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ABSTRACT
Publish/subscribe systems are successfully used to decouple
distributed applications. However, their efficiency is closely
tied to the topology of the underlying network, the design of
which has been neglected. Peer-to-peer network topologies
can offer inherently bounded delivery depth, load sharing,
and self-organisation. In this paper, we present a content-
based publish/subscribe system routed over a peer-to-peer
topology graph. The implications of combining these ap-
proaches are explored and a particular implementation using
elements from Rebeca and Chord is proven correct.
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1. INTRODUCTION
Publish/subscribe is a scalable and flexible communica-

tion paradigm which suits the needs of modern applications.
A publish/subscribe service conveys published notifications
from any producer to all interested consumers with a match-
ing subscription set. In this manner clients do not use
source/destination identifiers or addresses. This inherent
loose coupling of producers and consumers is the primary
advantage of these systems.

To achieve this loose coupling, consumers subscribe to
specific kinds of event notifications. The most flexible se-
lection criteria for notifications is realized by content-based
selection. In this particular publish/subscribe model, no-
tification messages are filtered according to their content.
Event notifications propagate from a producer to interested
consumers through a network of filters.
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However, state of the art content-based publish/subscribe
systems have static networks. While subscriptions change
dynamically with the interests of the current clients, the
routing network used to publish the notifications remains
rather unchanged. Furthermore, the network is often cho-
sen to be a tree in order to simplify the routing algorithms.
This approach introduces single points of failure and bot-
tlenecks. However, since the network topology significantly
influences the performance of the overall system, it should
be carefully selected to reduce network congestion, minimise
routing depth, and preserve these properties in face of chang-
ing network nodes and failures. These properties are missing
in current systems.

On the other hand, peer-to-peer (P2P) networks often ad-
dress precisely these issues. They self-coordinate a very large
network to achieve a common goal. The assumption made
for the design of peer-to-peer networks is frequent node fail-
ure and changing participation. The networks typically have
excellent routing depth guarantees. Also, as most peers are
equal, traffic is often evenly distributed, reducing conges-
tion. All peer-to-peer systems maintain their guarantees
under the assumption of frequent failures.

Modern peer-to-peer networks have been used to great ef-
fect in implementing a form of multicast [17]. Topic-based
publish/subscribe—a primitive addressing model—can be
implemented on peer-to-peer multicast. The routing deci-
sions of peer-to-peer networks are generally simplistic. Our
publish/subscribe routing policy allows for decisions with se-
lection criteria as flexible as content-based publish/subscribe.

To provide more reliable and scalable topologies for content-
based filtering, more general graphs than a tree must be
maintained. Our contribution in this paper is to take the
graph topology and management of a peer-to-peer network
and couple it with the highly flexible routing of a pub-
lish/subscribe system. Of particular interest, our network
preserves the use of fully general filters, yet guarantees a
logarithmic bound on delivery depth with evenly distributed
congestion, even in the face of dynamic participation and
failures.

The remainder of this paper is structured as follows. In
section 2 we briefly outline Chord [18], a P2P overlay routing
scheme, and Rebeca [11], a content-based publish/subscribe
system, both of which we borrow ideas from. After section 3



motivates the design of our system, we outline its formal
properties. Section 4 proceeds to present and prove cor-
rect the publish and subscribe algorithms. We then discuss
throughout section 5 how to preserve the required network
and filter structure in the face of node and edge failures and
joins. Finally, in section 6 and 7, we compare our system
to existing work and outline the direction of our further re-
search.

2. COMMUNICATION PARADIGMS
The communication architecture envisioned in this paper

integrates content-based filtering strategies directly on top
of a P2P network topology. To manage the filters, we reuse
Rebeca’s algorithms for filter covering and merging [8, 10,
11]. The topology of our network is directly borrowed from
the Chord P2P network [18]. However, the generalised rout-
ing algorithm used to implement the publish/subscribe in-
terface is the focus of this paper. The maintenance of the
graph is implemented using this generalised routing algo-
rithm rather than Chord’s native algorithm which we omit.

