
Information Sharing With the Oracle Database
Deiter Gawlick

Oracle Corporation
500 Oracle Parkway

Redwood City CA 94065
(650) 506-8706

deiter.gawlick@oracle.com

Shailendra Mishra
Oracle Corporation

500 Oracle Parkway
Redwood City 94065

(650) 506-9123

shailendra.mishra@oracle.com

ABSTRACT
Database systems have been designed to manage

business critical information and make this information
accessible on request to connected clients. There is,
however, an ever-increasing need to share relevant
information actively with disconnected clients and/or
external systems, e.g., to propagate and/or automatically
react to relevant information as soon as it becomes
available.

Leveraging the existing database infrastructure,
Oracle created a solution to this problem. The solution
is state of the art in terms of functionality and
operational characteristics. This Oracle technology is
widely used and supports many highly visible
applications.

Categories and Subject Descriptors
H. INFORMATION SYSTEMS

H.4. INFORMATIONS SYSTEMS APPLICATIONS

H.4.3 Communications Applications

General Terms

Design.

Keywords
Database, Type system, Publish/Subscribe, JMS, Reliable
Messaging, Post Dating, Rules, Capture, Apply, Retention,
Auditing, Expression evaluation.

1. INTRODUCTION
The ability to share information easily and in a timely fashion is a
crucial requirement for any business environment. Consequently,
Information Sharing has been supported by many mechanisms,

e.g., discussions, mail, books, periodicals, and last but not least,
computer technology.
Many computer-based technologies have evolved to serve
Information Sharing. The ability to always be in contact,
especially with the evolution of wireless communication devices,
brings increased urgency to this problem of active notification of
relevant information. The requirement is always the same: ‘I want
to know what is going on - based on my perception of the world -
and I want to know it ASAP and wherever I am.' Unfortunately,
most Information Sharing solutions are still based on significant
application logic, resulting in what is most likely the most
expensive means to develop, deploy, operate, and maintain these
services. Additionally, these services often lack required
functionality, such as support for ad-hoc requests and
customization, as well as timely and flexible delivery of
information.
Since databases manage a significant part of the business critical
information, it is only natural to provide the required support from
within databases. One obvious benefit is the ability to leverage the
rich functionality and the exceptional operational characteristics
of the underlying technology.
Oracle started providing a solution by delivering the first queuing
system that is fully integrated in the database [ORAQ]. This
queuing system, called Oracle AQ (Oracle Advanced Queuing)
has been available since Oracle8. Oracle AQ includes a novel idea
to communicate with clients, and a novel approach to
publish/subscribe. Details of this approach are described in
section 2. Section 2 also describes the required database
enhancements and the operational benefits of this approach.
Oracle9i extends the existing approach in many ways. Most
importantly, clients can determine what they are interested in,
thus, subscribers do not depend on publishers to publish the right
information. This in effect adds a new model complementing
publish/subscribe. This model may be called a subscribe/publish
model. These services are provided as Oracle Streams [ORSTR].
Section 4 describes the concepts and major implementation
challenges, as well as the many benefits of Oracle Streams. Oracle
AQ is now a part of Oracle Streams.
Oracle Streams offers the expression evaluation as an independent
service [ORRE]. Users can specify subscriptions and data
structures. A specific instance of a data structure can be evaluated
against a set of subscriptions. This support allows applications to
make a publication dependent on the interest of subscribers, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’03, Month 6-7, 2003, San Diego, CA.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

to tailor publications exactly to the needs of the subscribers.
Details of this support are described in section 3.
More recently, Oracle has discussed expressions as data in
relational databases [YSG]. Such functionality provides additional
flexibility for Information Sharing as shown in section 5.

