
Programming Soft Processors in High Performance
Reconfigurable Computing

Andrew W. H. House and Paul Chow
Department of Electrical and Computer

Engineering
University of Toronto

Toronto, ON, Canada M5S 3G4
{ahouse, pc}@eecg.toronto.edu

ABSTRACT
This paper examines the ways in which soft processors can
contribute to high performance reconfigurable computing
systems, and the challenges this presents. To overcome these
challenges, the use of new programming languages and an
unconventional intermediate representation is advocated, to
support the automatic partitioning of an application to make
use of soft processors and other available resources.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3 [Programming Languages]:
Miscellaneous

1. INTRODUCTION
Recently, as traditional microprocessors have started plateau-
ing in terms of performance, there has been much interest
in the use of accelerators for high performance computing
(HPC). While much of this focus has been on the use of
graphics processing units (GPUs) for general computation,
there has also been renewed interest in the use of reconfig-
urable hardware for application acceleration.

Reconfigurable hardware has much potential in this arena
– significant application speedups are possible, and it still
allows flexibility. The difficulty, as always, is in the tools –
hardware design is not a skill most HPC users have, and even
high level synthesis tools still require deep understanding to
get good results. Soft processors can alleviate this difficulty
by allowing users to employ reconfigurable hardware with a
software programming model.

At first glance, however, soft processors seem incongruous
with HPC, since HPC is focused on application accelera-
tion, and soft processors typically pale in direct comparison
to their hardwired brethren. However, if we leverage the
other great strength of soft processors – their flexibility – we

Figure 1: FPGA as co-processor

Figure 2: FPGA multiprocessor

can see they have much to offer, both directly (as applica-
tion accelerators) and indirectly (as control and interfacing
systems).

2. HIGH PERFORMANCE
RECONFIGURABLE COMPUTING

As discussed in [6], reconfigurable computing elements (typ-
ically FPGAs) can be employed in HPC in three general
ways: as a co-processor subordinate to a CPU (such as the
Cray XD1 [11]), shown in Figure 1; as a primary computing
element in a specialized reconfigurable platform (such as the
BEE2 [2]), shown in Figure 2; or as a first-class computing
element in a heterogeneous platform (facilitated by technol-
ogy like DRC Computer’s RPU110 [4]), shown in Figure 3.

These types of high performance reconfigurable computing

Figure 3: FPGA in heterogeneous multiprocessor



(HPRC) systems reinforce the question of whether soft proces-
sors are worthwhile in this environment, since there are high
performance CPUs in the heterogeneous systems, and even
an FPGA-only system might have embedded hard proces-
sor cores. As suggested above, however, taking advantage
of the inherent flexibility of soft processors can make them
invaluable components in an HPRC application.

Current off-the-shelf soft processors (such as the Xilinx Mi-
croBlaze or Altera Nios-II) are targeted at embedded ap-
plications rather than HPC applications. However, more
heavily-customized soft processor systems could be lever-
aged for application acceleration, control, and interfacing in
HPRC.

2.1 Application Acceleration
Soft processors can be used to accelerate applications in sev-
eral ways, most obviously through the use of application-
specific soft processors. This could take the form of special
instructions added to an otherwise conventional architecture
(as is possible with the MicroBlaze or Nios-II, or ASIC solu-
tions such as those from Tensilica and others [13]). Another
approach, used by Mitrionics, is to build an application-
specific soft processor (the Mitrion Virtual Processor) out
of a set of predefined elements to implement programs pro-
vided in their Mitrion-C language [7]. These approaches can
generate significant speedup for many applications.

However, even general soft processors can be used for ac-
celerating applications, by exploiting massive parallelism.
There is no need for a soft processor to compete on a one-
to-one basis with hard processors, when dozens could be
implemented in a large FPGA. This is especially effective
for applications that perform a lot of computation on a rela-
tively small amount of data – a soft multiprocessor solution
can take advantage of the massive on-chip memory band-
width of an FPGA (on the order of 0.5 TB/s) to offer supe-
rior performance over hard processors with limited off-chip
memory bandwidth (approximately 25 GB/s). Such appli-
cations are a subset of all HPC, but are important.

