the relative importance of our clues with a sensitivity
analysis, which can guide other implementations and future
optimizations. Thus, we derived four research questions:
• RQ1: How accurate is our approach to help maintainers

identify redundant pull requests?
• RQ2: How much effort could our approach save for devel-

opers in terms of commits?
• RQ3: How good is our approach identifying redundant pull

requests comparing to the state-of-the-art?
• RQ4: Which clues are important to detect duplicate

changes?

A. Dataset

To evaluate approaches, an established ground truth is
needed—a reliable data set defining which changes are dupli-
cate. In our experiment, we used an established corpus named
DupPR, which contains 2323 pairs of duplicate pull requests
from 26 popular repositories on GITHUB [9] (Table. II). We
picked half of the DupPR dataset, which contains 1174 pairs of
duplicate PRs in twelve repositories as the positive samples in
the training dataset (highlighted) to calibrate our classifier (see
Sec. III-B), and the remaining 1149 pairs from 14 repositories
as testing dataset.

While this dataset provides examples of duplicate pull
requests, it does not provide negative cases of pull request
pairs that are not redundant (which are much more common
in practice [7]). To that end, we randomly sampled pairs of
merged pull requests from the same repositories, as we assume
that if two pull requests are both merged, they are most likely
not duplicate. Overall, we collected 100,000 negative samples
from the same projects, 50,000 for training, and 50,000 for
testing.

B. Analysis and Results

RQ1: How accurate is our approach to help maintainers
identify redundant contributions?

In our main scenario, we would like to notify maintainers
when a new pull request is duplicate with existing pull

TABLE II
SUBJECT PROJECTS AND THEIR DUPLICATE PR PAIRS

Repository #Forks #PRs #DupPR
pairs Language

symfony/symfony 6446 16920 216 PHP
kubernetes/kubernetes 14701 38500 213 Go
twbs/bootstrap 62492 8984 127 CSS
rust-lang/rust 5222 26497 107 Rust
nodejs/node 11538 12828 104 JavaScript
symfony/symfony-docs 3684 7654 100 PHP
scikit-learn/scikit-learn 15315 6116 68 Python
zendframework/zendframework 2937 5632 53 PHP
servo/servo 1966 12761 52 Rust
pandas-dev/pandas 6590 9112 49 Python
saltstack/salt 4325 29659 47 Python
mozilla-b2g/gaia 2426 31577 38 JavaScript

rails/rails 16602 21751 199 Ruby
joomla/joomla-cms 2768 13974 152 PHP
angular/angular.js 29025 7773 112 JavaScript
ceph/ceph 2683 24456 104 C++
ansible/ansible 13047 24348 103 Python
facebook/react 20225 6978 74 JavaScript
elastic/elasticsearch 11859 15364 62 Java
docker/docker 14732 18837 61 Go
cocos2d/cocos2d-x 6587 14736 57 C++
django/django 15821 10178 55 Python
hashicorp/terraform 4160 8078 52 Go
emberjs/ember.js 4041 7555 46 JavaScript
JuliaLang/julia 3002 14556 42 Julia
dotnet/corefx 4369 17663 30 C#

* The upper half projects (highlighted) are used as training dataset, and lower
half projects are used as testing dataset.

requests, in order to decrease their workload of reviewing
redundant code changes (e.g., a bot for duplicate pull request
monitoring). So we simulate the pull request history of a
given repository, compare the newest pull request with all the
prior pull requests, and use our classifier to detect duplication:
If we detect duplication, we report the corresponding pull
request number.

Research method: We use the evaluation set of the
DupPR dataset as ground truth. However, based on our man-
ual inspection, we found the dataset is incomplete, which
means it does not cover all the duplicate pull requests for
each project. This leads to several problems. First, when our
approach detects a duplication but the DupPR does not cover
the case, the precision value is distorted. To address this
problem, we decided to manually check the correctness of
the duplication warnings; in another word, we complement
DupPR with manual checking result as ground truth (shown
in Table III). Second, it is unrealistic to manually identify all
the missing pull request pairs in each repository, so we decided



TABLE III
RQ1: SIMULATING PR HISTORY

PR
history Our_result DupPR Manual

checking
Warning

correctness

1 - ?
2 - ?
3 - ?
4 2 2 X
5 - ?
6 5 ? 5 X
7 - ?
8 - 6
9 4 ? 7 7

Ground Truth

to randomly sample 400 pull requests from each repository for
computing precision.