2.1 Rebeca
Processes in pub/sub systems (also known as event-based

systems [8]) are clients of an underlying notification service
and can act both as producers and consumers of messages,
called event notifications or notifications for short. A notifi-
cation is a message that describes an event. Notifications are
injected into the event system via a publish() call rather
than being published towards a specific receiver. They are
conveyed by the underlying notification service to those con-
sumers which have registered a matching subscription with
subscribe(). Subscriptions describe the kind of notifica-
tions consumers are interested in.

The major characteristic of a notification service is the
data model of the transmitted notifications and the language
used for subscribing. Subject- and type-based addressing
exists [12, 2, 7], but content-based filtering [3] offers the
most flexible scheme. Filters are boolean functions on the
entire content of a notification.

The notification service relies on a network of brokers,
which forward notifications according to filter-based routing
tables. The topology of the system is often constrained to be
an acyclic and connected graph (Fig. 1) for simplicity rea-
sons. The edges are point-to-point connections, forming an
overlay network, e.g., in an underlying TCP network. This
model simplifies the implementation and reasoning about
communication characteristics. The single network used for
data dissemination is comparable to the single spanning tree
approach of multicast algorithms [5]. The single tree, how-

X4

B2

X5

X3

X2

X1

Local Client

Broker

X8

X7

B5

B4

X6

B3

B1

Figure 1: The router network of Rebeca.

ever, is a bottleneck of the system, as each node is a single
point of failure and the central nodes are likely to carry the
major part of the load.

The major advantage of these systems is that the routing
tables can direct the flow of notifications to only interested
nodes. Each broker maintains a routing table which includes
content-based filters. When routing, a notification only goes
down a link if it is matched by a corresponding filter.

The simplest form of routing is simple routing : active
filters are simply added to the routing tables with the link
they originated from. Obviously, this is not optimal with
respect to routing table sizes, which grow linearly with the
number of subscriptions.

A first improvement is to check and combine filters that
are equal. More generally, the covering routing strategy [4]
tests whether a filter F1 accepts a superset of notifications
of a second filter F2, and in this case replaces all occur-
rences of F2 assigned to the same link in the routing table,
significantly decreasing the table size.

In a second step, if no cover can be found in a given set of
filters, merging can be used to create new filters that cover
existing ones [10]. Only the resulting merged filter is for-
warded to neighbour brokers, where it covers and replaces
the base filters. Merging can be done either in a perfect or
imperfect way. Perfectly merged filters only accept notifi-
cations that are accepted by at least one of its base filters,
whereas imperfectly merged filters accept notifications be-
yond their base filters.

Imperfect routing table entries increase network traffic
since notifications are accepted and forwarded to neighbour
brokers only to be discarded by them. On the other hand,
if a filter table already accepts a notification, then it does
not need to be updated by a new, but covered subscription
later.

2.2 Chord
Chord [18] is simple and sound peer-to-peer network. Its

graph’s topology provides several features which help us
build an efficient content-filtered publish/subscribe filtering
system with respect to delivery depth and load balancing.

Chord is a scalable system for node lookup in a dynamic
peer-to-peer system with frequent node arrivals and depar-
tures. In this way it is similar to other Distributed Hash
Tables (DHTs [14], [16]).

Chord itself supports just one operation: given a key as
part of a large, circular key space (0 . . . 2160 − 1), it maps
the key onto a node. It achieves this in a scalable manner
by limiting the routing information each node needs to only
a few other nodes. Because the routing table is distributed,
a Chord node communicates with its neighbours in order to
perform a lookup.

In the steady state with an N -node system, each node
maintains information about only O(log N) other nodes, and
resolves all lookups via O(log N) messages to other nodes.
Chord maintains its routing information as nodes join and
leave the system.

