
On Transparently Exploiting Data-level Parallelism on
Soft-processors

Bojan Mihajlović Željko Žilić Warren Gross
Integrated Microsystems Laboratory, McGill University

3480 University Street
Montreal, Quebec, Canada H3A 2A7

{bojan.mihajlovic, zeljko.zilic, warren.gross}@mcgill.ca

ABSTRACT
This paper considers the acceleration of computationally in-
tensive algorithms on FPGAs. When speedups up to 16x
are required over the performance of software on a soft-
processor, the data-level parallelism of algorithms can be
exploited using SIMD extensions to an ISA. We evaluate
how a toolchain can be created to suit a parameterizable
soft-processor, in order to automate the process of extract-
ing parallelism. Using our technique, developer time and
effort can be saved over the traditional method of offloading
tasks to specialized hardware units.

1. INTRODUCTION
Field programmable gate arrays (FPGAs) can be used to

accelerate computationally intensive algorithms. For low-
volume production, an FPGA can yield a speedup for a frac-
tion of the price of an application-specific integrated circuit
(ASIC), with an upgrade path that may not be available us-
ing a microprocessor or digital signal processor (DSP). Fu-
ture application changes can be seen as important in the
domain of DSP applications, which see fast development
cycles along with products shipping based upon unfinished
standards (such as IEEE 802.11n). Traditional product ob-
solescence places demands on energy, time, and money when
they are to be replaced, while planning for future changes
can make devices resistant or immune to obsolescence.

When system flexibility is important, implementation on
an FPGA removes many impediments to future system
changes, fixes, and re-purposing. Traditional methods of
accelerating algorithms on an FPGA involve the offloading
of computationally intensive software inner loops to hard-
ware function units. This method can be time and effort
intensive when massive speedups are not required (over 16x,
in this case). In recent years the emergence of a plethora of
C-to-hardware languages [2] has offered an alternative to the
traditional acceleration approach. However, the majority of
these languages suffer from drawbacks, including that they
are proprietary high-level languages, programmers are not
proficient in their use, there are few support libraries, and
that design control must be ceded to their automated tools.
In addition, a small application change requires a rerun of
synthesis, place, and route of the entire system.

We suggest exploiting the data-level parallelism of soft-
ware executing on a soft-processor instead. If some single-
instruction multiple-data (SIMD) instructions can be used in
lieu of single-instruction single-data (SISD), a soft-processor
can achieve acceptable speedup without the overhead of cus-
tom hardware development. Prior works have made the case

for using both vector and SIMD soft-processors [5, 1], having
focused on their hardware architectures. Here we consider
the software toolchain needed to exploit data-level paral-
lelism (DLP) automatically. If a compiler can recognize
DLP and generate SIMD instructions from regular high-level
code, software developers need not be concerned with the
underlying hardware. Without such a compiler, hardware
design effort may be replaced by software design effort, as
developers are forced both to learn the instruction set and
to program in low-level languages or constructs.

Since one of the benefits of soft-processors is that their
parameters can be changed to suit a system requirement,
such as performance or area footprint, we are also concerned
with toolchain support for the multiple configurations of a
parameterizable soft-processor.

2. SIMD APPROACH
The use of a soft-processor instruction set architecture

(ISA) with SIMD instructions can benefit applications where
DLP is unexploited. Such applications include those used in
DSP which are composed of purely SISD instructions.

In selecting an instruction set for a SIMD unit, the soft-
processor application suite must be examined for common
operations. The SIMD extensions of modern ISAs can be
used as a model, such as VMX or SSE. These allow at most a
16x speedup, depending on the units of data being processed
and the amount of data realignment needed between SIMD
registers and memory. A small set of instructions can be
created to target area footprint, or a larger set to ensure
future flexibility within a family of algorithms or application
area.

Modern compilers allow DLP to be exploited without any
application code changes, generating SIMD instructions with
a technique known as auto-vectorization. We explore the
feasibility of applying this to a mixed SISD/SIMD soft-
processor.

3. FEASIBILITY OF IMPLEMENTATION

3.1 Toolchain
We use the GNU toolchain, due to its flexibility and ubiq-

uity, to evaluate exploiting DLP automatically. A func-
tional GNU toolchain can be created with the GNU Binutils
suite of assembler tools, the GNU Debugger (GDB), and the
GNU Compiler Collection (GCC). Binutils includes an as-
sembler and linker, among other tools. The suite also con-
tains CGEN (CPU Tools Generator), which can generate



Binutils for a new target using a single-file CPU definition
written in a programming language similar to Lisp.

3.1.1 Assembly and Debug Tools
A custom soft-processor target would typically use the

definition file to describe the instruction format, register
files, and instruction functionality. The use of CGEN also
presents new flexibility advantages in soft-processors. Con-
ditional compilation of the definition file can be used to sup-
port multiple hardware configurations. This would include
a variable-length register file and any subset of instructions,
perhaps suited to a target application or area goal.

