
Looking into the Past: Enhancing Mobile
Publish/Subscribe Middleware

M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann
Databases and Distributed Systems Group

Darmstadt University of Technology
Darmstadt, Germany

{cilia,fiege,haul,az,buchmann}@informatik.tu-darmstadt.de

ABSTRACT
Publish/subscribe (pub/sub) middleware facilitates loosely coupled
cooperation and fits well the needs of spontaneous, ad-hoc interac-
tion. However, newly started mobile applications have to be boot-
strapped to interpret the current flow of notifications correctly and
commence normal operation. This problem is aggravated in mo-
bile environments where disconnections and context changes occur
frequently.

In this paper, we propose two forms of subscriptions that allow
consumers to subscribe to past events to improve the bootstrapping
process. The first form uses logical mobility to harness possible
client movements and subscribe in future locations to bootstrap vir-
tual counterparts before the application needs the data. The second
form is based on buffers and offers a way to integrate data reposi-
tories distributed in the network.

1. INTRODUCTION
The increasingly popular publish/subscribe (pub/sub) paradigm

allows processes to exchange information without explicit knowl-
edge about any particular destination address (e.g. IP address and
port number) where producers or consumers can be found. This is
founded on the principle that producers simply make information
available and consumers place a standing request for information
by issuing subscriptions. The notification service is then responsi-
ble for making information flow from a producer (publisher) to one
or more interested consumers (subscribers). A publish/subscribe
notification service provides asynchronous communication, it natu-
rally decouples producers and consumers, makes them anonymous
to each other, and allows a dynamic number of publishers and sub-
scribers. The loose coupling of producers and consumers is the
prime advantage of pub/sub systems and seems promising in the
context of spontaneous, ad-hoc and pervasive environments.

One major characteristic of pervasive applications is mobility,
which intrinsically requires appropriate support from the pub/sub
system. This includes mechanisms to support roaming clients, e.g.,
to bridge phases of disconnection, and a notion of location tailored
for efficient location-dependent information delivery.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’03 2003, San Diego/CA, USA
Copyright 2003 ACM /06/03 ...$5.00.

The phenomenon we focus on in this paper is that many event-
based applications are characterized by having an initial phase of
notification observation in order to get into a consistent state. In
mobile scenarios this phase is basically needed to “adapt” the ap-
plication to current contextual information which is only available
locally. This initial stage is what we call the bootstrapping latency.
Before this stage is finished an application might not be able to
work properly.

Unfortunately, in pervasive scenarios where applications rely on
location-dependent information, the problem is aggravated by the
fact that whenever a client reaches a new location, consequently,
a new bootstrapping phase needs to be started in order to collect
location-dependent information which is required to bootstrap lo-
cation-aware applications. As pervasive environments are charac-
terized by a rather dynamic behavior, including mobility and fre-
quent context switches, this situation is not an isolated occasion.

However, because of the asynchronous and data driven nature of
the pub/sub paradigm, a mobile application cannot make assump-
tions about the time it will take before notifications required for
bootstrapping are published. For instance, when a client sponta-
neously appears in a new location, it cannot rely on notifications
being published as soon as it enters. In this kind of scenario, system
responsiveness is not only degraded, but the time window in which
a client application can actively “listen” is naturally constrained by
the duration it stays at a particular location.

Our approach for enhancing mobile pub/sub middleware con-
centrates on reducing the bootstrapping latency. Based on the as-
sumption that a consumer can be initialized by a sequence of noti-
fications, recently published notifications are delivered to new con-
sumers to make old notifications available to them as if they were
created earlier. This is achieved by extending the pub/sub infra-
structure to store recently published notifications in the network.
Two complementary approaches are proposed that utilize per-client
proxies and distributed buffers, respectively.

We devote the next section to a brief discussion about possible
solutions to access recent information before we present our mo-
bile pub/sub platform in Section 3. Section 4 refers to our initial
approach of dealing with mobility when possible consumer move-
ments are predictable. In Section 5 we complement this with a
more detailed discussion of another algorithm which deals with,
e.g., spontaneous appearing of mobile consumers and takes this
into account for the minimization of bootstrapping latency. We
close the paper with a review of related work (Section 6) and a
conclusion/open issues in Section 7.

2. USING PAST NOTIFICATIONS
Consider for instance the following scenario: Client applications

����� �����	�

����	� ��� ������� ����� ��� � � �	� � ���

�	�	� � � � �	�	� � ���

ODWHQF\

� D� � WU DG L WL R QDO
DS S U R DFK

� E � � R X U � DS S U R DFK

W

������� � �������
� ��� �����������

��� � � !�� ���"� �
�	��������#"��

� � �

� E � � D�

Figure 1: Bootstrapping latency

(e.g. vehicles) want to obtain the current status of the traffic light in
their vicinity. In order to provide the required functionality at least
the following approaches are possible.

By means of a traditional request/reply interaction a consumer
needs to find whether its current location is contained in the range
of any traffic light nearby. In this case, an explicit handle is needed
to contact the traffic light or its proxy for requesting the current
status. Although simple, querying external sources conceptually
requires an infrastructure that supports directory lookups and re-
mote queries. Moreover, the client is responsible for polling the
required information with all well-known consequences. And from
the viewpoint of a traffic light, the tightly-coupled nature of re-
quest/reply seems inferior to the anonymous, loosely-coupled “pub-
lish” in a pub/sub system.

