
A DATA STRUCTURE FOR CIRCUIT NET LISTS

Steve Meyer

Independent Consultant l 2124 Kit&edge Street, #125 l Berkeley, CA 94704

Abstmct: A data structure for storing and processing electrical
circuit net lists is described. The basic data structure is not
new, but the version described here is novel in three specific
ways. It adds separate structures (arrays) for cell type and I/O
pad specific information, stores net lists defined in terms of
primitive elements or cells as two superimposed symmetric
incidence list form directed graphs, and separates primitive
element input and output lists to allow signal flow traversal.
This paper concentrates on computer program level
implementation details and on various practical problems
arising in circuit net list processing. Finally, the structure’s
construction cost and algorithmic efficiency is discussed.

Keywords: Data Structure Implementation, CAB Tool
Building, Software Engineering.

1. Introduction

When it is possible to store an electronic circuit net list in
terms of basic primitives or cells, there seems to be one data
structure that is the storage scheme of choice in almost all
situations. The purpose of this paper is to describe that data
structure at the computer program implementation level. Tlie
basic data structure is not new and variations have been used in
network partitioning for a number of years. The basic data
structure is most clearly described by Fiduccia and Mattheyses
[6]. They attribute the data structunZ to Schweikert and
Kemighan [ll], but in fact, even though Schweikert and
Kemighan realized that it is physically incorrect to represent an
N pin signal net as M, 2 pin nets where M is the number of
pairwise combinations of the N pins (number of edges in the
complete graph of N pins), they still stored the circuit net list
as a connectivity matrix rather than as incidence lists. See [2]
or [S] for a discussion of the storage of mathematical graphs.
The data structure has surely also been implicitly used in many
CAD programs (see [3] for example).

The circuit partitioning data structure has been improved
to handle signal flow directionality and to allow the association
of additional information with various circuit elements. The
improvements increase its usefulness in problems other than
network partitioning. This paper also defines C programming
language[8] structure templates, presents an example C
function, and discusses a number of implementation details.

The data structure is usable in layout (placement, routing,
and partitioning), net list translation, design verification (cell

interconnection rule checking), path analysis, and circuit
expansion (compilation). In the case of circuit expansion, the
data smmwe can be used to store the individual sub-circuits,
and the find flattened network. The expansion process maps
sub-circuit data SUUC~~~CS into more flattened circuits. This
data structure is not applicable to circuit design approaches that
directly genemte transistor level IC masks because such
designs are not decomposable into non-overlapping primitives.

2. Data Structure Description

The basic idea is to store each signal net as a member of
the net array, each cell (primitive) as a member of the cell
array, and to use two interconnected lists. The net-pin list
contains an entry for every pin connected to a given net and
contains the cell array index to which that pin connects. The
cell-pin list contains an entry for every pin connected to a
given cell and contains the net array index to which that pin
connects, Notice that the two lists are symmetric. The index
values can also be pointers, but the use of pointers makes
storage management somewhat more difficult

The data structure is improved from the circuit
partitioning version in three ways (see section 3 for C structure
declarations). First, a cell type array is added. The type array
contains one entry for every cell type used in the network and
contains at least a cell type name field, an instance count field
for consistency checking, and hvo ordered pin lists. One pin
list gives the pin name and pin type for every cell type input
pin, and one list gives the pin name and pin type for every type
output pin. Remember there may be many pin types in
addition to the simple input or output categories. Possibilities
are: t&ate, bidirectional, wired-and, etc. The pin lists are
ordered according to the pin order used in the cell type’s
definition. This allows the processing of net list forms using
positional pin connectivity definitions. Delay calculation
programs can use the type array for generic cell type dependent
delay values.

Second, the net-pin and cell-pin lists are broken down
into ~0 lists: one for cell and net inputs and one for cell and
net outputs. By breaking the lists into two sublists, the circuit
nerwork has been converted into two SU@pOSd direted
graphs. Forward source to drain signal flow can be traced by
traversing cell outputs, net inputs, net outputs, and then inputs
of the next cell. Backward drain to driving source connectivity
can b aaced by traversing first input then previous element

25th ACM/IEEE Design Automation Conference@

CH2540-3/66/0000/0613$01 .OO 0 1988 IEEE
Paper 39.1

613

output lists. Notice that any path contains alternating cells and
nets.