The Chord network topology is a more general form of
figure 2. The basic principle is that each node keeps directed
edges to nodes with distances 1
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circle. Routing is achieved by successively refining the search
via these edges. We borrow this concept of refinement from
Chord and apply it to the more general concept of filter
coverage.
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Figure 2: The Chord graph

3. DESIGN
In this section we outline what changes are required from

the publish/subscribe system and what constraints we have
on our network topology.

3.1 Extending the Publish/Subscribe
One of our goals in combining P2P with publish/subscribe

was to remove the single bottleneck and point-of-failure of
using exactly one tree for notifications and filter updates.
To avoid introducing routing cycles within a more general,
redundant graph, we must select for each notification a span-
ning subtree of the entire graph. During routing, we must
provide a test to assure forwarding only along those edges
which are in the subtree. To provide the routing algorithm
with an understanding of how to select the edges for a sub-
tree, we provide a topology component.

Furthermore, we want the network to be robust when bro-
kers change and fail. To keep the graph correct, we must
maintain the system’s routing tables to reflect the changes.
Therefore, we add two components to our architecture that
maintain the structure of the graph and the filters. The
final change is semantic in nature: we have relaxed our as-
sumption about broker failures—they can happen—so we
no longer guarantee delivery of all published notifications
which match a subscription.

Despite these changes, our implementation preserves the
APIs used to implement/invoke filters and the API used to
publish or subscribe for a notification. The two new mainte-
nance components simply use the existing publish/subscribe
API for communication and access the routing table. This
design is illustrated in figure 3.

Publish / Subscribe
Filter Engine

Point−to−Point
Routing

Description
Topology

The Generalized
Routing Algorithm

Publish / Subscribe
For Notifications

Filter Invariant
Maintenance

Graph Topology
Maintenance

Figure 3: The components of our architecture

3.2 Topology of Many Trees
We know that we must generalise the graph. However,

to keep the system functioning requires that the graph have
structure. It is important that this structure be well under-
stood so that we can implement it.

The nodes within our topology graph are special broker
machines which publish/subscribe on behalf of themselves
and possibly light-weight or poorly connected client ma-
chines. They maintain connections to several peer broker
nodes in order to route notifications and subscriptions.

Each directed edge in our topology graph is a network link
joining two brokers. The direction of the edge indicates in
which direction published notifications flow. It is possible
for two nodes to be connected by two edges, one in either
direction. On each edge we associate exactly one content-
based filter which determines if an event notification should
be forwarded to the associated peer broker.

As previously noted, a more general graph than a tree is
required. However, there is no purpose in sending a given
notification or filter update to the same broker many times.
In fact, we want to preserve the guarantee that a single
published notification matches a given subscription at most
once. Therefore, it makes sense to consider a spanning sub-
tree of the graph for a given publish or subscribe operation.
However, to balance the network congestion and reduce sin-
gle points of failure, we use a different tree for every broker.
That is, each broker is at the root of its own distinct tree to
use for delivering a published notification.

The addition of multiple trees for notification presents
some difficulties. Prior to our generalised routing, a sub-
scription and notification followed the same tree. This will
not lead to correct behaviour in our more general topology.
If a notification is distributed through one tree, a subscrip-
tion from any of the nodes in that tree must propagate up
that tree; this remains unchanged. However, a subscribe
must simultaneously propagate up all possible publish trees.

Let the path u ; v denote the route taken in the tree
rooted at u to publish a notification to v. Then the sub-
scription tree rooted at v must follow u ; v in reverse to
reach u. That is, the same path must be taken. If this
is not the case, then the path will not have filters which
are supersets of each other, thus leading to a notification
being dropped early. This will be discussed in more detail
throughout the following section.

Finally, the distribution of notifications and filter updates
in our network is essentially a broadcast algorithm. It is sim-
ilar to an existing naive scheme [6] implemented on Chord.
However, our broadcast notifications are heavily attenuated
by the filters on our edges, while the filter updates are at-
tenuated by filter covering.