With a “traditional” pub/sub mechanism consumers need to up-
date their subscriptions explicitly and are only notified if they are
inside the traffic light’s range at the time of the state change publi-
cation [18, 22]. As a consequence, consumers are forced to wait un-
til the next notification is published, which leads to non-negligible
delays and considerable initialization latency, which might not be
tolerable for mobile applications and erodes the reactivity of the
pub/sub approach. An alternative is to publish a client’s request for
past events and route it according to existing filters to subscribers
with appropriate buffers; a flexible solution, although it introduces
ordering and duplication problems.

Another technique is to let traffic lights publish their status (and
not their status change) with a pre-specified frequency [1]. In the
worst case, applications need to wait a full update period. Hence,
the choice of the frequency is a crucial parameter that affects not
only applications but also resource usage. For instance, a mobile
device with scarce resources, like low bandwidth wireless link and
limited power supply, might suffer from heavy traffic on the wire-
less link when the frequency of broadcasts is too high.

The different approaches above illustrates a very simple ‘context
detection’ that merely relies on the last notification as a description
of current state. In general, the kind of data necessary to bootstrap
an application differs widely, but in the following we concentrate
on the class of applications that commence normal operation after
having seen a sequence of notification. The essential idea to dimin-
ish the bootstrap latency is to provide the consumer with a correct
sequence of past notifications as if it had subscribed earlier. Fig-
ure 1 basically depicts a comparison of the “traditional” case (a)
with our approach (b) of using past notifications in order to reduce
bootstrapping latency.

A proper support by the infrastructure for this mobility scenario
is to buffer published notifications somewhere in the network and to
deliver them to newly subscribed consumers as required. Transpar-
ent delivery decouples clients and buffer management and allows
for the integration of various implementation strategies, e.g., dis-

tributed caches, proxies, peer lookup, centralized stores, etc. Please
note that the availability of an arbitrary number of past notifica-
tions cannot be assured by the infrastructure, which only mediates
between applications and buffers. Consequently, in the worst case
(e.g., not enough notifications were published) our approach can-
not fully avoid bootstrap latency. But on the other hand, in this
case no additional overhead is added and the bootstrap latency is
not increased.

In this paper, two approaches are presented for buffering noti-
fications for potential later use. They complement each other and
may be combined with other methods to get the relevant current
state of the context in which a client operates.

3. MIDDLEWARE FOR MOBILE PUB/SUB
The following discussion is based on the REBECA notification

service [15, 10], which we use as basis for the proposed mobility
support.

3.1 Architecture
Processes of a system based on pub/sub communication can act

both as producers and consumers. They are clients of the under-
lying notification service. The communication interface to the ser-
vice is rather simple and consists of pub, sub, unsub, and notify
functions. The last one is a callback function called on the regis-
tered consumer to deliver a notification. A notification is a message
that reifies and describes an event occurrence. Notifications are not
published towards a specific receiver, but conveyed by the under-
lying notification service to those consumers that have registered a
matching subscription.

Subscriptions can be seen as boolean functions over notifications
(called filters). The most flexible scheme for specifying these filters
is content-based filtering, which utilizes predicates on the entire
content of a notification [14].

B2

B3 B4

B5

Border Broker

B1

Local Broker
X4’s Access Broker Inner Broker

Broker Network

Client

X4

X5

X3

X2

X1
X8 X7

X6

Figure 2: The router network of REBECA.

The service implementation is distributed to meet the mobility
scenario and scalability considerations. The communication topol-
ogy of the pub/sub system is given by a graph, which is assumed
to be acyclic and connected (Fig. 2). The graph consists of bro-
kers and clients. The edges are communication links that are point-
to-point and obey FIFO ordering of messages. Brokers are pro-
cesses that route notifications along multiple hops to the appropri-
ate clients. Three types of brokers are distinguished: Local brokers
constitute the clients’ access point to the middleware and are part
of the communication library loaded into the clients. A local broker
is connected to at most one border broker. Border brokers form the
boundary of the distributed communication middleware and main-
tain connections to local brokers, i.e., the clients. The border bro-
ker to which a client is connected is called its access broker. Inner

event broker event brokerevent broker

replicator replicator replicator

client B

stub

mobile device

wireless link

active virtual client
buffering virtual client

for A
client
virtual

client
virtual

for A

client A

Figure 3: Transparent implementation of logical mobility on top of
a mobile pub/sub system.

brokers are connected to other inner or border brokers and do not
maintain any connections to clients.

3.2 Possible routing strategies
Each broker maintains a routing table that determines in which

directions a notification needs to be forwarded. Each table entry
is a pair (F, L) containing a filter and the link from which it was
received, signifying the link along which a matching notification
has to be forwarded. Such data structures are used in many pub/sub
services [6, 7]. The routing decision is assumed to be an atomic
operation so that the end-to-end sender FIFO characteristic holds.
The routing tables are maintained to correspond to the available
information about active consumers and their subscriptions. Each
broker forwards this information according to the routing algorithm
used.

The basic form of routing is simple routing: filters are added to
the routing table together with the link they were received from and
they are forwarded in all other directions. This strategy may be im-
proved by using covering and merging [15], but for the sake of sim-
plicity we assume simple routing throughout this paper. Details of
the subscription process are given together with the extensions we
propose in Section 5.3. Advertisements are issued by producers to
announce the kinds of notifications they are about to publish. They
are distributed in the network and tell brokers into which directions
a subscription have to be forwarded.

3.3 Roaming clients
As a first step towards a pub/sub middleware for mobile and per-

vasive systems, the REBECA notification service was extended to
facilitate roaming clients, distinguishing physical and logical mo-
bility [23, 9].