The cell-pin list is ordered identically to the
corresponding cell type pin list and each cell array entry
contains the index in the type array of its type. When a new
cell is added to the cell array, its pin list order is copied from
the corresponding type pin list. It is sometimes beneficial to
also keep the net-pin list ordered.

Third, an I/O pad signal array is added. The I/O signal
array contains one entry for every off-module (off-chip, or off-
board) connection and contains at least a signal name, an l/O
pad type field, and the index in the net array of the connected
net. This array allows special processing for I/O pads and is
useful for storing temporary data during circuit expansion
(flattening).

3. Data Structure Templates

A number of storage assumptions have been made in the
following C programmin g language [8] structure definitions. It
is assumed that all element names can be of arbitrary length
and are stored in a common dynamic storage area. This allows
each pin name to be stored exactly once and pointed to from 3
places. All arrays are assumed to be stored in dynamically
allocated memory. In C they are still accessed as normal
arrays. It is possible to change the array index int types to
short int for circuits with less than 32K cells. The structure
templates might look something like:

struct ctype-pin-t { /* one list item per type pin *l
char *ctpnam; /* pin name *I
struct ctype-pin-t *ctpnxt; I* next pin in order */

I;

struct ctype-t (P one element per type */
char *cmam; I* type name */
int howmany; /* no. of instances of type *I
struct ctype-pin-t *ctipins; /* pointer to list of input pins */
struct ctype-pin-t *ctopins; /* and to list of output pins */

. . . other problem specific fields . . .
I;
extem struct ctype_t *ctype; /* array of allocated types */

struct cell-pin-t { /* one list item per cell pin *I
char *cpnam; /* pin name */
int cni; /* index in net[] of pin */
smtct cell-pin-t *cpnxt; /* next pin *I

. . . other problem specific fields . . .
1;

struct cell-t (/* one element per instance *I
char *cnam; I* instance name *I
int cti; /* index in ctype[] of instance */
struct cell-pin-t *cipins; /* header of input pin list */
struct cell-pin-t *copins; /* header of output pin list *I

. . . other problem specific fields . . .
1.

extem struct cell-t *cell, /* array of allocated instances */

struct net-pint { /* one list item per net pin */
char *npnam; /* name of cell pin *f
int nci; /* index in cell[] of pin */
struct net-pint *npnxt; I* unordered next pin on net *I

. . . other problem specific fields . . .
1;

struct net-t (/* one array element per net *I
char *nnam; /* name of net *I
/* signal class can be (WIRE, WAND, WOR, . ..) */
char typflg; /* net’s signal class *I
struct net-pin-t *nipins; /* list of net drivers */
struct net-pin-t *nopins; /* list of net fan-out */

. . . other problem specific fields . . .
1;
extem struct net-t *net; /* allocated array of nets */

4. Data Structure Construction

First, read and sort by type name the cell type library if it
is available. It usually contains less than a few hundred
elements. If it is not available, the cell type array can be built
incrementally as the cell army is built. Next, read either the
cell list or net list depending on how the net list input tile is
coded. While reading either the net or cell lists, whichever is
more convenient, build either the net-pin list or the cell-pin list,
again depending on whichever is easiest. Finally build the
other symmetric pin list.

On systems supporting dynamic memory reallocation
(such as the UNIX reallot function [4]), the cell and net arrays
can be allocated in small, a few hundred entry, pieces and the
reallocation function can be used to expand the arrays
incrementally when needed. The incremental allocation has
almost no cost on computers that provide block memory move
instructions. See section 8 below for construction times for
circuit net list languages.

5. Example

The following routine processes each cell driven by a
given cell. It is useful in delay calculation or transmission gate
connectivity checking. Notice that cells may be processed
more than once if more than one cell output drives the same
signal net. It is written in C and uses the template structures
de&d above.

