A GPU-Like Soft Processor for High-Throughput
Acceleration
Jeffrey Kingyens and J. Gregory Steffan

Department of Electrical and Computer Engineering
University of Toronto
10 King's College Road, Toronto, Canada

{kingyen,steffani@eecg.toronto.edu

1. INTRODUCTION

As FPGAs become increasingly dense and powerful, with
high-speed I/Os, hard multipliers and plentiful memory
blocks, they have consequently become more desirable
platforms for computing. Recently there is building inter-
est in using FPGAs as accelerators for high-performance
computing, leading to commercial products such as the SGI
RASC which integrates FPGAs into a blade server platform,
and XtremeData and Nallatech that offer FPGA accelerator
modules that can be installed alongside a conventional CPU
in a standard dual-socket motherboard.

The challenge for such systems is to provide a program-
ming model that is easily accessible for the programmers
in the scientific, financial, and other data-driven arenas
that will use them. Developing an accelerator design in a
hardware description language such as Verilog is difficult,
requiring an expert hardware designer to perform all of the
implementation, testing, and debugging required for devel-
oping real hardware. Behavioral synthesis techniques—that
allow a programmer to write code in a high-level language
such as C that is then automatically translated into custom
hardware circuits—have long-term promise [3, 6, 9], but
currently have many limitations.

What is needed is a high-level programming model specifi-
cally tailored to making the creation of custom FPGA-based
accelerators easy. In contrast with the approaches of custom
hardware and behavioral synthesis, a more familiar model
is to use a standard high-level language and environment to
program a processor, or in this case an FPGA-based soft
processor. In general, a soft-processor-based system has the
advantages of (i) supporting a familiar programming model
and environment and (ii) being portable across different
FPGA products and families, while (iii) still allowing the
flexibility to be customized to the application. Although soft
processors themselves can be augmented with accelerators
that are in turn created either by hand or via behavioral
synthesis, our long-term goal is to develop a soft processor
architecture that is more naturally capable of fully-
utilizing the FPGA.

1.1 A GPU-Inspired System

Another recent trend is the increasing interest in using the
Graphics Processing Units (GPUs) in standard PC graphics
cards as general-purpose accelerators, including NVIDIA’s
CUDA and AMD (ATI)’s Close-to-the-Metal (CTM) [2]
programming environments. While the respective strengths
of GPUs and FPGAs are different—GPUs excel at floating-
point computation, while FPGAs are better suited to fixed-

point and non-standard-bit-width computations—they are
both very well-suited to highly-parallel and pipelinable
computation. These programming models are gaining
traction which can potentially be leveraged if a similar
programming model can be developed for FPGAs.

In addition to the programming model, there are also
several main architectural features of GPUs that are very
desirable for a high-throughput soft processor. In partic-
ular, while some of these features have been implemented
previously in isolation and shown to be beneficial for soft
processors, our research highlights that when implemented
in concert they are key for the design of a high-throughput
soft processor.

Multithreading Through hardware support for multiple
threads, a soft processor can tolerate memory and pipeline
latency and avoid the area and potential clock frequency
costs of hazard detection logic—as demonstrated in previous
work for pipelines of up to seven stages and support for
up to eight threads [1,4,8]. In our high-throughput soft
processor we essentially avoid stalls of any kind for very
deeply pipelined functional units (64 stages) via hardware
support for many concurrent threads (currently up to 256
threads).

Vector Operations A vector operation specifies an array
of memory or register elements on which to perform an
operation. Vector operations exploit data-level parallelism
as described by software, allowing fewer instructions to
command larger amounts of computation, and providing a
powerful axis along which to scale the size of a single soft
processor to improve performance [10,11].

Predication To allow program flexibility it is necessary to
support control flow within a thread, although any control
flow will make it more challenging to keep the datapath fully
utilized—hence we support predicated instructions that
execute unconditionally, but have no impact on machine
state for control paths that are not taken.

Multiple Processors While multithreading can allow a
single datapath to be fully utilized, instantiating multiple
processors can allow a design to be scaled-up to use available
FPGA resources and memory bandwidth [5]. The GPU
programming model specifies an abundance of threads,
and is agnostic to whether those threads are executed
in the multithreaded contexts of a single processor or
across multiple processors. Hence the programming model
and architecture are fully capable of supporting multiple
processors, although we do not yet evaluate such systems.

2. INITIAL IMPLEMENTATION

Together, the above features provide the latency toler-
ance, parallelism, and architectural simplicity required for
a high-throughput soft processor. Rather than invent a
new programming model, ISA, and processor architecture to
support these features, as a starting point for this research
we have ported an existing GPU programming model and ar-
chitecture to an FPGA accelerator system. Specifically, we
have implemented a system-C simulation of a GPU-inspired
soft processor that (i) is programmable via NVIDIA’s
high-level C-based language called Cg [7], (ii) supports an
application binary interface (ABI) based the AMD CTM
rbxx GPU ISA [2], and (iii) is realizable on an XtremeData
XD1000 development system composed of a dual-socket
motherboard with an AMD Opteron CPU and the FPGA
module which communicate via a HyperTransport (HT)
link. We find that our heavily-multithreaded GPU-inspired
architecture can overcome several key challenges in the
design of a high-throughput soft processor for acceleration—
namely (i) the port limitations of on-chip memories in the
design of the main register file, (ii) tolerating long latencies
to memory, and (iii) tolerating the long latency of deeply-
pipelined functional units.