Mobile clients frequently disconnect from the network, e.g., due
to power-saving requirements. And they often re-connect at a dif-
ferent location, possibly within a completely different physical or
administrative context. The major concern for middleware support
in such a setting is to make this change transparent to applications
that are not aware of mobility.

Logical mobility addresses a different aspect of mobility in per-
vasive environments: location awareness. Information about the
current location and the available information in the vicinity is a
rich source mobility aware applications can draw from. In this
context pure location transparency, like in the roaming case above,
can be counterproductive. Most strikingly, location-based services
(like pervasive tourist guides) rely on an explicit knowledge about
the current location. A system supporting mobility should not only
blend out unwanted phenomena, like disconnectedness, but should
also facilitate location awareness. We have built support for lo-

cation awareness into REBECA by introducing a special keyword
myloc into subscriptions that is automatically adapted to the cur-
rent location and is used to filter notifications. Hereby we made
location a first-class citizen within REBECA [9], which is exploited
in the next section for location-dependent buffer placement.

4. PRE-SUBSCRIPTION APPROACH
In this section we briefly discuss an algorithm which defines a

mechanism for subscribing intelligently to information at locations
a client might move to in the near future [8]. This is done before
the client actually gets there (so called uncertainty of movement).
The overall goal is to leverage information about the movement of
a client to shorten significantly the time a client application needs
to bootstrap at a new location.

4.1 Basic idea
The basic idea is to implement a distributed per-client caching

at prospective future locations. It is based on the assumption that
a client’s movements will adhere to a movement graph that models
the current location and its adjacent next hops. This graph was
introduced for logical mobility and location awareness [9], but it
may also predict physical movements. This topology information
must be available in the infrastructure and may either be derived
automatically or must be supplied by some external entity, such
like an external location service, providing appropriate information
about the location of a client.

While the client moves in the real world, the proposed mecha-
nism instantiates a virtual client (VC) at every such location and
pre-subscribes at possible future locations. The intended semantics
is that the client listens and buffers before it actually reaches the
location in question.

The time frame ∆t refers to the time span the VC is listening
before a client actually gets there. Within ∆t the VC receives and
buffers all notifications the client would have received. Once the
client reaches any such location and is connected to its VC, buffered
notifications are delivered to the client in the same order as if it has
been there, which is semantically the same as if the subscriptions
were issued in the past.

4.2 Architecture
The basic approach is to use an additional layer of Replicators

between client and pub/sub system that are responsible for moni-
toring clients according to the constraints given by the movement
graph of the underlying location model (cf. Fig. 3). Replicators im-
plement the movement graph and they are connected to the adjacent
peers in the graph. Whenever it is likely that a client will move to
a location within a set of possible locations, the layer of replicators
will instantiate and maintain virtual clients at those next locations.
These virtual clients re-subscribe to the client’s current subscrip-
tion, which are subject to location-dependent automatic adaption,
and buffer information for a client for potential future use.

The importance of virtual clients instantiated at possible future
locations increases when location-dependent filters are used to se-
lect only locally distributed notifications (cf. Geocast [18]). In-
tuitively, the client would like to experience the notion of being
subscribed for its interests “everywhere, all the time” and increase
the reactivity of the system to moving clients. Whenever a mobile
client wants to take into account location-dependent information
and the replicators were not able to predict this location change the
client may choose to “fall-back” to waiting for interesting notifica-
tions. We deal with this problem in Section 5.

4.3 Discussion
It is guaranteed that the VC is delivering notifications in the same

order as the actual client would have received them, per-sender
FIFO ordering holds. More importantly, when a client is connected
to the virtual client and according to the requirement of respon-
siveness of the system, notification delivery only takes a very short
amount of time and is almost instantaneously, hence maintaining
minimal the time needed for bootstrapping. Furthermore, boot-
strapping is not done for individual subscriptions, but the virtual
client acts as a proxy and may even combine and preprocess mul-
tiple streams of events; this is, however, an open future issue. For
many situations this proxy solution is desirable, yet in certain situ-
ations it falls short in at least two aspects:

1. Accuracy of the results depends on the time ∆t the virtual
client is “listening” at a new location.

2. Interests of the client may change, i.e., new subscriptions for
location-dependent information are made, or the client was
suspended and is reconnecting at an unforseen location.

The first situation can occur either if information is disseminated
seldom and the ∆t is too small to ensure reception of such a notifi-
cation, or the client is moving too “fast” with respect to the uncer-
tainty maintained by the system, i.e., ∆t → 0. The other situation
occurs whenever a client application “spontaneously” subscribes to
new location-dependent information or does not obey the move-
ment graph. Obviously, at the current location the new subscrip-
tion must be propagated through the broker network exactly like in
a non-mobile pub/sub system.

5. SUBSCRIBING INTO THE PAST
In some sense, the approach introduced in this section is com-

plementary to the one of Section 4. While the above approach is
optimized to maximize the responsiveness of the system by pre-
subscribing to information needed in the future, the approach in this
section is to “trade” responsiveness for consistency and complete-
ness by using subscriptions aiming backward “in history.” Espe-
cially in situations where the above approach falls short, i.e., the ∆t

for listening is too small and unforeseen subscriptions come into
the broker network, applications can greatly benefit from “back-
ward” angled subscriptions-into-the-past. By accessing informa-
tion which was already delivered but is stored within the broker net-
work applications can reach a consistent state and be set-up with-
out listening for notification in the future. By maintaining recent
published notification within the broker network the bootstrapping
phase might be sped-up significantly.