4. IMPLEMENTATION
In order to make our proofs and explanation precise, we

make use of some specific notation. All of the notation is col-
lected here for quick reference and then explained in detail
below.

4.1 Notation
We will refer to the topology graph as G = (GV , GE) for

the sets of vertices and edges respectively. K will denote
the key space. E represents the set of all publishable event
notifications. N = |GV | is the number of broker nodes in
the graph.



• (u, v) ∈ GE denotes the directed edge from u ∈ GV to
v ∈ GV . In text, (u → v) is used to denote (u, v) for
readability. (u ; v) denotes a path from u to v.

• p(u ∈ GV ) = {v ∈ GV |(u, v) ∈ GE} ∪ {u} denotes the
set of peers a node u may forward a notification to.
The loopback edge, u → u, is used by u to express its
(and its clients’) subscriptions.

• s(v ∈ GV ) = {u ∈ GV |(u, v) ∈ GE} ∪ {v} denotes the
set of peers a node v may receive a notification from.
The loopback edge, v → v, is used by v to publish
notifications on its own (and its clients’) behalf.

• p 1

2k
(u ∈ GV ) denotes a peer w ∈ p(u) such that w is

at least 1
2k clockwise around the circle from u.

• key(u ∈ GV ) 7→ k ∈ K is the function which maps a
specific node u to its key value k.

• ru∈GV
(v ∈ GV ) 7→ R ⊆ K returns the subset R of the

key space K which node u holds v responsible for.

• f((u → v) ∈ GE) 7→ A ⊆ E is the function mapping
an edge to the set A of event notifications which the
corresponding filter accepts.

Due to the Chord graph in figure 2, we have O(log N)
edges entering a node, and O(log N) edges leaving a node.
We call those edges leaving a node u the publishing edges
and denote the set of target nodes with p(u). Those edges
entering a node u, we call its subscription edges with s(u) for
the nodes respectively. This terminology is chosen to reflect
the operations taken by u on its edges. Whenever edges are
indicated such as v → w, the edge is always interpreted with
direction relative to publishing.

A node u’s publishing edges are selected to have a dou-
bling property taken from Chord. For k = 1 . . . 160, u keeps
an edge to the first node which is clockwise by a distance
of 1

2k or more along the circle. We denote these particular
nodes as p 1

2k
(u). Only one edge is kept to each peer node.

There is a theorem related to Chord that the degree of u is
O(log N) rather than 160 [18].

As in Chord, there is a key space K mapped onto the
circle. Each node u has a location on the circle and therefore
a key key(u). During publishing, we must select a subtree.
To achieve this, a node u takes all of the nodes in p(u) and
draws them in their appropriate locations on the circle as
illustrated in figure 4. Now, u assigns responsibility ru(v)
to each v ∈ p(u) by taking the section of the circle clockwise
of node v up to the next node. In this manner, the entire
key space is partitioned.

Finally, each edge has a filter f(u → v). We say that the
filter accepts an event notification e ∈ E if e ∈ f(u → v).
Otherwise, it is rejected. A filter f covers another filter g if
f ⊇ g. Merging two filters is creating an h such that h ⊇ f
and h ⊇ g.

4.2 The Invariant
In order to make globally correct filter decisions locally at

each node, we need guarantees about the overall structure of
the filters. We present an invariant that ensures published
notifications follow a path on which the filters are always
subsets. In this manner, no early filter will reject a notifica-
tion which would have been accepted later.

v2

v3

v4

u
v1

ru(v2)

ru(v4)

ru(u)

ru(v1)

ru(v3)

Figure 4: The partition of responsibility for u

Following our notation in section 4.1 the invariant can be
expressed for u → v → w as follows:

∀u ∈ GV ∀v ∈ p(u) ∀w ∈ p(v) :

ru(v) ∩ rv(w) 6= ∅ ⇒ f(u → v) ⊇ f(v → w)

The terms in this equation are illustrated for the Chord
graph in figure 5.