2. Oracle AQ
It is assumed that readers are familiar with technology such as
JMS [JMS]. Oracle AQ is fully JMS compliant. However, Oracle
AQ extends the JMS model – leveraging the JMS extensibility
framework. The main objectives for the functional extensions are:

• Provide an improved communication model

• Provide an improved publish/subscribe model

The management and delivery of messages is the core
functionality of messaging systems. Messages are stored in
containers called queues. Queues are typically mapped to files.
Oracle AQ is unique since it maps queues to database tables using
a special tables called queue table. Queue tables are like regular
database tables, with a specific data structure. This data structure
includes among other things contains columns for message header
and user payload. The payload can be any structure that is
supported by the database type system. Additionally, there are
interfaces (ENQUEUE, DEQUEUE) to create and consume
messages.
All messaging systems allow publishers to add (ENQUEUE)
messages to queues and consumers to consume (DEQUEUE)
messages, assuming they have the requisite privelege to do so.
Oracle AQ also supports this model too. However, there is an
additional construct supported by Oracle AQ called the multi-
consumer queue. In this, a consumer is an entity that receives
messages through any communication channel. A consumer,
called a recipient, is described through a channel type and an
address for the channel, e.g., email:joe@dot.com, tel:+1-650-506-
0000, WSDL:port@oracle.com, AQ:orders@oracle.com, or
broadcast:stockticks@NYSE. A message destined for a recipient
can then be sent to them through the specified channels. This
mechanism allows a publisher to use any available
communication channel to reach a desired recipient, recipient
groups, or any mix there-of. Users can add propagation support
for any communication channel that is not supported. A multi-
consumer queue allows consumers to consume only those
messages that are directed to them.
Multi-consumer queues provide support for directed message
distribution.
Recipients can be specified independent of the specific
communication channel, assuming there is a recipient directory. In
this case, only a list of recipient names needs to be specified.
Oracle AQ will translate the names into the addressing
specification and direct the information to the intended recipients
using the specified communication channel and address.
Alternatively, publishers may not wish to determine who gets a
message and may leave the choice to the recipients, thus, the
recipient become subscribers. Oracle AQ allows consumers to
create subscriptions. A subscription consists of a reference to a
queue, a condition specifying which messages are of interest, and
a list of recipients.

Since Oracle AQ stores messages as rows in tables, SQL WHERE
clauses can be used to specify the conditions for selecting the
desired messages. These SQL WHERE clauses can reference any
part of a message, Subscriptions without a SQL WHERE clause
represent a subject-based subscription. A subscription with a
WHERE clause is a content based subscription.
The idea behind this model is quite simple. Subscriptions are
queries on future data. Consequently, subscribers can leverage
their SQL knowledge to specify subscriptions.
Messages can be structured using SQL, XML, or the extensibility
support (e.g., Text, Spatial) using the full language support for
each of these structures.
The database security mechanism is used to determine the base
level per subscriber visiblity of a message. Optionaly additional
protection for messages can be achieved using the fine grained
security model.
This Oracle AQ model represents a significant generalization of
the JMS specification and is implemented in accordance to the
JMS extensibility framework [JMS].

The database constructs had to be enhanced to support the
messaging system. Here is a list of some of the major
enhancements:
• SKIP LOCKED – Messages are typically ordered by some

criteria, e.g., the time of creation. The SQL WHERE clause,
which is used to process a DEQUEUE request, uses
ORDERED BY to retrieve messages in the desired order.
Unfortunately, ORDERED BY allows only one message
consumer at a time. SKIP LOCKED has been added to direct
the database to serve several consumers concurrently and to
skip those messages that are already in the process of being
consumed by other consumers. The first available message in
the specified order will be selected.

• WAIT FOR – Consumers can request a new message,
regardless of whether one is available for consumption or
not. The messaging system has to block the consumer
process until a message becomes available. Databases do not
have this concept. If data do not exist, databases immediately
return with a ‘NOT FOUND’ indication. This would force
consumers to pull for messages, wasting resource. If a
DEQUEUE does not find any messages, the consumer
process will be blocked and will be POSTED as soon as a
new message is added (and committed) to the queue.
Consumers can specify how long they are willing to wait; the
value zero prevents any wait. There are additional
optimizations, such as waiting for a new message arriving in
any of several queues and/or registering to the arrival of new
messages. A registration leads to a notification and prevents
blocking.

