
Challenges in Compilation of Brook Streaming Programs
for FPGAs

Franjo Plavec Zvonko Vranesic
University of Toronto

Department of Electrical and
Computer Engineering

10 King’s College Road,
Toronto, Ontario, Canada

{plavec, zvonko,
brown}@eecg.toronto.edu

Stephen Brown

ABSTRACT
Streaming languages have recently been proposed as a suit-
able paradigm for programming large-scale multiprocessor
systems based on streaming processors. They have also been
found to be suitable for programming traditional multipro-
cessors and graphics processing units (GPUs). In this paper
we discuss suitability of the Brook streaming language for
implementation in FPGAs. We present challenges in com-
piling Brook programs to FPGA logic and show that both
data and task-level parallelism can be efficiently exploited.

1. INTRODUCTION
As the digital systems being implemented in FPGAs grow
in complexity, there is an increasing need for methodologies
that allow designers to implement their systems at a higher
abstraction level. As an example, behavioral synthesis com-
pilers can convert a program written in a high-level program-
ming language into an HDL suitable for FPGA implementa-
tion. A class of high-level languages that is attracting a lot
of attention lately is based on the streaming paradigm. In
streaming, data is organized into streams, whose elements
are guaranteed to be mutually independent. Kernels are
functions used to manipulate streams. A kernel implicitly
operates on all elements of its input streams. Depending on
the implementation, a kernel can process multiple stream
elements in parallel, because the elements are independent.
In this manner, data parallelism can be exploited. If there
are multiple kernels in the program, the kernels can operate
in parallel, thus exploiting task parallelism.

In this paper we discuss how streaming programs can be
implemented in FPGA logic in a way that exploits avail-
able data and task parallelism. We propose a methodology
that converts a program written in the Brook streaming lan-
guage [1] into C code suitable for behavioral compilation us-
ing the C2H compiler from Altera. Kernels are converted
into hardware blocks that operate on incoming streams of
data. We chose the Brook streaming language from Stan-
ford, because it is an extension of the C programming lan-
guage, which may aid in its adoption by system designers.
We show that a program expressed in Brook can be auto-
matically converted into parallel hardware, which executes
significantly faster than software.

The rest of the paper is organized as follows. In section 2

we present basic features of the Brook streaming language.
Our approach to implementing Brook programs in FPGAs
is described in section 3. Section 4 discusses how parallelism
in streaming programs can be exploited.

2. BROOK STREAMING LANGUAGE
Streaming applications are defined through a set of kernels,
which define the computation part of an application, and a
set of data streams, which define communication. In Brook,
kernels are denoted using the kernel keyword, while streams
are declared similarly to arrays, except that characters ”<”
and ”>” are used instead of square brackets. The follow-
ing code section demonstrates two different types of kernels
supported by Brook.

kernel void mul (int a<>, int b<>, out int c<>) {
c = a*b; }
reduce void sum (int a<>, reduce int r<>) {
r = r+a; }

The first kernel (mul) is an ordinary kernel, which multi-
plies elements of the two input streams to produce an output
stream. Although the code refers only to streams, not in-
dividual elements, it is understood that all elements should
be multiplied. This is only possible if all streams have equal
sizes.

The second kernel (sum) is a reduction kernel, used to de-
fine reduction operations. Reduction operations have to be
commutative and associative, so that the ordering in which
the elements are reduced does not affect the result. Rela-
tive sizes of the input and output streams define how the
reduction operation is performed. In the example above, if
the output stream (r) has only one element, all elements of
the input stream (a) will be added to produce the output.
The operation is slightly different if the output stream has
more than one element. For instance, if the input stream
has 20 elements and the output stream has 4 elements, then
5 consecutive elements of the input stream are added to pro-
duce one element of the output stream. This feature imposes
some ordering on the operations and has a significant impact
on generating hardware for reduction operations.



3. IMPLEMENTING STREAMING
PROGRAMS IN FPGAS

We believe that streaming programs can be efficiently im-
plemented in FPGAs, because FPGA’s programmable logic
blocks are suitable for implementation of parallel computa-
tion. Also, FPGAs are easily reprogrammable, so the gen-
erated hardware can be tailored to the needs of a specific
application.

When mapping streaming applications to FPGA logic, it is
a natural choice to map each kernel to a processing node.
The processing nodes could be soft-core processors, special-
ized streaming processors, or custom-generated hardware
blocks. We believe that generic soft-core processors are not
a good choice for implementing kernels, because they can
only communicate with other processors through data bus,
which may become a bottleneck if a kernel has many inputs
and outputs. Therefore, we believe that specialized stream-
ing processors or custom-generated hardware blocks should
be used. Depending on throughput requirements, a process-
ing node could implement several kernels, or one kernel may
be distributed over several processing nodes.