4.3 Publishing Notifications
We make the guarantee that no node ever receives the

same notification twice. Let u be a publisher of notification e
and v a subscriber for event notifications F with e ∈ F ⊆ E.
If no edges on the delivery path u ; v fail during delivery
of e, we guarantee that v receives e.

Messages which carry an event notification include a range
field, r ∈ K. This range field denotes that the receiving
node u is responsible for delivering the notification to all
interested parties in the range [key(u), r) (where the key
space is considered to wrap-around).

The publishing node w starts the algorithm by setting
the initial range to the entire key space, and then imagining
that the notification was received via the loopback edge w →
w. When a node u receives a notification, it intersects the
range [key(u), r) with the set ru(v) ⊆ K for each peer v ∈
p(u). If this intersection is non-empty, the filter f(u → v) is
tested. If the filter accepts the published notification, then
it is forwarded down the edge u → v with a new range r′

such that [v, r′) = ru(v) ∩ [u, r).

r
v
(w

)

w1
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v

w

w0
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r
u
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u
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Figure 5: The terms of the invariant



The order in which edges are considered is in decreas-
ing size of |ru(v)|. In the case where the network contains
N = 2k nodes, the published notifications follow the paths
indicated in figure 6. Pulling this routing out of the cir-
cle, we see the binomial tree of figure 7. This is the reason
underlying our guarantee of at most O(log N) deliver steps.
We inherited this directly from Chord.

The correctness argument is structured as an inductive
proof on the size of |Ru|. The inductive hypothesis is:

A node u receives a notification e for range Ru = [key(u), r).
Let Su ⊆ Ru be those nodes which have a subscription for
e. u guarantees to deliver e to all x ∈ Su, at most once to
all y ∈ Ru, and never to z /∈ Ru.

Assuming the algorithm works for |Ru| < P , we will prove
that it works for of |Ru| = P . Then we will argue that the
algorithm terminates, completing the proof.

For all v ∈ p(u), let R′
v = ru(v)∩Ru, and S′

v = ru(v)∩Su.
Recall that K = �

v∈p(u) ru(v) is a partition. Therefore,

Ru = � v∈p(u) R′
v and Su = � v∈p(u) S′

v are partitions of Ru

and Su respectively.
Because u has a peer p 1

2160
(u), u is the only node such

that key(u) ∈ ru(u). Therefore, u simply delivers e to each
of the subscribed clients exactly once and no one else.

Now, u decides to forward e to v 6= u with range R′
v iff

R′
v = ru(v) ∩ Ru 6= ∅ and e ∈ f(u → v). v would only need

to receive e if there is a w ∈ p(v) such that rv(w) ∩ R′
v 6= ∅

and e ∈ f(v → w). Suppose that u does not forward e, but
v needed e. This means e /∈ f(u → v). Pick k ∈ rv(w)∩R′

v .
Then, k ∈ rv(w) and k ∈ R′

v ⊆ ru(v). Hence ru(v)∩rv(w) 6=
∅. By our invariant, then f(u → v) ⊇ f(v → w). Since
e ∈ f(v → w) then e ∈ f(u → v). This is a contradiction.

Hence, if v needs e for any nodes S′
v, v receives e. Fur-

thermore, since |R′
v| < |Ru|, the inductive hypothesis holds.

As each element R′
v of the partition of Ru met the guar-

antee of no delivery to z /∈ R′
v and at most once to y ∈ R′

v ,
Ru meets these guarantees by unioning the disjoint R′

v sets.
Furthermore, as each R′

v delivered to each x ∈ S′
v ⊆ R′

v ,
then u delivered to each Sv as it is the union. Therefore, u
met all of the guarantees for a problem of size |Ru|.

Since we know that every node u sees e at most once
and u reduces the number of nodes remaining by one, the
algorithm must terminate. Therefore, our algorithm makes
the claimed guarantees. Less formally, the delivery depth is
related to the binomial tree and is thus O(log N).