• Rules Processing – SQL engines are built to find data in
response to a query. Subscription engines are built to find
queries (expressions, WHERE clauses) in response to data.
Since the objective is to make subscriptions react exactly like
queries – on future data – the SQL engine had to be used as
much as possible This is exactly what has been done. Once a
subscription is specified, the SQL compilation process is
executed to check for syntax errors and access violations.
When data are presented for subscription evaluation, Oracle

AQ first searches a subscription index. Any subscription that
is potentially valid will be evaluated against the presented
data. This is done with a minor modification of the existing
technology, the engine loops through the selected
subscription. In contrast, when processing queries the engine
loops through the data, which are selected after the (data)
index lookup. This ensures that any operation that is
supported by queries is also supported by subscriptions, and
that subscriptions act indeed as queries on future data.

• Index maintenance – Indices are used to control efficient
access to queues. Indices in message system have to deal
with an unusually high insertion and deletion rate. As a
consequence indices become very unbalanced. The database
server deals with this issue by periodically rebalancing an
index whenever it is required. Actually, queue indices are
represented as IOT’s (Index Organized Tables) [SRI]. IOT’s
allow user data to be physically co-located with indices,
which leads to improved performance.

A side effect of using a database messaging system is improved
functionality and improved operational characteristics. Here are
some examples of these improvements.

• Type system – Messages can be unstructured, semi-
structured, or structured. The support includes SQL92,
SQL99, and XML as well as text, spatial data, or any user
specified data structures. BLOBs and CLOBs provide
support for very large messages.

• Data access – The (SQL) query support can be used to find
messages. There is no limitation. This support applies to any
message structure.

• Subscription specification – Subscriptions are treated as
queries on future data. Consequently, users have a rich
(standard) language to subscribe to messages. Consequently,
subscriptions behave as much as possible like queries.

• Postdating – Messages can be published for consumption in
the future. Together with the standard expiration support,
users can specify a window of processing. Messages will
only be visible with the standard queuing interface
(DEQUEUE) once the time of processing has been reached.

• Retention - Oracle AQ allows users to retain messages after
they have been consumed. While these messages are no
longer visible with the queuing interface (DEQUEUE), they
are still visible using the standard data access methods.

• Auditing and tracking – Using standard data access, users
can audit and track messages. This applies to messages in all
states, post dated, ready to be processed, and consumed.

• Reliability – Since messages are rows in tables they inherit
the reliability of the database. This includes restart and
recovery as well as hot swaps, fault tolerance, and disaster
protection. This is due to the RAC (Real Application Cluster)
technology [ORRAC].

• Scalability – Since databases are able to handle large
numbers of tables with very large numbers of potentially very
large rows, the size and the number of messages as well as
the number of queues can be very large. Due to Oracle’s
RAC technology Oracle AQ can run on several processing

nodes or on blades and therefore supports a very large user
community.

• Performance – Databases are designed for high performance.
Messages are often published and consumed in the context of
transactions. Since Oracle AQ is part of the Oracle database,
there is no need for a distributed two-phase commit process.
In business environments, this typically results in a
performance improvement by a factor two to three.

• Security – All the security features of the database apply to
Oracle AQ, including fine grain security, which includes
VPN (Virtual Private Database) support. This allows users to
control access to messages down to the level of individual
messages.

• TCO (Total Cost of Ownership) – The integration of
messaging in the Oracle database, significantly reduces the
cost of ownership. This is due to reduced effort in
programming (more functionality and shared client with
database), installation (there is nothing to install and no
compatibility to test), and operation (there is no additional
operational environment).

1. Expression Evaluation
Expression evaluation is typically an internal service of a
publish/subscribe or a message distribution system. There are,
however, many applications where users would like to find if
there is interest in specific information, e.g., sophisticated
applications are able to publish highly customized information.
Only a very small subset of the possible publications is of interest
for at least one subscriber. So, the best strategy would be to
reverse the sequence and create an event (a publication) only if
there is a subscriber.
A stand-alone service to do rules evaluations [ORRE] provides
publishers with increased functionality and operational
characteristics. In the rules evaluation service, a rule set is defined
as a collection of rules, and represents a unit of evaluation. A rule
set may have an associated evaluation context, which can be used
by any element of the rule set. Other elements of the rules
framework are described below:

• A rule consists of a rule condition, an optional evaluation
context, and an optional action context.