Table III illustrates our replay process. The PR_history
column shows the sequence of the coming PRs, our_result
column is our prediction result, for example, we predict 4 is
duplicate with 2, and 6 is duplicate with 5, and 9 is duplicate
with 4; DupPR column shows that 2 and 4 are duplicate, and
8 and 6 are duplicate; the manual_checking column shows
that the first 2 authors manually checked and confirmed 5 and
6 are duplicate, and 9 and 4 are not duplicate. The warning
correctness shows that the precision of this example is 2/3.

For calculating recall, we use a different dataset because
even for 400 pull requests per project, we need to manually
check a large number of pull requests in order to find all the
duplicate pull request pairs, which is very labor intensive.
Thus, we only use the evaluation section of the DupPR
dataset (lower half of Table. II) to run the experiment, which
contains 1149 pairs of confirmed duplicate pull requests from
14 repositories.

Result: Figure 7 shows the precision and recall at
different thresholds. We argue that within a reasonable
threshold range of 0.5925–0.62, our approach achieved 57-
83% precision and 10-22% recall. After some experiments,
we pick a reasonable default threshold of 0.6175, where our
approach achieves 83% precision and 11% recall (dash line in
Fig. 7). Tables IV and V show the corresponding precision and
recall for each the project separately at the default threshold.

We did not calculate the precision for lower threshold
because when the threshold gets lower, the manual check effort
becomes infeasible. Here we argue that a higher precision is
more important than recall in this scenario, because our goal
is to decrease the workload of maintainer, so that we hope
all the warnings that we send to them are mostly correct,
otherwise, we will waste their time to check false positives.
In the future, it would be interesting to interview stakeholders
or design experiment with real intervention to see acceptable
levels about the acceptance rate of false positives in the real
scenario, so we could allow users to set the threshold for
different tolerance rate of false positives.

RQ2: How much effort could our approach save for devel-
opers in terms of commits?

TABLE IV
RQ1, PRECISION AT DEFAULT THRESHOLD

Repository TP / TP + FP Precision

django/django 5 / 5 100%
facebook/react 3 / 3 100%
hashicorp/terraform 3 / 3 100%
ansible/ansible 2 / 2 100%
ceph/ceph 2 / 2 100%
joomla/joomla-cms 2 / 2 100%
docker/docker 1 / 1 100%
cocos2d/cocos2d-x 6 / 7 86%
rails/rails 5 / 6 83%
angular/angular.js 3 / 4 75%
dotnet/corefx 2 / 3 67%
emberjs/ember.js 2 / 4 50%
elastic/elasticsearch 1 / 2 50%
JuliaLang/julia 1 / 2 50%
Overall 38 / 46 83%

TABLE V
RQ1, RECALL AT DEFAULT THRESHOLD

Repository TP / TP + FN Recall

ceph/ceph 31 / 104 30%
django/django 14 / 55 25%
hashicorp/terraform 8 / 52 15%
elastic/elasticsearch 7 / 62 11%
cocos2d/cocos2d-x 6 / 57 11%
rails/rails 20 / 199 10%
docker/docker 6 / 61 10%
angular/angular.js 11 / 112 10%
joomla/joomla-cms 12 / 152 8%
ansible/ansible 7 / 103 7%
emberjs/ember.js 3 / 46 7%
facebook/react 3 / 74 4%
JuliaLang/julia 0 / 42 0%
dotnet/corefx 0 / 30 0%
Overall 128 / 1149 11%

The second scenario focuses on developers. We would like
to detect redundant development as early as possible to help
reduce the development effort. A hypothetical bot monitors
forks and branches and compares un-merged code changes in
forks against pending pull requests and against code changes
in other forks.

Research Method: To simulate this scenario, we replay
the commit history of a pair of duplicate pull requests. As
shown in Fig. 8, when there is a new commit submitted, we
use the trained classifier to predict if the two groups of existing
commits from each pull request are duplicate.