Paper 39.1
614

process-driven-cells(ci)
int ci;

(
register stmct cell-pin-t *cpp;
register struct net-pin-t *npp;
int ni, dci;

cpp = cell[ci].copins;
while (cpp)

(
/* if unconnected cell pin do nothing */
if ((ni = cpp-Xni) != -1)

1
npp = net[ni].nopins;
while (npp)

I
/* if unconnected net pin ignore */
if ((dci = npp->nci) != - 1)

problem-specific-action(dci);
npp = npp->npnxt;

1
1

cpp = cpp-Xpnxt;
1

I

6. Practical Considerations

The removal of circuit elements during net list
processing is quite frequently necessary. Many net list input
files contain point nets (meaningless nets containing only one
pin) usually caused by dangling wires in circuit schematics. If
the net list input is net pin list based, point nets can be ignored
as they are read. For cell based input forms, the existence of
point nets is not known until the net list has been read. One
good approach is to access the net list only through an index
array. Point nets are then not put into the index. This index
array can also be sorted to allow various types of cross
reference listings to be produced such as a list of nets sorted by
decreasing delay times. The cell and net arrays themselves
cannot be reordered without updating the net-pin and cell-pin
entry, cell or net index values.

Some net list problems require that all extra cells and
nets that do not affect design outputs be removed. This process
is sometimes called a “gate eater” and works by recursively
deleting all cells whose outputs are all unconnected. One way
to handle this problem is to tist mark all deletable cells and
then construct indices into the cell and net arrays for non-
deleted cells. The various list elements should also have their
net index or cell index fields set to unconnected when they
point to deleted elements.

7. Use in a Scientific Discovery

This data structuxe was used in a program that analyses
the connectivity of cell based layout benchmark circuits coded
in YAL (Yet Another Language) [lo]. The program used the
data structure’s ability to simultaneously traverse net pin and

cell pin lists to discover one reason why one of the circuits
used in the 1987 benchmarks [lo] turned out to be easier to
place than expected. In terms of active area, seventeen percent
of the unexpectedly easy benchmark connected directly to I/O
pad cells that are situated along the chip periphery. More
specifically, the primary benchmark circuit called CIRCUITX
with 833 instances, 904 nets, and using 2672 gates has 169 or
22.5 percent of its cells and 17.5 percent of its ruea connected
to I/O pads. The larger and more difficult benchmark called
RPROC has 9.7 percent of its cells and 11.3 percent of its area
connected to I/O pad cells. A cell connects to an I/O pad cell if
the two cells share at least one net. Cells connecting to I/O
pads are easy to place because they can be located at the
nearest point along the masterslice area without increasing wire
length or congestion.

8. Cost of Data Structure Construction

The net list data structure can be constructed quite
efficiently. If the cells or nets are sorted and reasonably
efficiently coded in a file, the data strnctme can be built in
about twice the time it takes to read every byte in the net list
file or about the same time it takes to break elements into
tokens. For more human readable net list description
languages, the construction time is generally two to three times
the tokenization time since the various lists must be sorted and
element “reference before definition” must be handled.

See table 1 for a comparison of construction times for net
lists coded in popular hardware description languages. The
TDL test circuit is a medium sized flattened circuit used for
testing gate array TDL connectivity patterns. The hierarchical
circuit is a small signal correlator with 591 instances in 33
modules. The circuit contains 40 I/O signals. The build time
in this case is the time to build all 33 module net lists. The
glue logic circuit is a flattened gate array of 8400 gates that
provides microprocessor interface logic. The instances are
gate array macm cells. The memory board circuit is the
flattened logic part of a memory board. The board net list
contains simulator primitive level instances plus three
instances for gate arrays and eight instances for the RAM,

The first two circuits are coded in both TDL [12] and
SDL [13]. Notice that it takes more space to store the SDL
circuit but data structure construction is faster. The TDL
language requires more time because it is impossible to tell
whether an element is a cell or net until the entire net list has
been read. The third and fourth circuits are coded in the Valid
system schematic compiler output language [9]. Since this
language allows sized instances, the glue logic input contains
1232 instances that become 2403 in the final data structure.
For the memory board 1828 sized parts become 3772 cells.