Figure 6: Notification propagation

Figure 7: Binomial tree for publish/subscribe

4.4 Subscribing/Unsubscribing
A subscription simply updates the loopback filter on the

originating node and then reestablishes the invariant.
Where the publish operation was delivered clockwise on

the Chord ring, the subscribe operation is delivered counter-
clockwise. Where the publish followed decreasing responsi-
bility order, the subscribe follows increasing responsibility
order. Figure 8 illustrates this for the case N = 2k.

Messages which update the invariant include only the state
of the new filter to apply on that edge. The goal of the sub-
scribe algorithm is to reach every node u along the same
path that a publish would follow to reach the subscriber
from u.

We require that every v ∈ GV must also know what ru(v)
is for every u ∈ s(v). That is, it must know what keys each
of the publishers pointing at it hold it accountable for.

When a node v receives a filter update from a peer w ∈
p(v) with filter g, it checks if the filter f(v → w) already
covers g. If f does cover g, v may choose not to update its
filter. If f does not cover g, v must set f(v → w) ⊇ g. If
the filter did not change, v stops processing.

Next, v considers all of its subscription edges to peers u ∈
s(v). If ru(v)∩rv(w) 6= ∅, then v recalculates an appropriate
filter h defined below which it propagates to u.

h = �
x∈p(v):

ru(v)∩rv (x)6=∅

f(v → x)

For unsubscribe, the exact same procedure is followed if the
loopback filter was changed.

This algorithm directly maintains the invariant; we only
need to prove that it terminates. We show that the number

Figure 8: Filter update propagation



of the edge, k, decreases and therefore the corresponding

distance spanned in the key space |K|

2k must increase. What
this tells us is that eventually the algorithm must terminate
with k = 1, the edge which crosses half the circle. In fact,
the number of steps is again, not 160, but O(log N) due to
the binomial tree. The following sketch of the proof uses a
node x to separate ru(v) and rv(w) as figure 9 illustrates.

rv(w) ru(v)

p
12 m (u

)

p
1

2
k

(v
)

p 1
2m−1

(u)

w x

u

v

Figure 9: Visual termination proof

Recall that v received a filter update from w = p 1

2k
(v).

Consider the case where v needs to update u ∈ s(v) such
that v = p 1

2m
(u). For a contradiction, set m ≥ k. u chose v

to be the first node clockwise of it by a distance of at least
|K|
2m . u also chose a x = p 1

2m−1
(u) which has a distance of

at least |K|

2m−1 . w is similarily at least |K|

2k clockwise from v.
Therefore, w has clockwise distance from u of at least

|K|

2m
+

|K|

2k
≥

|K|

2m
+

|K|

2m
≥

|K|

2m−1

So, w must be at least as far clockwise from u as x. Recall
the range ru(v) is counter-clockwise of key(x) due to the
construction in section 4.1. Since w is clockwise of x, the
range rv(w) must be clockwise of x. Hence ru(v) ∩ rv(w) =
∅. This contradicts the assumption that u needed to be
updated by v.

5. DEALING WITH FAILURES
Fault tolerance and recovery are very important issues in

a distributed environment such as a peer-to-peer system.
Node and edge failures are commonplace. Since our system
relies on correct structure, we have to provide a maintenance
algorithm that allows us to recover from edge and node fail-
ures. The high redundancy in our system allows us to handle
these in an efficient way.

In the face of edge failures on the delivery path, we guar-
antee only best-effort delivery semantics. However, the reader
may have noticed that our redundant topology could use
retransmission to guarantee at least once (but not exactly
once) delivery to all subscribed nodes in case of any simul-
taneous log N − 1 edge failures. A significant amount of
history and an increased message overhead is still required
to give a delivery guarantee in the face of a network split.
Therefore, we chose to omit this form of failure recovery to
allow applications to make the trade-off themselves.

