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Motivation

Vpack and VPR are two CAD tools widely used in the 
exploration of FPGA architecture and CAD
– Among the key outcomes of Vaughn Betz’ Ph.D. thesis, 1999
– Downloaded > 1000 times by Universities
– > 200 times by Companies (stats as of 2003)
– Ubiquitous: VPR often an uncited noun in papers

The goals of VPR
– Flexible description/exploration of FPGA architecture
– Platform for CAD Tool algorithm exploration/development
– Packing, Placement and Routing of FPGAs
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The Architecture Exploration Loop
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What does VPR currently do?

Models homogeneous array of soft logic
bi-directional routing
Extensive flexibility and generation of different routing 
architectures
Global Router
Nice graphics
First-in-class modeling of speed and area
Timing analysis 

(4)



Goals for Update & Renewed Effort 

Model modern features in real architectures
Enable exploration in future IC technologies
Create a full flow to enable use of larger benchmark 
circuits
– Currently architecture research based on VPR is stuck using 

small benchmarks  - larger ones have heterogeneity – RAM, 
multipliers, etc.

– Need a complete flow that understands HDL and heterogeneity.

Detailed Exploration of Coarse-Grained Architectures
– With mixture of fine-grained, or not;
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New Features of VPR 5.0
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Four New Features

1. Single Driver Routing Architecture
– Unidirectional/Direct Drive; dominates
– [Virtex98] [Lewis03] [Lemieux04] 

2. Heterogeneity
– Can model different blocks types

3. Wide Selection of Architecture Files
– Transistor-Level Design Optimized; 
– different Area/Speed Trade-offs
– IC process down to 22nm, based on PTM

4. Regression Test Suite
– To maintain robustness
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Single Driver Routing Architecture
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Single Driver vs. Multiple Driver Routing

Single-driver routing
– One driver, fan-in to 

multiplexer

Bi-directional routing
– Tri-state buffers and 

pass transistors
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Single Driver Routing Architecture

Single Driver Dominates Multi-Driver
– Lewis et al. 2003: single-driver dominates multi-driver
– Lemieux et al. 2004: 25% area improvement, 9% delay 

improvement vs. multi-driver

Used in industry for years
Important that whole research community uses!

(10)



Switch Pattern Generation

Routing Architecture Generation requires high quality 
patterns of switches
Problem: Achieve best routability with given number of 
switches, and meet architecture specification
Issue in past but now more restrictions with single-drivers
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Switch Pattern Generation Issues

1. Meeting the parameter spec – Fs, Fc, varying L
• Deal with quantization and generate good architectures

2. Switch box patterns
• Tileable (one same switch box design throughout)?
• Tileability vs mux balancing, are these two conflicting?
• What is an appropriate pattern for single-driver architectures?

3. Routability – What definition to use?
• For fixed W, highest % circuits route
• Average lowest W for a set of circuits with the pattern 

algorithm
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Simple Experiment: Single vs. Multi Driver

Repeat experiment done in both industry and academia 
but with this publicly available VPR 5.0
Compared two FPGAs:

1. All multi-driver, length 4 tracks, 
2. All single-driver, length 4 tracks, 

Measured Minimum Channel Width

(13)



Average 11% minimum channel width increase!
Lewis et al. 10%, Lemieux 0%

Simple Experiment: Single vs. Multi Driver
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Heterogenous Logic Blocks
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Heterogeneity

VPR 5.0 supports heterogeneous blocks
– Examples: Multipliers, Block RAM, Crossbars

Architectural Specification of Hard Block
– Column based
– Each block has parameterized (multi-row) height
– Transparent routing 
– Can specify all input-output timing paths of block
– Allow combinational or registered outputs
– All other parameters same as soft cluster
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Heterogeneity Example Now Working
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Illuminates need for packers for any new hard block
– Packers:  Logical to Physical Translation
– Need timing and other optimizations

For example
– Current flow has simple packer at front end synthesis
– Treats black boxes as primary I/O’s, not aware of depth

Heterogeneous Packers
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New FPGA Architecture Input Format

Key to architecture exploration: a language to describe 
FPGA architecture
Architecture specification intrinsically hierarchical
VPR 5.0 uses XML to leverage its inherent hierarchy
– Parsers easy to get;  old VPR parser kinda rough
– Easy to extend language
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Sample 1: Spec of Single Driver Length 4

<segmentlist>
<segment type="unidir" length="4" freq="1“ 

Rmetal="44.06455" Cmetal="1.72786e-13">
<mux name="normal" />
<sb type="pattern">1 0 1 0 1</sb>
<cb type="pattern"> 1 0 0 1 </cb>

</segment>
<segment …> … </segment> …

</segmentlist>
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Sample 2: Heterogenous Block

<type name=".mult" height=“2">
<subblocks max_subblocks="1" max_subblock_inputs=“8" 

max_subblock_outputs=“8">
<timing>

[Timing Matrix]
</timing>
<fc_in type="frac">0.25</fc_in>
<fc_out type="full" />
<pinclasses>

<class type="in">[pin numbers]</class>
<class type="out">[pin numbers]</class>
<class type=“global">[pin numbers]</class>

</pinclasses>
…
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Wide Selection of Optimized 
Architecture Files
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Timing and Area for routing and logic needed for 
architecture file

Architecture (L, Fs, N, I, etc) can vary speed and area 
since transistor level implementation may change

Architecture Files
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Optimized Timing and Area Models

Betz took ~ 2 months to create “the” area-delay 
optimized architecture file in 350nm;  so did Ahmed
Previously, NDA’s prevented release of accurate timing 
models

Goal:
– Provide publishable optimized timing and area models for a 

large number of designs

(24)



Creating Timing and Area Models

Use predictive technology models (PTM) from Yu Cao at 
Arizona State
– 180 nm to 22 nm CMOS
– Not as accurate as foundry models but publishable!