In the above example of the traffic-light, a (hypothetical) driving
assistant should warn a driver in case the driver is about to cross
the traffic-light when the status is “red.” For some reason the asso-
ciated virtual client (as in Section 4) was not active when the traffic
light disseminated its state change from “green” to “red”. The only
way for the assistant to determine whether or not to warn the driver
is to have access to the last sent notification, which was already de-
livered in the past. Obviously, here, the complimentary nature of
this approach is highly beneficial.

5.1 Basic idea
We have extended the subscription method in order to provide

consumers/subscribers with the possibility to express their interest
in happenings occurred in the past. In this case, and in addition to
the subscription filter that expresses their interest, they can specify
a number of n notifications they want to access from the past. As

in the standard case, the pub/sub system delivers the last n noti-
fications that match the subscription to the subscriber through the
notify callback method as in normal operation. This makes opaque
to the consumer that those received notifications have already been
delivered in the past. After sending the solicited notifications stem-
ming from the past, standard delivery of present and future notifica-
tions commence operation. Note that the system cannot guarantee
that it can deliver the total number of notifications specified in the
subscription. This depends on the individual policies for buffering
notifications and what notifications are available in the broker net-
work. As a consequence, the client application should not assume
that the first n notifications in fact are part of the “past.”

5.2 Prerequisites
In order to keep track of past notifications, buffers are imple-

mented within the broker network and they are accessed by the
different versions of the algorithm presented in the following. A
buffer is assumed to be simply a circular log of bounded length that
stores notifications matching a filter assigned to the buffer. Any
broker may install a history buffer as a cache of the latest notifica-
tions forwarded through this broker. In connection with a specific
subscription other temporary buffers may be created as well. If we
want to ensure a minimum number of notifications available for
replay, border brokers have to buffer this number of notifications
published by any locally attached producer. In general, any broker
may maintain history buffers to improve data placement localities,
though buffers only listen to passing notifications and are empty
before the first subscription initiates delivery.

Notifications travel through the broker network from the produc-
ers to the consumers along delivery paths. We refer to the pub-
lishing direction as being directed downstream, while subscriptions
and some administrative messages are directed upstream towards
the producer. The replay message is of administrative kind and
contains a set of notifications. Clients of the pub/sub service need
not to expose any unique identifiers, but the pair (C, F) of a con-
sumer and its issued subscription filter is presupposed to be unique;
at least a unique ID can be assigned by the access broker.

5.3 Algorithm Outline
The following basic approach to subscribing with buffer replay

extends the subscription process available in the REBECA pub/sub
service. A subscription can now also include past notifications; the
routing configuration is updated as before, but delivery of new no-
tification is postponed; matching buffered notifications are fetched
from the network; and finally, the fetched data has to be delivered
before new notifications.

Issued subscriptions have to contain the number of past notifica-
tions that are to be delivered, according to the semantics given in
Sect. 2. For example, assume X1 at broker B1 to be a publisher
matching the interests of subscriber X6 at B4. This establishes a
delivery path {B1 → B3 → B4} that is described by the respec-
tive routing tables. Consider now that X7 subscribes also to the
same kind of notification. As before, subscriptions are propagated
through the broker network to update routing tables to direct match-
ing notifications towards the consumer. Subscription forwarding
stops at a broker that already carries an identical filter.1 The above
exemplary subscription is forwarded to update B5 and B4, but not
any further. This is the already known subscription propagation as
implemented, e.g., in the REBECA pub/sub service.

Immediately before the new link is activated to start delivery

1With merging and covering it already stops when an existing
broader filter ensures that notifications matching the new subscrip-
tion are forwarded to this broker and so to the consumer.

/∗∗ upon receiving subscription (C, F) for past p events
∗ via link LN ∗/

void receiveSub(C, F, p, LN) {
if (localClients.contains(C)) {

routeTable.setHold(C, F)
buffers.newBuffer(C, F, p) // create temp. buffer for replay

}
if (routeTable.includes(C, F) {

replay(C, F, LN , p) // prepare replay message and send
} else {

routeTable.add(C, F, LN)
propagate(C, F, p, LN) // to all neighbor brokers with

} // matching advertisements except LN

}

/∗∗ upon receiving notification n from Bj ∗/
void receiveNotif(n,Bj) {

routeTable.route(n)
historyBuffers.append(n)
for(∀b ∈buffers with matching assigned F)

b.append(n)
}

/∗∗ upon receiving replay(C, F, [n1, . . . , nm]) ∗/
void receiveReplay(C, F, [n1, . . . , nm]) {

if (buffer.exists(C, F)) { // i.e. this is access broker
b := buffers.get(C, F)
b.prepend([n1, . . . , nm])
if(b is completely filled) {

deliver b

buffers.remove(C, F)
routeTable.clearHold(C, F)

}
} else {

routeTable.route(C, F, [n1, . . . , nm]) // route replay towards consumer
} // according to unique (C, F)

}

/∗∗ upon timeout of buffer (C, F) ∗/
void receiveTimeOut(C, F){

buffers.get(C, F).deliver()
buffers.remove(C, F)

}

Figure 4: Basic algorithm for subscriptions into the past.

of passing notifications, the buffer-fetching functionality is called.
The broker selects as much of the most recent notifications from a
locally kept history as necessary to meet the subscription request.
These are sent as a replay message down the new link towards the
consumer’s access broker. We will later suggest more advanced
strategies that include history buffers at other brokers.