• A rule condition is a valid Boolean SQL expression. It has
the ability to refer to data stored persistently or non-
persistently.

• The evaluation context consists of any information necessary
to interpret a rule. For example, if the rule refers to the
column names of a table, then the evaluation context
provides a list of such table column table names. A rule thus
may have an evaluation context or may inherit an evaluation
context from a rule set. (A rule set is a collection of rules.)

• The action context of a rule consists of a list of name-value
pairs that is interpreted by the application using the rule. It
reflects the fact that rules often are applied in an event-based
framework, where events lead to actions based on rules that
are satisfied.

An independent rules evaluation service, a Rules Engine, provides
publishers with much increased functionality and operational
characteristics. By using a rules engine, publishers can use any
information to evaluate subscriptions, not just the publications.
Publications need only be created if there is an interested
subscriber. Additionally, using the action context, publications
can be tailored to the need of the subscribers.

2. Oracle Streams
Oracle Streams [ORSTR] is designed to satisfy the requirements
of messaging and database replication. This paper will focus on
three features of Oracle Streams that resulted from this design
point and created significant benefits to message users:

• Automatic publications – the capture process.

• Automatic consumption – the apply process.

• Type any queues.

Information Sharing needs to deal with the following three major
tasks, as defined by the ECA (Event Condition Action) model
[DBC]:

• The publication of information – these are the events

• The evaluation of conditions to activate the proper action on
the published information

• The execution of the selected actions. These actions include
execution of procedures, transformation of data, and/or
distribution of information.

Existing support focused on solving the last two tasks and did not
provide any help for the creation of the publication– the event in
the language of the ECA model. Consequently, there is no good
model to ensure the publication of the ‘right’ information in a
timely manner.
Fortunately, for some very important applications, it is possible to
automatically publish the right information in response to
subscriptions. Changes in databases are one of these cases.
Oracle Streams uses the WHERE clauses in the subscription as
queries against records of the system journal. The journal records
that are of interest to at least one subscriber are published
according to directives in the subscription. Once the publication is
completed, any specified action (procedures, transformation
and/or information distribution) is executed.
In the language of the ECA model, the condition is used as the
publication criteria and not as the selection criteria against a
publication.
The journal represents an interesting source for publication. The
journal is not only able to publish on demand and according to the
subscriber requirements, but is also able to execute and repeat the
publication on demand. This leads to a pull publication;
publications are typically push oriented.
Since the action is known in the context of data base replication,
Oracle Streams also provides an automatic consumption process,
called the apply process. An apply process consumes published
information to complete the replication.
While the support for an automatic publication and consumption
is essential for the replication support, it can be used in other

environments. Users can design capture and apply processes as
part of their application logic, as is done in the Oracle e-Business
Suite [OREBIS].
A database instance often has a large number of tables, each of
which typically has its own type definition. Using typed queues
would require at least as many queues as there are tables to
replicate. Oracle Streams solves this problem by supporting tables
that can store any data types that have been defined for the
database instance. Thus, users can specify queue tables of type
ANYDATA.
Type ANY queues free users from the need to align queue
definitions with type definitions and lead to a potentially
significant reduction of queues.
Capture can repeat the publication. Apply processes used for
replication can determine whether a publication has been applied
already or not. This leads to an important optimization. Oracle
Streams supports the model of buffered queues. Buffered queues
are used to act as buffers between the capture processes and
propagation and between propagation and the apply processes.
Buffered queues are transient queues, that is, there are queues
without journaling with the exception of writing periodic
checkpoints containing information about the status of the apply
processes. However, the interaction between capture processes,
apply processes, and buffered queues provides exactly once
semantics.
After a failure, using the checkpoint information, Oracle Streams
determines which information has to be re-published to the apply
processes. This information, if no any longer available in buffered
queues, will be re-published on request by the capture processes.
The apply processes will ignore duplicates arising from
processing published information from the selected checkpoint
and the failure.
 Details of the implementation are complex and are beyond the
scope of this paper.
Oracle Streams provides an infrastructure to support many
information-sharing environments using a small number of
building blocks:

• Automated (implicit) or explicit capture processes

• Staging areas (queues) for published information. These
staging areas can be transient or persistent with retention,
auditing, tracking support.