We use the same testing dataset as described in Sec. IV-A).
We calculate the number of commits to represent the saved
development effort because number of commits and lines of
added/modified code are highly correlated [31]. Since we are
checking if our approach could save developers’ effort in terms
of commits, we first need to filter out pull request pairs that
have no chance to predict the duplication early. For instance,
two pull requests both contain only one commit, or the later
pull request has only one commit. After this filtering, the
final dataset contains 408 positive samples and 13,365 negative
samples.



Fig. 7. RQ1: Precision & Recall at different thresholds, dashed line shows
the default threshold

Fig. 8. Simulating commit history of a pair of PRs. If PR1 is duplicate with
PR2, we first compare commit 1 and 5, if we do not detect duplication, then
we compare 1 and (5,6), and so on. If we detect duplication when comparing
(1, 2, 3) with (5, 6), then we conclude that we could save developers of PR1
one commit of effort or PR2 two commits.

Result: Based on the classification result, we group the
pairs of duplicate pull requests (positive dataset) into three
groups: Duplicate detected early, duplication detected in the
last commit, and duplication not detected. In addition, we
check how much noise our approach introduces, we calculate
the number of false positive cases among all the 13,365
negative cases, and get the false positive rate.

We argue that within a reasonable threshold range of 0.52–
0.56, our approach achieved 46–71% recall (see Fig. IV-B),
with 0.07–0.5% false positive rate (see Fig. IV-B). Also, we
could save 1.9–3.0 commits per pull request within the same
threshold range (see Fig. IV-B).5

RQ3: How good is our approach identifying redundant PRs
comparing to the state-of-the-art?

Research Method: Yu et al. proposed an approach to
detect duplicate pull requests with the same scenario as we
described in RQ1 [23], that is, for a given pull request,
identifying duplicate pull requests among other history pull
requests. However, there are three main differences between
their approach and ours: (1) they calculate the textual simi-
larity between a pair of pull requests only on title and de-
scription, while we consider patch content, changed files, code
change location, and reference to issue tracking system when
calculating similarities (9 features) (see Sec. II-B); (2) their
approach returns top-K duplicate pull requests among existing
pull requests by ranking them by arithmetic average of the
two similarity values, while our approach reports duplication
warnings only when the similarity between two pull requests
is above a threshold; (3) they get the similarity of two pull
requests by calculating the arithmetic average of the two

5Comparing to RQ1 scenario, we set a lower default threshold in this case,
and we argue that developers of forks are more willing to inspect activities
in other forks [6], [30]. But again, in the future, we would give developers
the flexibility to decide how many notifications they would like to receive.

(a) Distribution for prediction result on positive data (duplicate PR pairs)

(b) False positive rate

(c) Saved #commits per pull request

Fig. 9. RQ2: Can we detect duplication early, how much effort could we
save in terms of commits, and corresponding false positive rate at different
threshold

similarity values, while we adopt a machine learning algorithm
to aggregate nine features.

We argue that for this scenario, our goal is to decrease
maintainers’ workload for reviewing duplicate pull requests,
instead of assuming maintainers periodically to go through a
list of potential duplicate pull request pairs. In our solution,
we therefore also prefer high precision over recall. But in
order to make our approach comparable, we reproduced their
experimental setup and reimplemented their approach, even
though it does not align with our goal.

Research Method: We follow their evaluation process by
computing recall-rate@k, as per the following definition:

recall-rate@k =
Ndetected

Ntotal
(1)

Ndetected is the number of pull requests whose corresponding
duplicate one is detected in the candidate list of top-k pull
requests, Ntotal is the total number of pairs of duplicate pull
requests for testing. It is the ratio of the number of correctly
retrieved duplicates divided by the total number of actual
duplicates. The value of k may vary from 1 to 30, meaning
the potential k duplicates.

Result: As shown in Fig. 10, our approach achieves better
results than the state-of-the-art by 16–21% recall-rate@k.



Fig. 10. RQ3: How good is our approach identifying redundant PRs
comparing to the state-of-the-art?

Fig. 11. RQ4: Sensitive analysis, removing one clue at a time. Precision at
recall fixed at 20%

The reason is that we considered more features and code
change information when comparing the similarity between
two changes. Also, we use a machine learning technique to
classify based on features.

RQ4: Which clues are important to detect duplicate
changes?