The access broker unpacks and delivers the replay notifications
to the consumer before delivering new notifications. In general,
new notifications must be delayed until the replay message is sent
in order to deliver the buffered notifications first. In this simple ap-
proach, however, the replay is prepared only at the nearest branch
on the delivery path, so new notifications cannot overtake the re-
play. Unfortunately, the desired number of past notifications may
not be available at this broker.

The algorithm presented in Figure 4 sketches the core algorithm
common to all presented extensions made in the following para-
graphs. For all extensions, only two methods need to be changed
as it is presented in Figure 5. This figure particularly shows the
refinements for the simplest case as outlined above.

In order to provide a framework for the general case, the algo-
rithm explicitly blocks delivery at the access broker in case new
notifications arrive before the replay. For the basic version, this is
not necessary. The timeout stops waiting for replays and starts de-
livering new notifications if not enough replay data was received in
time; this is only necessary if multiple replays are expected.

5.4 Algorithm

void replay(C, F, LN , p) {
b := historyBuffers.get(C, F)
if (b.length > 0) {

b.sendReplay(C, F, p)
}

}

void propagate(C, F, p, LN) {
for (∀n ∈ localClients\{LN}) {

requestReplay(n, C, F, p)
}

}

Figure 5: Specification and refinements of the replay and
propagate methods.

The algorithm presented in Sect. 5.3 is very naive in its restric-
tion to search only for notifications at the nearest buffer and there-
fore it needs to be extended for practical relevance. If more buffers
are considered for preparing the replay, two problems arise. First,
new notifications and replays are concurrent and must be ordered
correctly. And second, multiple replays may cover different pro-
ducers so that reordering is not possible without identifying pro-
ducers and individual notifications (a strong requirement we delib-
erately avoided so far). In the next subsections we suggest a number
of improvements that search for more buffered notifications, cope
with concurrent new notifications, join buffers of multiple produc-
ers, and reduce traffic by using sequence numbers.

Largest History Buffer
We return to the example given in Sect. 5.3 and specify the sub-

scription process in more detail.
For now assume that every broker has no more than one link

with a matching advertisement. In the basic approach the reduc-
tion of bootstrapping time for a consumer depends on the size of
the history buffer of the first broker that is discovered on an exist-
ing delivery path. Consider for instance the network as presented
in Figure 2 where X7 issues a subscription and this subscription
involving past notifications depends on the broker B4.

In order to provide a better solution the first extension includes
history buffers at other upstream brokers: another broker (B1) fur-
ther upstream may have a larger buffer that could be used instead.
However, new notifications may be in transit while the first broker
(B4) requests a replay of B1’s history buffer. Thus, the first bro-
ker (B4) needs to hold notifications for the consumer (X7), or its
access broker (B5), until a replay message is received. The replay
needs to be shortened by the number of held notifications to avoid
duplicating notifications. After the replay content is passed to the
consumer, held notifications are delivered.

By including the contents of buffers at other brokers, potentially
a larger fragment of recent history can be accessed. This assumes
however, that buffers have different sizes and that is possible to find
a larger buffer in brokers upstream.

Merged Histories
Looking for a broker in the delivery path with enough notifica-

tions (as it was proposed above) involves communication costs and
time. Considering that during this searching time new notifications
may arrive implies that less notifications need to be specially deliv-
ered from other brokers. This leads to the next modification of the
algorithm: All queried brokers send as much of their history buffer
as is available in the hope, that enough notifications were issued in
the meantime to fulfill the requested number of notifications.

Coming back to the example, the first broker B4 might decide to

stop waiting for history replays and start delivering held notifica-
tions. Another broker B3 between B4 and B1 might have a larger
history than B4 but not sufficiently large to satisfy the requested
number of notifications. However, it could send a replay anyway
increasing the probability that B4 is able to fulfill the request based
on newly received notifications plus received replays so far. B4

needs to keep track of outstanding replay requests unless there is a
timeout defined.

In order to merge replays with the local history buffer, B4 needs
to reduce the received replay by the number of notifications in its
own history buffer to avoid duplicates. Since sender FIFO is guar-
anteed, all replays are aligned to the beginning of the first bro-
ker’s (B4) buffer. In other words, the most recent notifications are
present in B4’s buffer as well as in the replay. Figure 6 shows the
content of two brokers’ history buffers, B3 and B4, with adminis-
trative messages and a new notification “g” is being published at
X1. At time t + 1, B4 receives a subscription requesting four past
notifications while B3 receives notification “g”. B4 allocates a new
buffer large enough and copies the content of the history buffer to
this new buffer. Next, at t + 2, B3 forwards “g” to B4 while B4

requests a replay of four notifications from B3. Notification “g” is
added to the new buffer at B4. In t + 3 the replay is sent to B4. It
can be seen that B4’s buffer contains the same leftmost (most re-
cent) notifications as the replay message. The result after removing
the duplicate notifications is shown at t + 4.

t B3 B4

t + 1 notify(g)
−−−−−→

f e d c f e sub(filter, 4)
←−−−−−−−−−

t + 2 g f e d notify(g)
−−−−−→

fetch(4)
←−−−−

f e εε

t + 3 g f e d replay(g, f, e, d)
−−−−−−−−−−→

g f e ε

t + 4 g f e d g f e d

Figure 6: History buffers, messages and alignment of replay con-
tents with history buffer contents

With this modification, the bootstrapping delay of a consumer is
guaranteed to be no larger than without recent history in the worst
and better in the average case.

