
(1)

VPR Version 5.0

Jason Luu, Peter Jamieson,
Ian Kuon and Jonathan Rose

Motivation

Vpack and VPR are two CAD tools widely used in the
exploration of FPGA architecture and CAD
– Among the key outcomes of Vaughn Betz’ Ph.D. thesis, 1999
– Downloaded > 1000 times by Universities
– > 200 times by Companies (stats as of 2003)
– Ubiquitous: VPR often an uncited noun in papers

The goals of VPR
– Flexible description/exploration of FPGA architecture
– Platform for CAD Tool algorithm exploration/development
– Packing, Placement and Routing of FPGAs

(2)

The Architecture Exploration Loop

(3)
(3)

Circuits

CAD Flow

Quality
of

Architecture

FPGA
Architecture

What does VPR currently do?

Models homogeneous array of soft logic
bi-directional routing
Extensive flexibility and generation of different routing
architectures
Global Router
Nice graphics
First-in-class modeling of speed and area
Timing analysis

(4)

Goals for Update & Renewed Effort

Model modern features in real architectures
Enable exploration in future IC technologies
Create a full flow to enable use of larger benchmark
circuits
– Currently architecture research based on VPR is stuck using

small benchmarks - larger ones have heterogeneity – RAM,
multipliers, etc.

– Need a complete flow that understands HDL and heterogeneity.

Detailed Exploration of Coarse-Grained Architectures
– With mixture of fine-grained, or not;

(5)

New Features of VPR 5.0

(6)

Four New Features

1. Single Driver Routing Architecture
– Unidirectional/Direct Drive; dominates
– [Virtex98] [Lewis03] [Lemieux04]

2. Heterogeneity
– Can model different blocks types

3. Wide Selection of Architecture Files
– Transistor-Level Design Optimized;
– different Area/Speed Trade-offs
– IC process down to 22nm, based on PTM

4. Regression Test Suite
– To maintain robustness

(7)

Single Driver Routing Architecture

(8)

Single Driver vs. Multiple Driver Routing

Single-driver routing
– One driver, fan-in to

multiplexer

Bi-directional routing
– Tri-state buffers and

pass transistors

(9)

Single Driver Routing Architecture

Single Driver Dominates Multi-Driver
– Lewis et al. 2003: single-driver dominates multi-driver
– Lemieux et al. 2004: 25% area improvement, 9% delay

improvement vs. multi-driver

Used in industry for years
Important that whole research community uses!

(10)

Switch Pattern Generation

Routing Architecture Generation requires high quality
patterns of switches
Problem: Achieve best routability with given number of
switches, and meet architecture specification
Issue in past but now more restrictions with single-drivers

(11)

Switch Pattern Generation Issues

1. Meeting the parameter spec – Fs, Fc, varying L
• Deal with quantization and generate good architectures

2. Switch box patterns
• Tileable (one same switch box design throughout)?
• Tileability vs mux balancing, are these two conflicting?
• What is an appropriate pattern for single-driver architectures?

3. Routability – What definition to use?
• For fixed W, highest % circuits route
• Average lowest W for a set of circuits with the pattern

algorithm

(12)

Simple Experiment: Single vs. Multi Driver

Repeat experiment done in both industry and academia
but with this publicly available VPR 5.0
Compared two FPGAs:

1. All multi-driver, length 4 tracks,
2. All single-driver, length 4 tracks,

Measured Minimum Channel Width

(13)

Average 11% minimum channel width increase!
Lewis et al. 10%, Lemieux 0%

Simple Experiment: Single vs. Multi Driver

(14)

Heterogenous Logic Blocks

(15)

Heterogeneity

VPR 5.0 supports heterogeneous blocks
– Examples: Multipliers, Block RAM, Crossbars

Architectural Specification of Hard Block
– Column based
– Each block has parameterized (multi-row) height
– Transparent routing
– Can specify all input-output timing paths of block
– Allow combinational or registered outputs
– All other parameters same as soft cluster

(16)

Heterogeneity Example Now Working

(17)

Illuminates need for packers for any new hard block
– Packers: Logical to Physical Translation
– Need timing and other optimizations

For example
– Current flow has simple packer at front end synthesis
– Treats black boxes as primary I/O’s, not aware of depth

Heterogeneous Packers

(18)