2.2 Control and Interfacing
Apart from accelerating applications directly, soft proces-
sors can also be used in HPRC to run control and inter-
facing software. This is especially useful for irregular and
control-intensive applications, where soft processors can be
used alongside hardware kernels implemented in a reconfig-
urable device. The soft processor can run control software
that coordinates the heavy processing of the tightly-coupled
kernels, thus simplifying the hardware design and leaving
any hard processors in the system free for other tasks.

Similarly, a soft processor can be used to provide a reconfig-
urable platform with superior user interaction, host commu-
nication, and interfacing between different components and
protocols. In these roles, soft processors facilitate the better
use of other reconfigurable resources.

3. PROGRAMMING MODELS FOR HPRC
Given that soft processors have a useful role in HPRC, the
question then turns to how best to program those soft proces-
sors and systems using them. Any useful HPRC system

will have multiple FPGAs, and thus multiple soft processors
are likely, both within a single FPGA and spread across
the whole system. That system may well incorporate hard
processors and other, non-reconfigurable accelerators such
as GPUs, and suddenly programming soft processors is no
longer a trivial problem.

Existing work on programming HPC systems can be lever-
aged to a limited extent. Despite extensive research into
dataflow and functional languages, stream computing, par-
allel object models, and data-parallel programming, most
HPC applications are written using shared memory or (more
commonly on larger systems) message passing for communi-
cation between parallel processes. But even these common
paradigms run into scalability problems in HPC – though
message passing is very flexible, the only style of message
passing program that scales easily is the extremely regu-
lar, data-parallel, single-program multiple-data (SPMD) ap-
proach. More recent work on partitioned global address
space (PGAS) languages such as UPC and Co-Array For-
tran [3] builds on this, offering a shared memory model for
distributed memory systems.

A slimmed-down version of the Message Passing Interface
[9] library, called TMD-MPI [12], has been developed for
use in HPRC, allowing MicroBlaze soft processors to send
messages to each other, the PowerPC hard processors in
certain Xilinx FPGAs, and custom hardware kernels running
in the FPGA. MPI programs can be compiled to run in soft
logic with minimal change.

Unfortunately, the SPMD and PGAS approaches start to
lose their effectiveness when deployed in a heterogeneous
computing environment where some processing elements may
be entirely unable to run general software. For example, if
custom hardware kernels are used with a TMD-MPI appli-
cation, the programmer has to explicitly determine the num-
ber of kernels, and explicitly initiate all communication be-
tween kernels and processors. While some applications will
lend themselves to a repeatable, regularized set of operations
and communications, that is not true of all applications, and
thus once again scalability becomes a concern.

Tools like RapidMind [8] and Intel’s Ct [5] (and the forth-
coming Apple-proposed OpenCL) offer solutions to this in a
conventional heterogeneous environment, allowing specially-
written data-parallel programs to be partitioned by a run-
time system over multiple cores (and onto GPUs, in the case
of RapidMind). This may work for a desktop computing en-
vironment, but in HPRC binary portability is not an issue so
much as overall performance, and so this route is not likely
to be as effective in programming soft processors in HPRC
systems.

Thus, to make the best use of soft processors in an HPRC
system, we need a tool that can automatically:

1. partition an application across a heterogeneous plat-
form,

2. identify parts of an application that would best be
served by a soft processor,

3. generate necessary application-specific soft processors,



4. generate the software to run on the hard and soft
processors in the system,

5. generate hardware kernels where needed,

6. manage communication between parallel elements.

Nothing in the set of existing programming paradigms can
satisfy all these requirements. The HPC models that scale
well, for example, do not easily map into a heterogeneous
computing environment. Tools like Mitrion-C [10], which
can generate application-specific soft processors for HPC ap-
plications, still require the user to partition the application
and manage the design of the overall system. Thus, once
again, as in [6] we are forced to conclude that a new pro-
gramming model is required.

4. A NEW PROGRAMMING APPROACH
In our previous work [6], we investigated programming mod-
els for FPGA-based HPC systems. This work included an
extensive survey of existing programming models and lan-
guages, which were evaluated against nine criteria:

1. heterogeneity,

2. scalability,

3. synthesizability,

4. assumption limited system services,

5. support for varied types of computation,

6. exposure of coarse- and fine-grain parallelism,

7. separation of algorithm and implementation,

8. independence from architecture,

9. execution model transparency.