The first two circuits were both coded in two different
languages and run on a standard IBM PC/XT using an 8088
micro processor with a 70ms. hard disk. The second two
circuits were run on a diskless Sun 3/50 with a 68020
microprocessor. The tests were run on a lightly loaded
network, and the time is total elapsed time. The CPU

Paper 39.1
615

utilization was always between 92 and 94 percent. It takes 29
seconds to just copy the memory board file.

Circuit

TDL Test

Hierar-
chical

Glue
Logic

Memory
Board

No.
of

Cells
Input
Format

Size
in

Kilo-
bytes

895 TDL 36 8088 36 101
SDL 46 8088 45 86

591 / TDL
SDL

43
59

2403 Valid 467

3772 Valid 1047

Com-
puter

8088
8088

68020

68020

Token- D.S.
ization Build
Time Time
in Sec. in Sec.

40
51

77
7'3

26 48

58 99
--

--

Table 1

9. Algorithmic Efficiency

Once the net list data structure is constructed, it is time
efficient in the sense that it allows direct implementation of the
efficient graph theory algorithms [7, 5, 11. The inclusion of
both cell and net nodes increases the length of any path by a
factor of two, but both types of nodes am required when path
lists must include all cell-pin and net-pin identities.

The data structure is space efficient in the sense that
incidence lists are a good way to store sparsely connected
graphs such as circuit networks [7]. If only cell to cell
connectivity with no requirement for pin or signal flow
information is of interest, the net array and net-pin lists can be
removed. The cell-pin list becomes a cell-to-cell incidence. list.
However, the inclusion of net nodes may actually reduce net
list size since the size of the incidence list for large nets is
reduced from the product of the fan-in and the fan-out to the
sum of the same. Busses and clock nets both have high fan-in
and fan-out. Notice that algorithms involving either forward or
backward traversal requite no searching since each net node is
immediately available.

Acknowledgements

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13,

References

Aho, A. V., Hopcroft, J. E., and Ullman J. D. The
Design and Analysis of Computer AlgoWuns. Addison-
Wesley, 1974.
Baase, S. Computer Algorithms: Introduction to Design
and Analysis. .Addison-Wesley, 1978.
Diss, W. C., Ott, R., and Nelson, D. W. Integration of a
hardware simulator into an IC design system. IEEE
Proceedings of ICCAD-85,1985,158-160
Bell Telephone Laboratories. UNIX Programmer’s
Manual Seventh Edition. Vol. 1, Holt Rinehart, 1983,
275.
Even, S. Graph Algorithms. Computer Science Press,
1979.
Fiduccia, C., and Mattheyses, R. A. A linear-time
heuristic for improving network partitions. Proceedings
18th Design Automation Conference, 1982,175-181.
Hopcroft, J. E., and Tarjan, R. E. Efficient algorithms
for graph manipulation. Communications of the ACM,
16,6(1973), 372-378.
Kemighan, B. W., and Ritchie, R. M. The C
Programming Language. Prentice hall, 1978.
McWilliams, T. M., and Widdoes, L. C. SCALD:
structured computer-aided logic design. Proceedings
15th Design Automation Conference, 1978,271-277.
Preas, B. Benchmarks for cell-based layout systems.
Proceedings 24th Design Automation Conference, 1987,
319-320.
Schweikert, D., and Kemighan, B. W. A proper model
for the partitioning of electrical circuits. Proceedings 9th
Design Automation Workshop, June 1972,57-62.
Szygenda, S. A. TEGAS 2 - Anatomy of a general
Purpose test generation and simulation system.
Proceedings 9th Design Automation Conference, 1972,
116-127.
Van Cleemput, W. M. An hierarchical language for the
structural description of digital systems. Proceedings
14th Design Automation Conference, 1977,377-385.

Zahir Syed made the original suggestion that I try to
improve net list storage methods. John Sanguinetti and the
designers at Ardent Computer provided difficult and interesting
circuits that led to the data structure in its present form. The
manuscript was prepared by A Micro Assist.

Paper 39.1
616