New FPGA Architecture Input Format

Key to architecture exploration: a language to describe
FPGA architecture
Architecture specification intrinsically hierarchical
VPR 5.0 uses XML to leverage its inherent hierarchy
– Parsers easy to get; old VPR parser kinda rough
– Easy to extend language

(19)

Sample 1: Spec of Single Driver Length 4

<segmentlist>
<segment type="unidir" length="4" freq="1“

Rmetal="44.06455" Cmetal="1.72786e-13">
<mux name="normal" />
<sb type="pattern">1 0 1 0 1</sb>
<cb type="pattern"> 1 0 0 1 </cb>

</segment>
<segment …> … </segment> …

</segmentlist>

(20)

Sample 2: Heterogenous Block

<type name=".mult" height=“2">
<subblocks max_subblocks="1" max_subblock_inputs=“8"

max_subblock_outputs=“8">
<timing>

[Timing Matrix]
</timing>
<fc_in type="frac">0.25</fc_in>
<fc_out type="full" />
<pinclasses>

<class type="in">[pin numbers]</class>
<class type="out">[pin numbers]</class>
<class type=“global">[pin numbers]</class>

</pinclasses>
…

(21)

Wide Selection of Optimized
Architecture Files

(22)

Timing and Area for routing and logic needed for
architecture file

Architecture (L, Fs, N, I, etc) can vary speed and area
since transistor level implementation may change

Architecture Files

(23)

Optimized Timing and Area Models

Betz took ~ 2 months to create “the” area-delay
optimized architecture file in 350nm; so did Ahmed
Previously, NDA’s prevented release of accurate timing
models

Goal:
– Provide publishable optimized timing and area models for a

large number of designs

(24)

Creating Timing and Area Models

Use predictive technology models (PTM) from Yu Cao at
Arizona State
– 180 nm to 22 nm CMOS
– Not as accurate as foundry models but publishable!

Developed custom automatic transistor sizing tool
– Easily create optimized designs for a range of architectures
– Adds new dimension for exploration

• Circuit Design Objective
– Area, Delay, or AreakDelayn

(25)

Experiments Possible with New Models

Technology scaling

Trade-offs between design objective and process
technologies

(26)

Architecture Repository

Releasing repository of selected designs with
– Varied architecture parameters (K, N, L, …)
– Varied design objective (areadelay, delay, …)
– Varied technology (22 nm CMOS 180 nm CMOS)

Timing and area provided in the new VPR architecture
format

(27)

Robustness

(28)

Robustness

Regression test infrastructure for VPR
– Scripts to run a suite of tests on VPR
– Each test runs a test script on list of circuits and architectures
– Extracts results with regular expressions and compares with

golden data allowing for specifiable range of deviation

(29)

Regression Tests:

Check-in regression: Quick tests, varying coverage
N-K sweep: All combinations of K = 2..7, N = 1..12
QoR: Quality of Results over 20 largest MCNC circuits
Architecture sweep: Sweep randomly generated
architectures
Options sweep: Sweep all options
Useful check for correctness!

(30)

New: Full CAD Flow from HDL

(31)

Now Support a Full CAD Flow:

Heterogeneous block inclusion on FPGA architectures
requires upstream CAD support

In this package we support designs created in:
– Verilog HDL (subset)
– BLIF (subset)

(32)

Our Full Flow

(33)

HDL Front End
(ODIN/ Toronto)

Logic Synthesis
(ABC/Berkeley)

Packing
(Vpack/ Toronto)

Placement & Routing
(VPR/Toronto)

Input: Verilog HDL
designs

Output: Placed and
Routed design on
specified FPGA
– explore a wide range of

FPGA architectures

Heterogeneity representation in flow

Front end synthesizer needs to identify heterogeneous
blocks and potentially pack them
– Currently identifies and packs hard multipliers
– Output is in BLIF format with heterogeneity represented as

connected black boxes

Logic synthesis, technology mapping, and clustering
representation of heterogeneous blocks is black boxes
– Inputs to black box are like Primary Outputs
– Outputs to black box are like Primary Inputs

Verilog Example

module mult_design (a, b, c, o1, o2, clk)
input [1:0]a, [1:0]b, [1:0]c, clk;
output [3:0]o;

always @(posedege clk)
begin
o0 <= a*b;
o1 <= c*b;

end
endmodule

BLIF format

.model mult_design

.inputs a_0 a_1 b_0 b_1 c_0 c_1 clk

.outputs o0_0 o0_1 o0_2 o0_3 o1_0 o1_1 o1_2 o1_3

.sublk mult2 in0=a_0 in1=a_1 in2=b_0 in3=b_1 out0=o0_0
out1=o0_1 out2=o0_2 out3=o0_3