Based on that survey, we concluded that no existing pro-
gramming model was appropriate to programming emerging
heterogeneous reconfigurable HPC systems. Adding consid-
eration of soft processors into the mix does not improve the
situation – while we have seen that existing models can work
to program soft processor systems, making the best use of
such HPRC systems will require a new approach.

This new approach would likely be a new language (or an
adaptation of an existing language) designed to meet the
requirements presented above. Such a new language might
include some of the beneficial features identified in [6], such
as data-parallel operations, region-based array management,
or a global view of memory. It would be extremely high level,
meant for writing simulations rather than systems or appli-
cations programming. To ensure portability and a high level
of abstraction, communication and synchronization will be
implicit, and there will be an emphasis on libraries and the
use of functions to allow programmers to write algorithms,
not platform-specific implementations.

The new language would also have to be compatible with the
requirements for effectively using soft processors in HPRC
systems that we developed in section 3.

4.1 The Armada Programming Language
The Armada programming language is currently under de-
velopment to meet this need. The goal of Armada is to
abstract away from platform-specific knowledge of the sys-
tem, which will improve programmer productivity and code
portability. It is a data-parallel PGAS-style language that
provides a number of higher-level operators, functions that
are free of side effects (allowing immediate parallelization), a
dataflow interpretation of the program, no pointers or direct
memory manipulation, and region-based array management.

The Armada language is designed to describe algorithms,
and expose all the possible parallelism in an application. A
set of back-end compilation tools are then used to determine
which available parallelism can actually be exploited on the
target platform. Thus, the same source code can be com-
piled for a conventional multiprocessor and be implemented
in a SPMD fashion, or it can target a heterogeneous platform
and have parts of the computation spread over hard proces-
sors, specialized accelerators, soft processors, and hardware
kernels as appropriate. (Note that Armada was designed to
facilitate high-level synthesis, and thus the back-end tools
can determine which parts of the application to synthesize,
and which to run as software.)

Therefore Armada is a single, unified description of the com-
putation, and depends heavily on the power and capability
of the back-end infrastructure to compile to different target
platforms. Careful consideration of this back-end framework
is therefore crucial.

4.2 Modeling HPRC Systems
To map a given algorithm to a target system, the Armada
back-end naturally needs information about that system. In
a conventional system, this might simply be the number of
CPUs, how much memory each has, and how they are in-
terconnected. In a modern heterogeneous system, it must
include not only CPUs, but also reconfigurable elements,
GPUs, Cell broadband engines (BEs), and other accelera-
tors, while still describing the capacity of each and the in-
terconnection between them.

To capture this complexity, approximated system models are
represented as a weighted directed graph. The graph edges
represent communication links between processing elements
(PEs), and are weighted with their bandwidth. Bidirectional
edges are used to represent half-duplex links, with the impli-
cation that bandwidth used to communicate in one direction
is unavailable to the other. A simplified example of this can
be seen in Figure 4, which models a system similar to the
BEE2 [2].

The PEs can be of several types: CPUs, GPUs, FPGAs, Cell
BEs, and the like. They are annotated with their available
resources, (which in different cases can be the number of
processor cores, rendering pipelines, hard processors, hard
multipliers, and so on) as well as their “computational ca-
pacity”.

Computational capacity is a heuristic approximation of how
much computation a PE can provide. For a processor, this
might be provided as a MIPS or MFLOPS number; for an
FPGA, it might be based on how much datapath logic it



Figure 4: Example model of a BEE2-like system.

can implement. It is basically intended as a guide for the
mapping of parts of an algorithm to parts of the system
architecture.

There are also non-computational PEs that are used to sim-
plify the relations between elements in a parallel system.
These include switch nodes, which allow routing of data but
have a finite switching capacity, as well as memory nodes,
which have simply a fixed amount of memory, and a number
of read and write ports. Thus, a distributed memory sys-
tem would be modeled with each PE connected to a memory
node. A shared memory system, on the other hand, would
be represented as several computational PEs connected to
a switch node, which is then connected to a memory node.
This is done to model contention over memory access in a
shared system.

We believe this simple graph model can be used to broadly
describe different target platforms for use by a high level
algorithmic language. The intent is to provide enough ar-
chitectural information to guide general partitioning of the
program, and then use more specialized mapping techniques
to optimize for each PE.