• Automated (implicit) or explicit apply processes

• The ability to propagate information between staging areas

• The ability to receive/deliver information from/to
communication channels

Using these building blocks, the following scenarios can be
supported:

• Basic messaging – this scenario is handled with explicit
capture and apply processes using standard or buffered
queues of type ANYDATA. Standard queues would be used
without retention.

• Directed message distribution – this scenario is handled with
explicit capture and apply processes using multi-consumer
queues that are typed or of type ANYDATA.

• Messaging with auditing and tracking – this scenario is
handled with explicit capture and apply processes using
queues that are typed and support retention. This would be
the normal mode of operation between autonomous business
entities, especially for any EAI environments.

• Publish/subscribe (messaging context) - this scenario is
handled with explicit capture and apply processes using
typed multi-consumer queues. Publishers do not specify the
recipients. The recipient list is determined through
subscriptions. The support includes subject and content
based subscription, that is, subscription that are specified
without or with WHERE clause respectively. When using
multi-consumer queues, publishers can choose to select the
recipients or not on a message-by-message basis. If they
specify recipients for a message, subscriptions will be
ignored. If they do not specify recipients subscription will be
used to determine them.

• Replication (homogeneous) - this scenario is handled with
implicit capture and apply processes using buffered queues.
Subscriptions are used to determine which messages are
published. Messages will be re-published as needed.
Buffered queues are used for high performance.

• Replication (heterogeneous) - this scenario is handled with
implicit capture and apply processes using buffered queues.
Subscriptions are used to determine which messages are
published. Messages will be re-published as needed.
Buffered queues are used for high performance. Gateway
technology is used for the apply processes.

• Replication (generalized) - this scenario is handled with
implicit capture and apply processes using buffered queues.
Rule-based transformations during capture, propagation,
and/or apply processing can support different table names,
different column names, and different column data types.

• Low latency ETL for Data Warehouse – this scenario is
handled like the generalized replication case. It leverages the
high flexibility, and functionality of rules based selections
and transformation. ETL (Extraction, Transformation,
Loading) based on Oracle Streams technology provides up-
to-date information. Furthermore the extracted information
includes the evolution of the data, not just a specific state.
Last not least, information of the past can be extracted.

• Rolling application upgrades – this scenario is handled like
the generalized replication case. If a new version of an
application needs different data structures, the flexibility and
functionality of rules based transformation can be leveraged
to transfer the data from the old model into a new model.
Tables representing the data in the new model are created
and kept up-to-date. Once this process is completed, the new
application version can be activated.

The transformation of data may take days and therefore
require a service interrupt of unacceptable duration. This
technology reduces the outage to an acceptable level.

It should be noted that sometimes not all transformations
could be handled as online transformation. In these cases
some ‘cleanup’ has to be done while the application is not
active. Experience has shown that there are typically only

small of data that cannot be handled online and that the
interruption of the application to transform this data can be
tolerated.

• Disaster protection – this scenario is handled with implicit
capture and apply processes using buffered queues.
Subscriptions are used to determine which information has to
be delivered from the active site to the remote stand-by site.

The above scenarios show how a single infrastructure can be used
for a range scenarios covering and significantly extending existing
messaging, publish/subscribe, and replication technology.

3. Expressions as Data
Conditional expression can be used to describe interest in
information. One could consider expressions in isolation, as
publish/subscribe systems generally do, or as part of a more
general description of message consumers.
Let us assume there is a directory in the form of a table describing
message consumers. This directory consists of multiple columns,
such as user name, user identification, address of user,
communication channel with addresses, their company affiliation,
position within the company, and their interest and/or
responsibilities. Let us assume that for greater flexibility and
expressiveness expressions are used to specify the interest and
responsibilities.
One could issue a query to find rows that satisfy certain criteria,
for example, find everyone from a company who is located within
a certain radius from a specific point. The result set could be used
to define the consumers of a message. In this case the publisher
determines the recipients with a SELECT on the table.
Expression Filtering as described in [YSG] allows users to find
those rows for which the expression matches a given data element.
More formally:

SELECT * FROM consumers WHERE

 EVALUATE (consumer.Interest) …,

 <data item>) = 1

This statement returns those rows for which the expressions match
the values of the data item. If the data item represents a message
and the expression represents a subscription, we would find all the
subscribers of a message. The publisher uses the criteria of
consumers to specify the recipients.
Obviously, the data item does not need to be a message, so one
could ask the question: ‘Is there interest in some information,’ and
publish the information only if this is the case. This represents a
simple demand analysis for information.
Expression Filtering allows publishers to specify queries that
reference any combinations of columns including expressions.
This allows publishers to use their own criteria as well as the
criteria of the subscribers; functionality called mutual filtering.
The SQL support allows adding more sophisticated distribution
lists, such as, the first ten recipients ordered by distance from
some location.
Expression filtering can be applied to XML messages by
capturing the interest as XPath expressions..
Obviously, there are many application of this technology outside
of Information Sharing. A good example would be demand

analysis. A seller could check demand for set a of items by a set of
consumers by specifying a query against a customer database that
contains consumer interest as a part of consumer data.

4. Conclusions
Messaging and database technology have evolved independently.
There have been early attempt to use databases to store messages
without adapting the database technology to the messaging
environments [NEON]. These attempts resulted in severe
performance and functional limitations.
Oracle’s approach finally brought the breakthrough. The approach
presented in this paper achieved the following benefits

• Significantly extended the information sharing functionality

• Significantly improved the operational characteristics

• Significantly reduced TCO (Total Cost of Ownership) for
users

• Significantly reduced development time and effort for Oracle

The Oracle effort confirmed the perception of many researchers
that messaging and database technology should be integrated
[BHM], [GR]. It also adds a new perspective to the work related
to active databases as described in [WC].

5. Acknowledgement
The technology, described in this paper, has been deployed widely
among Oracle’s customers. It is the backbone of many mission
critical and highly visible applications. It has become an integral
part of all of Oracle’s software including the E-Business Suite and
the Oracle Collaboration Server.
The development and implementation of the technology is the
result of many years of many dedicated Oracle employees. Neerja
Bhatt, Alan Downing, and Jim Stamos are key contributors.

6. References
[BHM] – Bernstein, P., Hsu, M. and Mann, B, “Implementing
Recoverable Requests Using Queues.’ 1990 ACM SIGMOD
Conference, Atlantic City, May 1990
[DBC] - Dayal, U., Buchmann, A., and Chakravarthy, S., “The
HIPAC Project” in “Active Database Systems,” Morgan-
Kaufmann, San Mateo, California
1995.
GR] – Gray, J., Reuter, A., “Transaction Processing,.” Morgan-
Kaufmann, San Mateo, California, 1993.
[JMS] - http://java.sun.com/ (Search ‘JMS’)
[NEON] - http://www.sybase.com/products (search for’ New Era
of Networks Integration Package’)
[ORRAC] - http://otn.oracle.com/ (Search for ‘RAC’)
[ORAQ] - http://otn.oracle.com/ (Search for ‘Oracle AQ’)
[OREBIS] - http://otn.oracle.com (Search for ‘Workflow,
Business Events’)
[ORRE] - http://otn.oracle.com/ (Search for ‘Rules Engine’)
[ORSTR] - http://otn.oracle.com/ Search for ‘Oracle Streams’)

[SRI] Srinivasan, J., et.al., “Oracle8i Index-Organized Table and
its Applications to New Domains,” Proceedings of the 26th Int.
Conf. on Very Large Data Bases, pp. 285-296, Sept. 2000.
[WC] Widom, J. and Ceri, S. “Active Database
Systems”. Morgan-Kaufmann, San Mateo, California,
1995.
[YSG] – Yalamanchi, A., Srinivasan, J., and Gawlick, D.,
“Managing Expressions as Data in Relational Database Systems,”
CIDR Conference, Asilomar, 2003