.sublk mult2 in0=c_0 in1=c_1 in2=b_0 in3=b_1 out0=o1_0
out1=o1_1 out2=o1_2 out3=o1_3

.end

.model mult2

.inputs in_0 in_1 in_2 in 3

.outputs out_0 out_1 out_2 out_3

.blackbox

.end

Net format

.global clk

.input a_0
pinlist: a_0
…
.output o_0
pinlist: o_0
…
.mult2 mult2_0
pinlist: a_0 a_1 b_0 b_1 o0_0 o0_1 o0_2 o0_3
subblock: 0 1 2 3 4 5 6 7

Timing Analysis in CAD flow

This is not a full timing driven flow

Not fully timing driven: Logic synthesis, technology
mapping, and clustering
– Paths through heterogeneous blocks are analyzed the same as

going through registers

Timing driven: Placement and routing
– All paths have timing values

(38)

Hacks in CAD flow (skip; for info only)

Scripts fix link between tech-mapping and clustering:

1. Global script included in package to reconnect clock
signals to registers (not maintained through ABC)
– Doesn’t support multi clock designs

2. Two scripts to fix simple logic synthesis operations not
performed on specific designs
– Script fixes sv_chip0

• LUT with two of the same input signals
– Script fixes sv_chip1

• Clocked constant that should have been synthesized away

Features for Future Versions
of VPR

and New Full Flow

(40)

Future Features

Full Power Modeling
Bus-Based Routing
Complete Timing Driven Flow including Heterogeneity
Packing Algorithms for New Heterogeneous Blocks
Enable Research on Routing Pattern Generation for
Single-Driver Architectures
Carry Chains
More Complete flow from Verilog -> Routing
– Have a version of ODIN -> ABC -> VPR prototyped

(41)

More Future Features

Selectable registered inputs and outputs for logic blocks
Depopulation of logic clusters
Routing rotations for LUTs
Direct supply ratio specification
Tileable switch block pattern
– Mux balancing (done)
– Tileable quantization (not done)
– Tileable switch block (not done)

Simulatable transistor-level output
Show routing graph before and after placement
Colour heterogeneous blocks

(42)

Acknowledgements

Many people have contributed to this work, and are
working actively on it:
– Vaughn Betz;

– Sandy Marquardt
– Andy Ye
– Russ Tessier
– Mark Fang
– Jason Luu
– Peter Jamieson
– Ian Kuon
– Ted Campbell
– Danny Paladino

(43)

VPR development

Andy Ye implemented single-drivers in VPR with variable
L, Fcout, Fcin, and depopulation

Wei Mark Fang added Fs flexibility and mux balancing
– Mux balancing: making all resulting muxes roughly same size

(44)

(45)

Questions?

Beta Test Volunteers?

	VPR Version 5.0
	Motivation
	The Architecture Exploration Loop
	What does VPR currently do?
	Goals for Update & Renewed Effort
	New Features of VPR 5.0
	Four New Features
	Single Driver Routing Architecture
	Single Driver vs. Multiple Driver Routing
	Single Driver Routing Architecture
	Switch Pattern Generation
	Switch Pattern Generation Issues
	Simple Experiment: Single vs. Multi Driver
	Simple Experiment: Single vs. Multi Driver
	Heterogenous Logic Blocks
	Heterogeneity
	Heterogeneity Example Now Working
	Heterogeneous Packers
	New FPGA Architecture Input Format
	Sample 1: Spec of Single Driver Length 4
	Sample 2: Heterogenous Block
	Wide Selection of Optimized Architecture Files
	Architecture Files
	Optimized Timing and Area Models
	Creating Timing and Area Models
	Experiments Possible with New Models
	Architecture Repository
	Robustness
	Robustness
	Regression Tests:
	New: Full CAD Flow from HDL
	Now Support a Full CAD Flow:
	Our Full Flow
	Heterogeneity representation in flow
	Verilog Example
	BLIF format
	Net format
	Timing Analysis in CAD flow
	Hacks in CAD flow (skip; for info only)
	Features for Future Versions �of VPR �and New Full Flow
	Future Features
	More Future Features
	Acknowledgements
	VPR development
	Questions?��Beta Test Volunteers?