We avoid the problem of port limitations for the main
register file by exploiting the fact that all threads are
executing different instances of the same shader program: all
threads will execute the exact same sequence of instructions,
since even control flow is equalized across threads via
predication. This symmetry across threads allows us to
group threads into batches and execute the instructions of
batched threads in lock-step. This lock-step execution in
turn allows us to transpose the access of registers to alleviate
the ports problem: rather than reading all of the operands
of a single instruction from a single bank of the register file
in a given cycle, we instead read only one operand across
instructions in a batch each cycle. This takes several cycles
to read all of the operands for a single instruction, but at
that point all of the instructions in the batch are ready to
execute.

We also tolerate the memory and pipeline latency by
exploiting the numerous and batched threads: we store the
contexts of multiple batches in hardware, and dynamically
switch between batches every cycle. We capitalize on the
fact that all threads are independent across batches as well
as within batches, switching between batches to hide both
pipeline and memory latency. This allows us to potentially
fully-utilize the pipelined datapath.

3. RESULTS AND ONGOING WORK

We have built a SystemC-based simulator of our high-
throughput soft processor that also models the memory
bandwidth and latency of the XtremeData system. Our
implementation is compatible with the CTM GPU driver
interface, allowing us to simply re-link existing CTM ap-
plications with our own library. Initial measurements of
floating-point matrix-multiplication benchmarks show that
with 16 and fewer batches (powers of two) of four threads
per batch the datapath is under-utilized because of having
to conservatively observe potential data hazards across the
deep floating-point pipeline. However, we find that with 32
batches we can achieve 100% utilization of the datapath,
and that support for 64 batches are unnecessary.

Our long-term research goal is to use this system to
gain insight on how to best architect a soft processor and
programming model for FPGA-based acceleration. We
envision that several aspects of this architecture can be
extended in future implementations to better capitalize on
the strengths of FPGAs: we can scale the soft processor in
the vector dimension as in previous work [10,11]; rather than
focusing on floating-point computation, we can instead focus
on non-standard bit-width computation or other custom
functions; finally, we can scale the number of soft processor
accelerators via multiprocessor implementations to fully-
utilize available memory bandwidth.

4. REFERENCES

[1] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown.
A multithreaded soft processor for sopc area
reduction. Field-Programmable Custom Computing
Machines, 2006. FCCM ’06. 14th Annual IEEE
Symposium on, pages 131-142, April 2006.

[2] J. Hensley. Amd ctm overview. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses, page 7, New York,
NY, USA, 2007. ACM.

[3] J. Koo, D. Fernandez, A. Haddad, and W. Gross.
Evaluation of a high-level-language methodology for
high-performance reconfigurable computers.
Application-specific Systems, Architectures and
Processors, July 2007.

[4] M. Labrecque and J. Steffan. Improving pipelined soft
processors with multithreading. Field Programmable
Logic and Applications, 2007. FPL 2007. International
Conference on, pages 210-215, Aug. 2007.

[5] M. Labrecque, P. Yiannacouras, and J. G. Steffan.
Scaling soft processor systems. In IEEE Symposium
on Field-Programmable Custom Computing Machines,
2008.

[6] D. Lau, O. Pritchard, and P. Molson. Automated
generation of hardware accelerators with direct
memory access from ansi/iso standard ¢ functions.
Field-Programmable Custom Computing Machines,
2006. FCCM ’06. 14th Annual IEEE Symposium on,
pages 45—56, April 2006.

[7] W. R. Mark, R. S. Glanville, K. Akeley, and M. J.
Kilgard. Cg: a system for programming graphics
hardware in a c-like language. In SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers, pages 896-907, New
York, NY, USA, 2003. ACM.

[8] R. Moussali, N. Ghanem, and M. A. R. Saghir.
Supporting multithreading in configurable soft
processor cores. In CASES 2007, pages 155—159.

[9] J. L. Tripp, K. D. Peterson, C. Ahrens, J. D.
Poznanovic, and M. Gokhale. Trident: An fpga
compiler framework for floating-point algorithms.
FPL, pages 317-322, 2005.

[10] P. Yiannacouras, J. G. Steffan, and J. Rose. Vespa:
Portable, scalable, and flexible fpga-based vector
processors. In CASES’08: International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems, 2008.

[11] J. Yu, G. Lemieux, and C. Eagleston. Vector
processing as a soft-core cpu accelerator. In
Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays, 2008.