Junctions
Up to this point we have assumed a single matching advertise-

ment per subscription, which we will relax now. Broker IDs help to
distinguish notification sources and allow elimination of duplicates
(notice that the simple alignment as depicted in Fig. 6 does not hold
anymore).

Junction brokers (e.g. B3) are brokers that are connected to
more than one peer with matching advertisements. Upon a re-
play request, junction brokers should query all peers in order to
get a good estimation of past notifications. In general, a specific or-
dering cannot be assumed between replays of different producers.
Replay processing may be based on first-come-first-serve, random
interleaving, or timestamp ordering if logical or global-time clocks
are presupposed. However, only replays from the junction broker’s
own history buffer will have the order of notifications the consumer
would have observed if it were subscribed earlier.

When receiving replays from multiple brokers they are not guar-
anteed to be aligned with the local history buffer anymore thus
removing duplicates is more difficult. Therefore, globally unique
broker IDs must be added to a notification envelope when it is pub-
lished. Since the ordering of notifications relative to the source
is fixed, replays will include the same most recent notifications
which allows to drop as many notifications from a replay as al-

ready present in the local buffer for this source. Notifications are
always stored in the history buffer with the complete envelope.

Sequences
Although the algorithm and the extension presented above elim-

inates duplicates before delivering notifications to the consumer,
notifications may be sent multiple times over the network since a
very recent notification will be included in every replay. Sequence
numbers can be used to shift the task to detect and eliminate dupli-
cates from the access broker to the infrastructure.

In the same way border brokers connected to producers add their
broker ID to the notification envelope, a sequence number is added.
Such sequence numbers can be leveraged to eliminate duplicate
sending. Requests for history replays include a list of tuples (b, s)
with b as broker ID the producer is connected to and s as the se-
quence number of the oldest notification from this producer still
contained in the local history buffer. As an additional benefit, the
requested number of replay notifications can be reduced by the
number of notifications found in the local history buffer that match
the request.

Putting it all together
In this section we describe an algorithm that takes into consider-

ation those remarks made previously in this section. Additionally,
three new message types are introduced for inter-broker communi-
cation: fetchHistory(expression, list, #past notifications), replay(),
and expect(tagname).

Handle Subscription Message: Upon receiving a subscription
including past notifications p, a broker checks first if it is the re-
sponsible border broker or access broker for the issuing consumer.
A buffer H with size p is created to assemble an estimation of past
notifications, a counter r for outstanding requests, and a map L for
lowest sequence numbers are allocated. Delivery for the requesting
consumer according to this subscription is set to hold.

If the current access broker does not carry the requested sub-
scription, the request is sent to all connected brokers that have sent
a matching advertisement, hence are upstream. r is incremented
for each request.

If the broker already has a matching subscription and a local
history buffer matching the subscription expression exists, notifi-
cations are copied to H until the end is reached or the request is
fulfilled. At the same time L is filled with lowest sequence num-
bers per originating broker. The number of expected notifications
is decreased with each notification.

If more past notifications are needed, a fetchHistory message is
sent to all connected brokers with matching advertisements and r is
incremented for every request. If more than one broker is contacted,
a junction marker is set.

Any inner broker that does not already have a matching subscrip-
tion re-sends the subscription request to all upstream brokers. For
each request an expect message is sent back downstream and a junc-
tion marker if more than one broker is contacted. In addition, an
empty replay message is sent downstream.

If a non-access broker has a matching subscription, a local buffer
H ′ with size p′ is allocated. The broker scans the local history
buffer looking for notifications that have a lower sequence number
than indicated in the request. If it is the case then it copies them
to H ′ and updates the number of outstanding notifications and the
sequence number list L. All notifications in H ′ are included in
a replay message and sent downstream. Whenever the number of
outstanding past notifications is non-zero, corresponding fetchHis-
tory messages using L′ are sent to all connected brokers that have
matching advertisements. expect messages are sent as described in

the case when no matching subscription was found. Buffer H ′ is
removed.

Handle fetchHistory Message: A non-access broker handles fetch-
History messages similar to subscribe messages.
An access broker should never receive a fetchHistory message.

Handle Notification: Upon receiving a matching notification for
a consumer that is set to hold, an access broker copies it to the local
history buffer and delivers it to all other consumers that are not set
to hold. In addition, it is queued in H and the number of expected
notifications is decreased. If the number of notifications is zero,
all queued notifications are delivered and all helper structures are
removed. The hold marker is removed.

A non-access broker transmits the notification downstream.
Handle Replay Message: Upon receiving a replay message, an

access broker appends all included notifications to H and r is decre-
mented. If it has been signalled before that a junction has been en-
countered, ordering of notifications from different producers can-
not be reconstructed after this point. The access broker could try to
order notifications from beyond the junction based on the notifica-
tion’s production timestamps.

If no replays are outstanding, all notifications from H are de-
livered to the consumer and the hold marker as well as all helper
structures H,L, r are removed.

A non-access broker relays the replay downstream.
Handle Expect Message: Upon receiving an expect message, the

access broker increases r. An included junction marker is stored.
A non-access broker relays an expect message downstream.

5.5 Considering the time dimension
Subscriptions in the past can be also specified with a time bound.

In this case, a subscription into the past asks for notifications that
have been published m minutes in the past (relative to subscription
time). A first approximation could be achieved by synchronizing
the clocks of all border brokers. In this way, at publishing-time
border brokers attach a timestamp to notifications in order to repre-
sent the time when they have entered into the pub/sub system.