5.1 Keeping the Graph Chord Shaped
There are two events which can temporarily break the

Chord graph. A new node may join and its publish and
subscribe edges will not be up-to date. Worse, edges may
fail. This case is more critical since if a neighbour goes
missing, the entire circle may be cut.

Upon a new node v joining, we must update s(v) so that
v receives published notifications. We define a special node-
join notification which is published when v connects and
includes k = key(v). All brokers u subscribe for a node-join

notification in [key(u) + |K|

2k , key(p 1

2k
(u)). In this manner,

when a v joins inside this range, u can update its p 1

2k
(u)

peer to be v since it is closer along the circle.
To assist in updating the new node’s publish links, all

nodes subscribe for a node-location notification within the
key range up to the first node counter-clockwise. When a
node connects, it publishes a node-location event notifica-
tion to find the best node to use for its 1

2
, 1

4
, . . . publish

edges.
Sometimes nodes fail, and take with them their associated

edges. Although most edges can be reestablished, the edges
comprising the perimeter of the circle are irreplacable. We
need to prevent the network from falling apart. Research has
indicated [9] that a network needs O(log N) edges to expect
to keep one edge alive during a network partition. There-
fore, every node keeps log N edges to those nodes which are
immediately clockwise from it. These are discovered with a
published node-location notification. Only the first edge is
actually used. The other edges simply sit dormant waiting
to be used in case the perimeter is cut.

If a non-perimeter edge u → v fails, then node u seeks a
new neighbour via the discovery procedure above. During
discovery, the responsibility ru(v) for the failed node v must
be delegated to u’s first neighbour counter-clockwise of v.

It should be noted that the published notifications in this
section can be filtered with a range inclusion test. As we
know from Chord, notifications so filtered can be routed in
only O(log N) messages.

5.2 Keeping the Invariant True
In addition to keeping the graph appropriately shaped,

the nodes must preserve our invariant for filters. Again,
there are two cases where the invariant becomes violated:
new edges, and edge failures.

When a node joins, publishers will connect to it via the
graph preserving strategy of section 5.1. Further, new edges
may be created as the graph tries to preserve the appropriate
edge link structure.

When a new edge is created, the receiving node should be
informed of what range it is responsible for by a published
responsibility-change event notification. These notifications
are filtered so as to never propagate beyond one hop.

Upon receiving a responsibility-change notification (which
the local invariant maintenance component is subscribed
for), a node sends an update message containing the com-
puted filter union of section 4.4. The propagation of this
filter update proceeds normally, establishing the invariant.

When an edge disappears, section 5.1 dictated a responsi-
bility change. In this case, the filter must be corrected. To
achieve this, a notification for a responsibility-change event
is published as in the case of a new edge. This then reestab-
lishes the invariant.



5.3 Missing Maintenance Notifications
In the correction routines above, we cannot assume reli-

able event notification delivery since edges are failing. How-
ever, this assumption is not required.

For the responsibility-change event, the notification only
travels down exactly one edge. If that edge fails, the node
simply sends a new responsibility-change event notification
to the newly responsible neighbour.

For the node-discovery event, if no appropriate publishing
peers connect in a timely manner, the node retransmits the
notification. Duplicate messages are not an issue here since
no node connects to the same peer twice.

For the node-join notification, the node can also retrans-
mit. When a link is established, keys are exchanged. Thus,
a node can deduce whether it is missing some subscription
peer edges.

Therefore, the above two resolution algorithms will be ro-
bust in the face of network flux and efficient since they use
very easily filtered notifications.

6. RELATED WORK
Most P2P systems focus on efficient, distributed search,

often limiting the search to hash key lookup. These systems
favour the anonymous request/reply scheme and use either
structured hash tables, simple broadcast networks, redun-
dant centralised indices, or a combination.

Recent work on the scalable design of P2P overlay net-
works has introduced a new class of structured networks
called Distributed Hash Tables (DHT’s). Well known rep-
resentatives include CAN [14], Chord [18], and Pastry [16].
All of these systems were built to allow efficient key lookup.