While the current version of CGEN supplied with Binutils
does not offer native support for the wide datatypes needed
to operate on SIMD registers, we find that its source code
can be modified to support at least 128-bit datatypes. The
VMX set of SIMD extensions use this same register width
and allow operations to be simultaneously performed on (4)
32-bit, (8) 16-bit, or (16) 8-bit operands packed into a single
SIMD register. The datatypes are used directly in the Lisp-
like language to describe instruction functionality to GDB.
We also find that GDB and its simulator can similarly be
modified to support the wider logical and memory opera-
tions.

3.1.2 Compiler
An important compiler consideration is the ease with which

it adapts to changing soft-processor configurations. In GCC,
the modular nature of its machine description file allows a
large instruction set to be described as subsets of instruc-
tions. As an example, subsets can be divided in terms of
the vectors they operate on (32-bit, 16-bit, or 8-bit), or into
application-specific instruction sets. Passing command-line
switches to the compiler allows instruction subsets to be en-
abled at application compile-time. This allows the compiler
to adapt to any number of instruction set configurations.
However, adapting to a variable-length register file would
require a compiler rebuild, since register allocator rules are
located in a target machine description C-language header
file. Multiple configurations can be supported with the use
of conditional compilation.

Recent versions of the GNU Compiler Collection (GCC)
recognize exploitable data parallelism and are able to map
operations to SIMD instructions. The compiler features an
auto-vectorizer [3] which can generate SIMD instructions
from regular high-level code. Recent improvements to GCC
include added hooks to the operational tables from user-
defined patterns, allowing more direct mapping to the oper-
ations commonly performed with SIMD instructions. Unfor-
tunately, the hooks offer limited support for auto-vectorizing
custom instructions. These instructions would need to be
implemented using manual efforts, such as the GCC func-
tions known as builtins, which can be mapped directly to
instructions. While auto-vectorizers are generally not as ef-
ficient as manual efforts to exploit DLP, they come at min-
imal cost to the programmer and are likely to become more
efficient in the future. This is demonstrated by recent work
that has enabled vectorizing outer-loops of functions [3].

3.2 Area and Complexity
The overhead of SIMD instructions on a SISD processor

can be small, since much of the hardware remains the same.
A register bank can be added to support the increased data

widths, but in some implementations the processor’s original
registers are reused under SIMD aliases. Additional control
logic should be added to the load/store unit in order to sup-
port SIMD opcodes and registers, but the original instruc-
tion width can be retained. Instruction and data caches can
be reused, although data cache should be reorganized into
lines equal to the SIMD register width. Finally, SIMD func-
tion units must also be added, whose overhead will vary.

3.3 Memory Bandwidth
A SIMD function unit that is consuming more data per

cycle than its SISD counterpart will need more memory
bandwidth. Off-chip memory can generally keep up with
the demands of soft-processors, since the clock frequencies
achieved on FPGAs are many times lower than those achiev-
able on ASICs.

3.4 Data Misalignment
A classical problem with the use of SIMD instructions is

the inefficiency of misaligned memory accesses. This oc-
curs when the memory location being read/written is not
a multiple of the SIMD register width. This problem can
be mitigated with the use of permutation instructions and
optimization techniques [4]. Modern compilers such as GCC
include support for the automated application of these tech-
niques, and while inefficiencies exist in exploiting DLP, con-
siderable speedups are still attainable.

4. CONCLUSION
We have presented an argument for the use of SIMD ex-

tensions on soft-processors when performance increases are
sought. Exploiting data-level parallelism in software has ad-
vantages in FPGA area footprint, design time, and scalabil-
ity over a traditional acceleration approach. We find that
it is viable to create a toolchain that will support the many
hardware configurations of a parameterizable soft-processor.
Modifications to a standard toolchain would allow SIMD in-
structions to be supported and generated from regular high-
level code. In this way, the cost of both initial application
deployment and subsequent changes is kept low due to the
absence of custom hardware design effort.

5. REFERENCES
[1] J. Cho, H. Chang, and W. Sung. An FPGA based

SIMD processor with a vector memory unit. Circuits

and Systems, IEEE International Symposium on., 2006.

[2] E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi,
and G. Newby. Comparative Analysis of High Level
Programming for Reconfigurable Computers:
Methodology and Empirical Study. Programmable

Logic, 3rd Southern Conference on., 2007.

[3] D. Nuzman and A. Zaks. Outer-Loop Vectorization -
Revisited for Short SIMD Architectures. accepted for

publication in Parallel Architectures and Compilation

Techniques, International Conference on., 2008.

[4] G. Ren, P. Wu, and D. Padua. Optimizing data
permutations for SIMD devices. Programming Language

Design and Implementation, Proceeding of the

Conference on., 2006.

[5] J. Yu, G. Lemieux, and C. Eagleston. Vector Processing
as a Soft-core CPU Accelerator. Field Programmable

Gate Arrays, International Symposium on., 2008.