Developed custom automatic transistor sizing tool
– Easily create optimized designs for a range of architectures
– Adds new dimension for exploration

• Circuit Design Objective
– Area, Delay, or AreakDelayn
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Experiments Possible with New Models

Technology scaling

Trade-offs between design objective and process 
technologies
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Architecture Repository

Releasing repository of selected designs with
– Varied architecture parameters (K, N, L, …)
– Varied design objective (areadelay, delay, …)
– Varied technology (22 nm CMOS 180 nm CMOS)

Timing and area provided in the new VPR architecture 
format 
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Robustness
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Robustness

Regression test infrastructure for VPR
– Scripts to run a suite of tests on VPR
– Each test runs a test script on list of circuits and architectures
– Extracts results with regular expressions and compares with 

golden data allowing for specifiable range of deviation
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Regression Tests:

Check-in regression: Quick tests, varying coverage
N-K sweep: All combinations of K = 2..7, N = 1..12
QoR: Quality of Results over 20 largest MCNC circuits
Architecture sweep: Sweep randomly generated 
architectures
Options sweep: Sweep all options
Useful check for correctness!
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New:  Full CAD Flow from HDL
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Now Support a Full CAD Flow:

Heterogeneous block inclusion on FPGA architectures 
requires upstream CAD support

In this package we support designs created in:
– Verilog HDL (subset)
– BLIF (subset)
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Our Full Flow
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HDL Front End
(ODIN/ Toronto)

Logic Synthesis
(ABC/Berkeley)

Packing
(Vpack/ Toronto)

Placement & Routing
(VPR/Toronto)

Input: Verilog HDL 
designs

Output: Placed and 
Routed design on 
specified FPGA
– explore a wide range of 

FPGA architectures



Heterogeneity representation in flow

Front end synthesizer needs to identify heterogeneous 
blocks and potentially pack them
– Currently identifies and packs hard multipliers
– Output is in BLIF format with heterogeneity represented as 

connected black boxes

Logic synthesis, technology mapping, and clustering 
representation of heterogeneous blocks is black boxes
– Inputs to black box are like Primary Outputs
– Outputs to black box are like Primary Inputs



Verilog Example

module mult_design (a, b, c, o1, o2, clk)
input [1:0]a, [1:0]b, [1:0]c, clk; 
output [3:0]o;

always @(posedege clk)
begin
o0 <= a*b;
o1 <= c*b;

end
endmodule



BLIF format 

.model mult_design

.inputs a_0 a_1 b_0 b_1 c_0 c_1 clk

.outputs o0_0 o0_1 o0_2 o0_3 o1_0 o1_1 o1_2 o1_3

.sublk mult2 in0=a_0 in1=a_1 in2=b_0 in3=b_1 out0=o0_0 
out1=o0_1  out2=o0_2 out3=o0_3

.sublk mult2 in0=c_0 in1=c_1 in2=b_0 in3=b_1 out0=o1_0 
out1=o1_1  out2=o1_2 out3=o1_3

.end

.model mult2

.inputs in_0 in_1 in_2 in 3

.outputs out_0 out_1 out_2 out_3

.blackbox

.end



Net format

.global clk

.input a_0
pinlist: a_0 
…
.output o_0
pinlist: o_0
…
.mult2 mult2_0
pinlist: a_0 a_1 b_0 b_1 o0_0 o0_1 o0_2 o0_3
subblock: 0 1 2 3 4 5 6 7



Timing Analysis in CAD flow

This is not a full timing driven flow

Not fully timing driven: Logic synthesis, technology 
mapping, and clustering
– Paths through heterogeneous blocks are analyzed the same as 

going through registers

Timing driven: Placement and routing
– All paths have timing values
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Hacks in CAD flow (skip; for info only)

Scripts fix link between tech-mapping and clustering:

1. Global script included in package to reconnect clock 
signals to registers (not maintained through ABC)
– Doesn’t  support multi clock designs

2. Two scripts to fix simple logic synthesis operations not 
performed on specific designs
– Script fixes sv_chip0 

• LUT with two of the same input signals
– Script fixes sv_chip1 

• Clocked constant that should have been synthesized away



Features for Future Versions 
of VPR 

and New Full Flow 
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Future Features

Full Power Modeling
Bus-Based Routing
Complete Timing Driven Flow including Heterogeneity
Packing Algorithms for New Heterogeneous Blocks
Enable Research on Routing Pattern Generation for 
Single-Driver Architectures
Carry Chains
More Complete flow from Verilog -> Routing
– Have a version of ODIN -> ABC -> VPR prototyped
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More Future Features

Selectable registered inputs and outputs for logic blocks
Depopulation of logic clusters
Routing rotations for LUTs
Direct supply ratio specification
Tileable switch block pattern
– Mux balancing (done)
– Tileable quantization (not done)
– Tileable switch block (not done)

Simulatable transistor-level output
Show routing graph before and after placement
Colour heterogeneous blocks
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VPR development

Andy Ye implemented single-drivers in VPR with variable 
L, Fcout, Fcin, and depopulation

Wei Mark Fang added Fs flexibility and mux balancing
– Mux balancing: making all resulting muxes roughly same size
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Questions?

Beta Test Volunteers?
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