At subscription-time the border broker sets the time bound by
simply subtracting the relative bound of the subscription from its
local, synchronized time. This time reference is then used by the
algorithm to search in the broker network for matching notifications
with a newer timestamp.

Moreover, a combination of number of notifications and time
into the past could also be useful, i.e., the last ten notifications
within the last five minutes. This combination constrains the search
in the buffers of the broker network. That means that there are
two criteria to stop the search: (a) once the number of notifications
within the reference achieves the solicited number, or (b) once a
timestamp older than the reference is found.

5.6 Discussion
The algorithm introduced in this section was designed to com-

plement the algorithm shown in Section 4. In situations in which
pre-subscriptions fall short, the access to buffers in the broker net-
work and the past notifications possibly stored there can compen-
sate for a rather small ∆t.

The tradeoff between the two techniques is one of responsiveness
versus flexibility. Subscriptions into the past have in general not the
same responsiveness as a system relying on pre-subscriptions, be-
cause a subscription has to go through the broker network at least
until an appropriate buffer is found or the algorithm terminates
without success. On the other hand, this approach does not rely on
any movement restrictions and can draw from localities within the
broker network. This is especially important for location-dependent

subscriptions that are typically of interest to more than one sub-
scriber. Here, close-by history buffers possibly carry the necessary
past notifications so that they can be fetched fast.

Due to the complementary nature of the algorithms a combina-
tion of both approaches is obvious: while pre-subscriptions are
optimal for per-client buffering of information and in situations
where a ∆t is sufficiently large, subscriptions into-the-past are per-
subscription caches which are getting more important in sponta-
neous settings or when the uncertainty maintained by the system
is small, e.g., when the number of clients is high and the number
of virtual clients per real client must be restricted. Fortunately, in
such scenarios with small ∆t, the likelihood that another client al-
ready has subscribed to the same location-dependent information is
correspondingly higher.

6. RELATED WORK
We are only aware of some pub/sub systems offering support for

mobile clients to some extent. The Java Message Service (JMS) in-
cludes durable subscriptions that store intermediate messages dur-
ing disconnections [20]. They can be reactivated by subscribing
with the unique ID assigned to each of them, and thus our ap-
proach and this feature of JMS are based on a similar idea. How-
ever, in JMS the semantics of reconnecting in a distributed sys-
tem is not specified. In IBM’s MQseries retained publications are
valid until a follow-up is published and the last one is also deliv-
ered to all new subcriptions announced in the meantime. Huang
and Garcia-Molina [11] provide a good overview of possible op-
tions for supporting mobility. An extension to Elvin exists that al-
lows for disconnectedness using a central caching proxy [21] but
is not used for location dependent subscriptions. CEA [2] and
JEDI [7], too, tackle problems of mobility. JEDI uses explicit
moveIn and moveOut operations to relocate clients, which is prob-
lematic if wireless communication just breaks down when moving,
and it has no explicit notion of location as a first class concept for
pub/sub systems. The mobility extensions of SIENA [3] are very
similar to the JEDI approach. Probably the most related work is
STEAM [12], a middleware service designed for wireless local area
networks using the ad-hoc network model where there are no ac-
cess points and system wide services. Subscribers only consume
events produced by geographically close-by publishers. For this it
relies on proximity-based group communication [13]. As a result
it is not clear how this approach can be applied in an application
like weather forecast for a particular remote location produced by
a forecasting service. Other communication paradigms facilitat-
ing loose coupling, like Linda tuple spaces [5], were also investi-
gated for their potential support of mobility (e.g., in LIME [17] and
CORELIME [4]), but are out of the scope of this paper.

7. CONCLUSIONS AND OPEN ISSUES
This paper is motivated by the use of pub/sub notification ser-

vices in pervasive applications where mobility plays a prime role.
In order to adapt to context changes, moving clients requires an
initialization phase to commence normal operation from a valid
state. However, without proper countermeasures in the infrastruc-
ture the latency of a client’s bootstrapping phase has the potential
to severely impair the usability of the pub/sub paradigm in perva-
sive scenarios. We have proposed two enhancements of the pub/sub
platform REBECA that provide applications with sequences of past
notifications to optimize the bootstrapping phase.

The first approach deals with the notion of subscribing in ad-
vance at locations a client might move to in the near future, ac-
cording to a model of possible movements. Virtual counterparts

are installed, establishing per-client caches in the network to de-
liver stored notifications to the client if it eventually arrives at this
location. In this way, past notifications are made instantaneously
available as if the client has subscribed in the past.

Spontaneous movements and subscription changes, however, are
not efficiently handled and motivated a complementary approach
to establishing and searching additional buffers in the broker net-
work. They are looked for on the paths towards producers and ba-
sically contain recently sent notifications. For bootstrapping pur-
poses, new subscriptions may ask for a certain number of recent
notifications, which are taken from these buffers. It must be no-
ticed again that particularly in mobile environments the bootstrap-
ping latency may occur frequently. Therefore the reduction of this
latency is our main motivation. However, this buffering approach
can be also applied to stationary applications since the bootstrap-
ping period is common to most event-based applications.

From the infrastructure point of view the first approach requires
the introduction of a new entity, the virtual client, which in fact
plays the role of a client, but instead of processing with caching ca-
pabilities. The second approach involves changes in the subscrip-
tion functionality due to the consumer now being able to specify
how “far” in the past the system should go to start delivering noti-
fications. Additionally, brokers need to provide buffer capabilities.