4.3 The Armada Intermediate Representation
The irregular nature of a heterogeneous computing platform
means that load balancing is most easily implemented at
compile time, since that is when reconfigurable components
can be configured and the computation can be partitioned.
Given a description of the target platform, it is still neces-
sary to map the algorithm onto the platform.

Most compilers map the program provided by the user to
an intermediate representation (IR) to simplify analysis and
optimization, and Armada follows this pattern. A common
approach is to use a three-address code as an IR, in which
the program is encoded as a sequence of instructions for an
imaginary processor [1]. This does not map so well to a
heterogeneous environment, however, since it already makes
assumptions about the architecture it will run on, and binds
the algorithm to specific memory transactions.

To mitigate this problem, the Armada Intermediate Repre-

Figure 5: Example AIR dataflow graph.

sentation (AIR) takes another common approach – using a
tree-like dataflow graph as the IR – and adapts it by remov-
ing memory load and store operations. Instead, the edges
of the graph are annotated to indicate which variables the
data belongs to, and so the edges capture not only the data
dependences, but also all movement of data between opera-
tions. A small example of an AIR dataflow graph is shown
in Figure 5, representing the following code snippet:

c[] := a[] + b[] / 2;

foreach(i := 1 TO 10 : j := i TO 10) {

d[i,j] := d[i,j] + c[i] * c[j];

}

Thus, the AIR dataflow graph consists of a set of nodes –
which are purely computational elements, and include high
level operations such as matrix multiplication – connected
by a set of edges, which represent data flowing between op-
erations. This allows the back-end tools a greater degree
of freedom in mapping computation to different PEs. For
example, the first time an array is read, it might have to be
brought in from main memory. But, based on the graph, the
back-end tools might use the local memories in an FPGA to
pass data to the next node, until eventually it is written
back to main memory. This degree of ambiguity in the IR
should allow easier mapping of algorithms to different target
architectures.

Naturally, the nodes and edges of the AIR dataflow graph
are also heavily annotated, describing the size and types of
operations and the data flowing between them. This infor-



mation is used to generate a metric known as“computational
density”. It is determined for each node, and attempts to
approximate the amount of computation that the node en-
tails. The value is normalized against a simple operation
(say, 16-bit integer addition), and each node’s density is cal-
culated based on the word size, array size, and data type of
the operation.

The notion is that computational density and data edges
can be used as guides to map portions of the AIR dataflow
graph onto portions of the system model that have both
the computational capacity and communication bandwidth
to effectively implement that portion of the program. Such
a partitioning will be very conservative, since it is only an
approximation. Once partitioned, each of the subgraphs is
compiled and optimized for its target PE, and any necessary
top-level control code and hardware is generated.

4.4 Application to Soft Processors
The Armada programming model model is designed to facil-
itate the programming of heterogeneous HPC systems, in-
cluding those with reconfigurable elements. It does this by
providing a high level, abstract way to describe algorithms,
and represents them with a platform-agnostic IR. The back-
end decision-making algorithm is where soft processors need
to be taken into consideration.

The intent of the Armada back-end is to first do a high
level partitioning of the application, clustering operations
together to map roughly onto the PEs in such a way that
data movement between clusters matches the capacity of
communication links between the PEs. Thus, once the AIR
dataflow graph is partitioned, each subgraph will have code
generated for its target platform, including any necessary
invocation of communication between PEs.

Each type of PE will have its own optimal coding style.
While the code generated for CPUs, GPUs, and Cell BEs
will all be different, all are relatively straightforward. When
considering reconfigurable PEs, however, the notion of code
generation becomes much more complicated, as the “code”
has to be a configuration file.

From the point of view of the back-end system, there are
several options for using the reconfigurable fabric: just hard-
ware kernels, just soft processors, or a mixture of hardware
kernels and soft processors. It is therefore necessary to auto-
matically determine the best solution – or, at the very least,
a solution that is good enough.

The easiest approach is to use only soft processors, but this
is unlikely to provide worthwhile performance across a large
enough range of applications to be an adequate general solu-
tion. The generation of optimized, application-specific soft
processors may be a better general solution, if the automatic
tools can identify significant chunks of the application to ac-
celerate with custom instructions.

Generating only hardware kernels for the reconfigurable fab-
ric would likely offer the best performance, but is also the
most difficult option. Synthesizing a large amount of hard-
ware from a high level description is still a challenging prob-
lem, and while HPRC systems have a lot of reconfigurable

logic available, we are still limited by trying to map a portion
of the application to a specific PE.