We aim to understand the clues that influence the effective-
ness of our approach. Specifically, we investigate how sensitive
our approach is to different kinds of clues in the classifier.

Research Method: We design this experiment on the
same scenario as RQ1, which is helping maintainers to detect
duplication by comparing new pull request with existing pull
requests from each project as testing dataset (see Sec. IV-B).
However, we used a smaller testing dataset of 60 randomly
sampled pull requests, because for calculating precision we
need to manually check the detected duplicate pull request
pairs every time, which is labor intensive.

We trained the classifier five times, and we removed one
clue each time. So the combined absolute values of features
change every time in the classifier’s sum. This means that
using a single cut-off thresholds for all the rounds does not
make sense – the measured objective function changes all the
time. Therefore, we pick the threshold for each model such
that it produces a given recall (20%) and compare precision
at that threshold.

Result: Fig. 11 shows that when considering all the clues,
the precision is the highest (64.3%). Removing the clue of
patch content affects precision the most, which leads to 35.3%
precision, and removing the text description has the least
effect (63.6% precision). The result shows that patch content
is the most important clue in our classifier, which likely
explains the improvement in RQ3 as well. In the future, we
could also check the sensitivity for each feature, or different
combinations.

V. THREATS TO VALIDITY

Regarding external validity, our experimental results are based
on an existing corpus, which focuses on some of the popular
open source projects on GITHUB, which covers different
domains and programing languages. However, one needs to
be careful when generalizing our approach to other open
source projects. Also, for our sensitivity analysis, we only
ran it on the experimental setup, which means the conclusion
might not generalize to RQ2.

Regarding construct validity, the corpus of DupPR was vali-
dated with manual checking [9], but we found the dataset to be
incomplete. So we manually checked the duplicate pull request
pairs that our approach identified by the first and second author
independently. We are not experts on these projects, so we may
misclassify pairs despite careful analysis. All inconsistencies
identified by the two authors were discussed until consensus
was reached.

In this paper, we are using changes to represent all kinds
of code changes in general, and we use pull requests to
demonstrate the problem. While we believe that our approach
can be generalized to other kinds of granularities of changes,
future research is needed to confirm.

VI. RELATED WORK

A. Duplicate Pull Request Detection

Li et al. proposed an approach to detect duplicate pull requests
by calculating the similarity on title and description [23],
which we used as baseline to compare with (Sec IV-B).
Different from their approach, we considered both textual and
source code information, used a machine learning technique
classify duplicates, and evaluated our approach in scenarios
from the maintainer’s and developer’s perspectives. Later, Yu
et al. created a dataset of duplicate pull request pairs [9],
which we have used as part of our ground truth data.

Zhang et al. analyzed pull requests with a different goal:
They focused on competing pull requests that edited the
same lines of code, which would potentially lead to merge
conflicts [32], which is roughly in line with the merge conflicts
prediction tool Palantír [33] and Crystal [34]. Even though we
also look at change location, we focus on a broader picture: We
detect redundant (not only conflicting) work, and encourage
early collaboration. In the future, we could report conflicts
since we already collect the corresponding data as one feature
in the machine learning model.

B. Duplicate Bug Report Detection

We focus on detecting duplicate pull requests, but there have
been other techniques to detect other forms of duplicate
submissions, including bug reports [16]–[18], [35], [36] and
StackOverflow questions [37]. On the surface, they are similar
because they compare text information, but the types of text
information is different. Zhang et al. [38] summarized related
work on duplicate-bug-report detection. Basically, existing
approaches are using information retrieval to parse two types
of resource separately: One is natural-language based [35],
[36] and the other is execution information based [16], [18].



Further, Wang et al. [17] combined execution information with
natural language information to improve the precision of the
detection. Beyond information retrieval, duplicate bug-report
classification [19] and the Learn To Rank approach were
also used in duplicate detection [20], [21]. In contrast, our
approach focuses on duplicate implementations for features or
bug fixing, where we can take the source code into account.