Besides attaching conventional data stores to the network and
active database research, little (insufficient) attention is paid to the
notion of the lifetime of events. Consequently, a number of open
issues remain.

Scalability of efficient content-based filtering algorithms has been
investigated for standard, i.e., non-mobile, environments [16]. Per-
vasive environments with their complex issues of different forms
of mobility pose greater challenges both in the number of clients to
support as well as in the dynamics of their behavior.

How can the efficiency of the underlying routing framework be
best exploited? Tuning and adaption are of increasing importance
in these systems. Buffer sizes and placement strategies determine
efficiency, resource usage, and therefore scalability.

It is just a small step to generalize the concept of location-de-
pendent subscriptions to “state-dependent” subscriptions, opening
the whole area of context-awareness [19] to the domain of pub/sub
middleware systems. How can systems implement or make use of
such dynamic filters, which depend on a function of the local state
of the client (not only its current location)? Can virtual counterparts
offer more than just being an intelligently placed cache?

Acknowledgments
We thank Gero Mühl for his cooperation in the REBECA project,
Felix Gärtner, Sidath Handurukande, and Oliver Kasten for many
helpful discussions on the topic of mobility and publish/subscribe.
The work was supported by the Deutsche Forschungsgemeinschaft
as part of the PhD program “Enabling Technologies for E-Commerce.”

8. REFERENCES
[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and

pull for data broadcast. In Proc. of ACM SIGMOD, pages
183–194, May 13–15 1997.

[2] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil,
O. Seidel, and M. Spiteri. Generic support for distributed
applications. IEEE Computer, 33(3):68–76, 2000.

[3] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal
analysis of clients mobility in the Siena publish/subscribe
middleware. Technical report, Department of Computer
Science, University of L’Aquila, Oct. 2002.

[4] B. Carbunar, M. Valente, and J. Vitek. Corelime: a
coordination model for mobile agents. In Proc. of Intl
Workshop ConCoord 2001, 2001.

[5] N. Carriero and D. Gelernter. Linda in context.
Communication of the ACM, 32(4):444–458, Apr. 1989.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[7] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions on
Software Engineering, 27(9), 2001.

[8] L. Fiege, F. C. Gärtner, S. B. Handurukande, and A. Zeidler.
Dealing with uncertainty in mobile publish/subscribe
middleware. In 1st International Workshop on Middleware
for Pervasive and Ad-Hoc Computing, to appear, 2003.

[9] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting
mobility in content-based publish/subscribe middleware. In
IFIP/ACM Middleware 2003 (to appear), 2003.

[10] L. Fiege, G. Mühl, and F. C. Gärtner. A modular approach to
build structured event-based systems. In Proc. of ACM
SAC’02, pages 385–392, 2002.

[11] Y. Huang and H. Garcia-Molina. Publish/subscribe in a
mobile environment. In Proc. of MobiDE01, May 2001.

[12] R. Meier and V. Cahill. STEAM: Event-based middleware
for wireless ad hoc networks. In Proc. of DEBS’02, 2002.

[13] R. Meier, M.-O. Killijian, R. Cunningham, and V. Cahill.
Towards proximity group communication. In
Banavar:2001:MobileMiddleware, editor, Advanced Topic
Workshop Middleware for Mobile Computing
(Middleware 2001), 2001.

[14] G. Mühl. Generic constraints for content-based
publish/subscribe systems. In Proc. of CoopIS ’01, volume
2172 of LNCS, pages 211–225. Springer-Verlag, 2001.

[15] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Darmstadt Univ. of Technology, 2002.

[16] G. Mühl, L. Fiege, F. C. Gärtner, and A. P. Buchmann.
Evaluating advanced routing algorithms for content-based
publish/subscribe systems. In Proc. MASCOTS 2002, 2002.

[17] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A
Middleware for Physical and Logical Mobility. In Proc. of
ICDCS-21, pages 524–533, May 2001.

[18] J. C. Navas and T. Imielinski. Geocast - geographic
addressing and routing. In Proc. of the ACM/IEEE
International Conference on Mobile Computing and
Networking, pages 66–76, 1997.

[19] B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In IEEE Workshop on Mobile
Computing Systems and Applications, 1994.

[20] Sun Microsystems, Inc. Java Message Service Specification
1.1, 2002.

[21] P. Sutton, R. Arkins, and B. Segall. Supporting
disconnectedness – transparent information delivery for
mobile and invisible computing. In Intl Symposium on
Cluster Computing and the Grid, 2001.

[22] C. L. Tan and S. Pink. Mobicast: a multicast scheme for
wireless networks. Mobile Networks and Applications,
5(4):259–271, 2000.

[23] A. Zeidler and L. Fiege. Mobility support with REBECA. In
Proc. of the ICDCS Workshop on Mobile Computing
Middleware, 2003.

	1 Introduction
	2 Using Past Notifications
	3 Middleware for Mobile Pub/Sub
	3.1 Architecture
	3.2 Possible routing strategies
	3.3 Roaming clients

	4 Pre-Subscription Approach
	4.1 Basic idea
	4.2 Architecture
	4.3 Discussion

	5 Subscribing Into The Past
	5.1 Basic idea
	5.2 Prerequisites
	5.3 Algorithm Outline
	5.4 Algorithm
	Largest History Buffer
	Merged Histories
	Junctions
	Sequences
	Putting it all together

	5.5 Considering the time dimension
	5.6 Discussion

	6 Related work
	7 Conclusions and Open Issues
	8 REFERENCES -9pt