Thus, a hybrid solution might offer the best mixture of per-
formance and ease, but this introduces a new partitioning
problem in deciding which parts of the program are imple-
mented in a soft processor, and which parts as hardware
kernels. There are a few obvious routes to explore to solve
this problem: adapting techniques from hardware-software
codesign; adapting the partitioning used at the top level to
partition the application within the reconfigurable PE; or
using the dataflow graph to determine the critical path of
the application so that it can be implemented in hardware,
while non-critical elements are relegated to one or more sup-
porting soft processors. Which – if any – of these approaches
will work best is still an open topic.

5. CONCLUSIONS
Even though general-purpose soft processors may be limited
in their performance, they can still have a vital role to play
in the HPC landscape, providing supporting control and in-
terfacing on reconfigurable platforms, or by serving as appli-
cation accelerators in some systems. Supporting such uses
will be difficult, however, unless high level languages and
sophisticated back-end technologies are built to automate
their inclusion in HPRC systems. The key to leveraging soft
processors and reconfigurable logic – and, indeed, any other
kind of accelerator – is to provide a high enough level of
abstraction to allow application experts to describe their al-
gorithm, and then relying on new back-end tools to provide
an overall performance improvement via these new systems.
The Armada platform – currently under development – is
being designed to demonstrate this.

6. ACKNOWLEDGMENTS
This work was supported by grants from NSERC, Xilinx,
and the Walter C. Sumner Memorial Fellowship.

7. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools.
Pearson, second edition, 2007.

[2] C. Chang, J. Wawrzynek, and R. W. Brodersen.
BEE2: A high-end reconfigurable computing system.
IEEE Design and Test of Computers, 22(2):114–125,
March-April 2005.

[3] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey,
F. Cantonnet, T. El-Ghazawi, A. Mohanti, Y. Yao,
and D. Chavarŕıa-Miranda. An evaluation of global
address space languages: Co-array fortran and unified
parallel c. In Proceedings of the Tenth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 36–47, 2005.

[4] DRC Computer Corporation. RPU110 DRC
reconfigurable processor unit, 2007.

[5] A. Ghuloum, T. Smith, G. Wu, X. Zhou, J. Fang,
P. Guo, B. So, M. Rajagopalan, Y. Chen, and
B. Chen. Future-proof data parallel algorithms and
software on intel multi-core architecture. Intel
Technology Journal, 11(4):333–347, 15 November 2007.

[6] A. W. H. House and P. Chow. Investigation of
programming models for emerging FPGA-based high



performance computing systems. In Proceedings of
FCCM 2008, the IEEE Symposium on
Field-Programmable Custom Computing Machines,
2008.

[7] V. V. Kindratenko, R. J. Brunner, and A. D. Myers.
Mitrion-c application development on SGI altix
350/rc100. In Proceedings of the 2007 International
Symposium on Field-Programmable Custom
Computing Machines (FCCM’07), pages 239–250,
23-25 April 2007.

[8] M. D. McCool. Data-parallel programming on the Cell
BE and GPU using the RapidMind development
platform. In GSPx Multicore Applications Conference,
November 2006.

[9] Message Passing Interface Forum. MPI-2: Extensions
to the message-passing interface. Online at
http://www.mpi-forum.org/docs/mpi-20.ps.Z, 15
November 2003.

[10] Mitrionics AB. Mitrion users’ guide. Technical report,
Mitrionics, 2008.

[11] J. Osburn, W. Anderson, R. Rosenberg, and
M. Lanzagorta. Early experiences on the NRL Cray
XD1. In Proceedings of the HPCMP Users Group
Conference, pages 347–353, June 2006.

[12] M. Saldaña and P. Chow. TMD-MPI: An MPI
implementation for multiple processors across multiple
FPGAs. In IEEE International Conference on
Field-Programmable Logic and Applications (FPL
2006), pages 329–334, August 2006.

[13] P. Yiannacouras, J. G. Steffan, and J. Rose.
Application-specific customization of soft processor
microarchitecture. In FPGA ’06: Proceedings of the
2006 ACM/SIGDA 14th International Symposium on
Field Programmable Gate Arrays, 2006.