Processing nodes need to communicate streams among them-
selves to implement streaming applications. This communi-
cation has to be fast to support high throughput required
for many applications. Therefore, off-chip memory should be
avoided and FPGA on-chip memory should be used when-
ever possible. Since the amount of on-chip memory is lim-
ited, for many applications it may not be possible to keep
all streams in on-chip memory. Instead, we propose using
shallow FIFO buffers for passing stream elements between
kernels. As new data arrives from outside the FPGA, it
is processed by kernels and passed between them through
FIFO buffers. Once the last kernel processes the data, it
passes the result outside the FPGA. This way, only a lim-
ited number of stream elements are kept in on-chip FIFO
buffers. FIFO buffers are used instead of simple registers be-
cause they provide buffering for cases when execution time
of a kernel varies between the elements. If one kernel takes
a long time to process one element, the next kernel down-
stream could become idle if there was just one register be-
tween them. Using FIFO buffers, the second kernel can pro-
cess data from the FIFO. As long as the first kernel delivers
the next element before the FIFO buffer becomes empty, the
second kernel will not have to stall.

Instead of compiling Brook code directly into an HDL, we
take advantage of an existing behavioral synthesis tool (C2H
from Altera). We modified an existing Brook compiler from
Stanford to generate C code suitable for compilation using
C2H. In addition to the C code, our compiler also generates
other files which describe the complete SOPC system, in-
cluding the necessary FIFO buffers and other components.
We also generate custom scripts, which are used to automat-
ically produce the programming file for the target FPGA.

4. EXPLOITING PARALLELISM
In streaming programs, communication is explicitly defined
through data streams. This makes it easy for compilers to
analyze programs, thus allowing parallelism to be exploited.
When a programmer specifies that certain data belongs to
a stream, this provides a guarantee that the elements of the

stream are independent from one another. Kernel compu-
tation can be applied to stream elements in any order. In
fact, all computation can be performed in parallel, limited
only by the available hardware.

FPGA implementation of a streaming program as described
in the previous section exploits task parallelism by running
kernels in parallel in a pipelined fashion. Data parallelism
can be exploited by designing processing elements that can
process multiple stream elements in parallel. A simple way
to achieve this is to fully replicate the functionality of the
kernel. For instance, if a custom hardware block implement-
ing a kernel does not provide sufficient throughput for a
given application, two identical blocks could be generated,
potentially doubling the throughput. This is possible be-
cause stream elements are independent, and because FPGAs
are reprogrammable, so we can generate a system specifically
for a given application.

The above replication procedure is relatively straightforward
for ordinary kernels. However, the situation is more compli-
cated for reduction kernels. To replicate a reduction kernel,
the compiler has to build a reduction tree, where the num-
ber of elements to be reduced decreases as we progress from
leaves to the root of the tree. Previous work has mostly fo-
cused on a reduction where the result is only one number.
Since Brook also supports reductions where the output has
more than one element, this complicates replication of re-
duction kernels. If such a reduction is to be replicated, the
reduction tree has to be carefully designed, and individual
replicas have to keep track of the numbers of stream ele-
ments processed to perform the reduction correctly. This is
challenging because it has to be done automatically by the
compiler for streams of arbitrary sizes.

5. CONCLUDING REMARKS
We implemented a source-to-source compiler that converts
Brook applications into C code suitable for C2H compila-
tion and we compiled two small applications (FIR filter and
Autocorrelation) using this system. The compiler does not
yet support full automatic replication, so we replicated crit-
ical kernels manually to measure the effect of replication on
performance. We found that Autocorrelation benefits from
replication and achieves performance improvements close to
the theoretical maximum for replication factors 2 and 4. FIR
filter also achieves double throughput for replication factor
2, but only 2.4X throughput for replication factor 4. We also
found that our replicated implementations performed up to
8.9X better than software running on a soft-core processor
and up to 4.3X better than the same software compiled us-
ing ordinary C2H flow [2]. We are currently working on
providing full support for kernel replication. We also plan
to build several large applications to demonstrate usability
of our approach for real-world applications.

6. REFERENCES
[1] I. Buck. Brook Spec v0.2, October 2003. Technical

Report CSTR 2003-04 10/31/03 12/5/03, Stanford
University.

[2] F. Plavec, Z. Vranesic, and S. Brown. Towards
Compilation of Streaming Programs into FPGA
Hardware. In Forum on Specification and Design
Languages (FDL ’08), 2008.