C. Clone Detection

Our work is similar to the scenario of detecting Type-4
clones: Two or more code fragments that perform the same
computation but are implemented by different syntactic
variants [15]. We, instead, focus on detecting work of
independent developers on the same feature or bug fix, which
is a different, somewhat more relaxed and broader problem.
Researchers investigated different approaches to identify code
clones [14]. There are a few approaches attempting to detect
pure Type-4 clones [39]–[41], but these techniques have been
implemented to only detect C clones, which are programming
language specific. Recently, researchers started to use machine
learning approaches to detect clones [42]–[45] including Type-
4 clones. Different from the scenario we proposed in this
paper, clone detection uses source code only, while we also
consider textual description of the changes. So we customize
the clone detection approaches and applied them in a different
scenario, that is identifying redundant changes in forks. As
a future direction, it would be interesting to integrate and
evaluate more sophisticated clone detection mechanisms as a
similarity measure for the patch content clue in our approach.

D. Transparency in Fork-based Development

Redundant development is caused by lacking an overview
and not enough transparency in fork-based development.
In current modern social coding platforms, transparency
has been shown to be essential for decision making [46],
[47]. Visible clues, such as developer activities or project
popularity, influence decision making and reputation in an
ecosystem. However, with the increase of forks, it is hard
to maintain an overview. To solve this problem, in prior
work, we designed an approach to generate a better overview
of the forks in a community by analyzing unmerged code
changes in forks with the aim of reducing inefficiencies in the
development process [6]. In this paper, we solve a concrete
problem caused by a lack of an overview, which is predicting
redundant development as early as possible.

VII. DISCUSSION

Usefulness: On the path toward building a bot to detect
duplicate development, there are more open questions. We
have confirmed the effectiveness, but in the following we
discuss the broader picture of whether our approach is useful
in practice and how to achieve the goal.

We have opportunistically introduced our prototype to some
open-source developers with public email addresses on their
GitHub profiles, and other discussions in person at conferences
and received positive feedback. For example, one of the

maintainers from cocos2d-x project commented that “this is
quite useful for all Open Source Project on GitHub, especially
for that with lots of Issues and PRs.” And another maintainer
from hashicorp/terraform also replied “this would definitely
help someone like us managing our large community.”

We had also left comments to some of the pull requests that
we detected as duplicate on GITHUB in order to explore the re-
action of developers. We commented on 23 pull requests from
8 repositories, and 16 cases were confirmed as duplication,
while 3 cases were confirmed as not duplicate, and we have not
heard from the rest. We have received much positive feedback
on both the importance of the problem and our prediction
result. Interestingly, for the three false positive cases, even
for developers of the projects it was not straightforward to
decide whether they were duplicate or not, due to differences
in solutions and coding style. We believe that although our
tool does report false positives, it might be still valuable and
worth to bring developers’ attention to discuss the potentially
duplicate or closely related code changes together.

In the future, we plan to implement a bot as sketched in
Fig. 2 and design a systematic user study to evaluate the
usefulness of our approach.

Detecting Duplicate Issues: We received feedback from
project maintainers that duplication does not only happen in
code changes, but appears also in issue trackers, forums, and
so on. We have seen issues duplicating a pull request, as
some developers directly describe the issue in the pull request
that solves it, missing the fact that the issue has already
been reported elsewhere. This makes detecting redundant
development event harder. However, since our approach is
natural-language-based, we believe that with some adjustment,
we could apply our approach to different scenarios.

False Negatives: Because the reported recall is fairly
low, we manually investigated some false negative cases, i.e.,
duplicates that we could not detect. We found that for a large
number of duplicate pull request pairs, none of our clues
work. But there are spaces we could improve, such as hard-
coding specific cases, improving the training dataset, adding
more features, or may be a domain vocabulary is needed to
improve the result. We argue that even if we can only detect
duplicate changes with a low recall of 22%, it is still valuable
for developers.

VIII. CONCLUSION

We have presented an approach to identify redundant code
changes in forks as early as possible by extracting clues of sim-
ilarity between code changes, and building a machine learning
model to predict redundancies. We evaluated the effectiveness
from both the maintainer’s and the developer’s perspectives.
The result shows that we achieve 57–83% precision for de-
tecting duplicate code changes from maintainer’s perspective,
and we could save developers’ effort of 1.9–3.0 commits on
average. Also, we show that our approach significantly out-
performs existing state-of-art and provide anecdotal evidence
of the usefulness of our approach from both maintainer’s and
developer’s perspectives.
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