Most structured networks allow for a multicast extension
to the DHT lookup scheme. Generally, these schemes are
very efficient, requiring only O(log N) messages for subscribe
and only wasting a few messages in the interior tree nodes
during publish.

The scheme proposed for DHT’s such as Chord and Pastry
in [17] is to map each multicast group number to a specific
node and then have it act as a rendezvous node for that
group. Joining a group means to lookup the rendezvous
node and have the nodes on the lookup path record the
route back to the new members. A variant scheme based on
CAN [15] was proposed. The idea is to have the rendezvous
node act as an entry point to a distinct overlay network
composed only of the group members. Thus no messages
are wasted on publish since every node is interested.

So far, all publish/subscribe systems based on structured
networks implement only topic based publish/subscribe. A
system which uses the described overlay multicast, called
Scribe [17], is implemented on top of Pastry. The mapping
of topics onto multicast groups is done by simply hashing the
topic name. Hermes [13] uses a similar approach, also based
on Pastry. Additionally, the system tries to get around the
limitations of topic based publish/subscribe by implement-
ing a so-called “type and attribute based” publish/subscribe
model. It extends the expressiveness of subscriptions and
aims to allow multiple inheritance in event types.

The above networks efficiently implement a simple form
of publish/subscribe. However, the topic based approach
suffers from limited expressiveness and selectivity by only
allowing predefined topics. Therefore, they leave a large part
of the filtering to the leaf nodes of the event dissemination

graph. Content-based filtering, on the other hand, aims to
deliver only useful matches.

7. FUTURE WORK
While we do not assume any specific filter model to be

implemented on top of our infrastructure, there are a num-
ber of general constraints on content-based filter models as
described in [11]. In addition to these, our system favours
filter models that allow to limit the size of update messages
between the nodes. It remains to be seen what filter models
can actually be implemented efficiently on top of our archi-
tecture.

Then, measuring the performance of this network is a dif-
ficult task. The performance is closely tied to the content
filter selected, the probability distribution of subscribes, the
distribution of publishes, and the ratio of publishes to sub-
scribes. The most important open question here is where to
put the trade-off between filter update and event notification
messages.

Our proofs of correctness rely primarily on partitioning
responsibility among the peers. The maintenance of the
graph also depends on the peer-to-peer network, but the
filter maintenance does not. We are interested in examining
other peer-to-peer networks as substrates for our algorithm,
particularly those with guarantees about the path length of
the underlying network.

It is an interesting challenge to investigate the impact of
physical locality on the behaviour of publish or subscribe.
We expect that there are trade-offs to be made in choosing
which edges connect physically proximate nodes.

8. CONCLUSION
In this paper, we presented a content-based publish/sub-

scribe system built on top of a dynamic peer-to-peer overlay
network. It distributes load equally by maintaining inde-
pendent delivery trees for each node. This allows us to use
a generalization of the publish/subscribe routing strategy.
Separate components ensure that the network self-organises
to maintain the optimal topology and can survive simul-
taneous failure of up to half of its nodes. We argue that
because our system delivers via binomial trees, message de-
livery paths are logarithmically bounded. Details of the al-
gorithms are provided and proven correct.

The main advantage of our system is the unique combina-
tion of the high expressiveness of content-based filters and
the scalability and fault tolerance of a peer-to-peer system.
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[11] G. Mühl. Large-Scale Content-Based
Publish/Subscribe Systems. PhD thesis, Darmstadt
University of Technology, 2002.

[12] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
information bus—an architecture for extensible
distributed systems. In B. Liskov, editor, Proceedings
of the 14th Symposium on Operating Systems
Principles, pages 58–68, Asheville, NC, USA, Dec.
1993. ACM Press.

[13] P. Pietzuch and J. Bacon. Hermes: A distributed
event-based middleware architecture. In J. Bacon,
L. Fiege, R. Guerraoui, A. Jacobsen, and G. Mühl,
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