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ABSTRACT 
The MIPS-to-Verilog (M2V) compiler and the Basic Block 

Tools (BBTools) can automatically generate a hardware 

accelerator for selected blocks of machine code in an 

application. The compiler translates MIPS machine code into a 

hardware design captured in Verilog (an "Extension"). The 

BBTools patch the application binary by inserting the extension 

instruction that triggers the accelerator. The original code is 

preserved, so that execution can fall back to software when 

necessary. 

This work extends the M2V compiler with support for memory 

load and store instructions, and for interrupts. We use a 

transactional model to handle interrupts and/or traps due to TLB 

misses in the Extension. We also extended the BBTools to 

automatically create the best encoding for an extension 

instruction. The tool evaluates which pair of roots in the 

dependency graph leads to the shortest execution cycle time for 

the Extension. With this addition, the process of creating 

Extensions for the eMIPS processor can now be fully automated 

and applied to practical applications, where loads and stores 

inside the Extension are of paramount importance. Code 

coverage is already at 50% of a large code base. 

1. INTRODUCTION 
Extensible processors have a simple RISC pipeline and the 

ability to augment the Instruction Set Architecture (ISA) with 

custom instructions.  The ISA can be augmented statically, at 

tape-out, or it can be augmented dynamically when applications 

are loaded.  Extensible processors differ from other accelerators 

in their tight integration with the basic data path, which leads to 

minimal latencies and therefore greater flexibility. Examples of 

dynamically extensible processors include eMIPS [5] and 

Stretch [10]. Tensilica‟s Xtensa [11] is an example of a statically 

extensible processor. 

Selection of the best code to accelerate is an active area of 

research.  The eMIPS tool-chain, shown in Figure 1, selects the 

best candidate blocks by executing the application on the Giano 

full-system simulator [17], in concert with the data obtained via 

static analysis of the application binary. The BBTools extract the 

basic blocks to accelerate and patch the binary image with the 

special instructions for the accelerator.  The M2V compiler [13] 

automatically generates the design for the hardware accelerator. 

In previous versions of eMIPS, the accelerator blocks could be 

specified and given to a hardware designer to hand design the 

accelerator.  While this can lead to an efficient implementation, 

manual designs do not scale well as extensible processors are 

more widely used and the hardware becomes more complex. 

The use of the M2V tool chain can expand the use of hardware 

acceleration and completely automate the process of generating 

hardware accelerators. 
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Figure 1. The eMIPS Tool Chain to automate the generation 

of hardware accelerators. 

The work described herein addresses three limitations in the tool 

chain that prevented the M2V compiler from being usable in but 

a few practical cases. The first limitation was the lack of support 

for load and store operations, and more generally for variable-

cost operations. M2V only handled MIPS instructions that took 

zero or one cycle. We added support for all the instructions that 

took a fixed number of cycles, accounting for the cost in the 

generation of the schedule. We then added support for the 

instructions that have variable costs, prime and foremost loads 

and stores. We developed a way to preserve the overall structure 

of the compiler, while dealing with the variable costs. The 

dependency graph still leads to a state machine that controls the 

overall execution. The transitions are now defined not only by 

the clock, but also by the signals that indicate completion of the 

variable-cost operations. 

The second limitation was the lack of support for interrupts 

within an Extension. External interrupts could only happen 

before or after the extension instruction, never inside it. This 

assumption is invalid in the presence of TLB misses due to loads 

and stores. Furthermore, the assumption requires that an 

Extension never encounters errors, such as arithmetic overflows 

or unaligned addresses. For a real-time system, it is important to 

respond to interrupts in a timely and predictable manner. Even in 

a general-purpose OS it is unacceptable to allow a user process 

to ignore interrupts and lock the machine. To address the 

interrupt limitation, we used the concept of transactions in 

dealing with the write-backs to the register file and the stores to 

memory. The overall execution of the Extension is subdivided in 

sets that execute “atomically”. Interruptions of any sort are 

accepted only at the transaction boundaries. On interruption, the 

write-back machine cancels all write-backs from future 

transactions, completes the write-backs for the current 

transaction, and then relinquishes control back to the data-path 

in a limited amount of time. The restart-address is set to the 

point in the original basic block that corresponds to the current 

write-back state. It is therefore mandatory that extension 



 

 

instructions are simply inserted in the original image, and that 

they do not replace the original basic block. 

The third limitation concerns the instruction encoding for the 

new extension instruction. We observed that the selection of 

which registers or constants to encode in the instruction can 

have an effect on the overall execution time. These values are 

available early in the execution pipeline. It is therefore important 

to select those that allow the most work to proceed before 

stalling on a dependency. Our algorithm uses two parameters in 

deciding which two register numbers to encode – fan-out and 

depth of the root register read nodes. The algorithm selects the 

pair of registers with the maximum combined fan-out and depth. 

The remainder of this paper is structured as follows. Section 2 

discusses related work. Section 3 gives an overview of the 

eMIPS hardware platform. Section 4 discusses the automatic 

encoding of the extension instruction by the BBTools.  Section 5 

defines the support for memory operations in the M2V compiler.  

Section 6 discusses the model and implementation for handling 

interrupts in the Extension. Section 7 discusses the experimental 

results, and Section 8 concludes the report.  

2. RELATED WORK 
Commercial FPGA manufacturers today all provide examples of 

soft-cores, microprocessor designs that the customer can modify 

and extend for their application [12, 2, 10].  M2V uses the 

eMIPS processor [5] as its underlying hardware platform. 

eMIPS is the first design that is secure for general purpose 

multi-user loads, and the set of potential applications is therefore 

more open-ended than those found in the typical embedded 

system alone.  

A common approach to generate code for an extensible 

processor is to modify an existing C compiler. Tensilica [11] 

automatically regenerates a full GNU compilation system given 

the RTL of the new instruction. Ienne et al. [3] use the SUIF 

compiler. M2V accepts as input binary machine code rather than 

source code. There are trade-offs between accelerating from 

source code in a high-level language or from binaries.  One of 

the major advantages when accelerating from binaries is that any 

application can be accelerated, even applications where the 

source code is controlled by an outside party and not available to 

the developer. A disadvantage is that some of the information 

that has been discarded must be reconstructed, and there are 

limits to this reversal process. 

The FREEDOM compiler [14] is similar to M2V; the compiler 

accepts binary machine code as input and maps it to an FPGA. 

The Extensions generated by the M2V compiler are meant for a 

general-purpose environment and therefore execute in 

coordination with the main processor data path, whereas 

FREEDOM maps the entire program to the bare FPGA. M2V 

generates Extensions that are explicitly interrupt-aware, whereas 

there is no mention of handling interrupts in the FREEDOM 

compiler. Additionally, the Extensions generated by the M2V 

compiler for the eMIPS have secure access to the memory 

subsystem via the Memory Management Unit (MMU), which is 

not a requirement for the DSP-like programs handled by the 

FREEDOM compiler.  

Another avenue of research in extensible processors is the 

identification of the Instruction Set Extensions (ISE) that most 

benefit a given program, see for instance [4] for a recent 

overview. Bonzini [4] advocates generating the ISE from within 

the compiler, Tensilica [11] from profiling data. M2V currently 

follows the application profiling approach; it uses the BBTools 

and dynamic full-system simulation with Giano to select the 

candidate basic blocks. The current approach can extend to 

handling chains of blocks e.g. in frequently executed loops that 

are automatically recognized via full-system simulation [15]. A 

possible addition to our work is to use M2V in concert with a 

high-level compiler. The compiler can identify the ISE and pass 

it to M2V for compilation to HDL. 

A related area is the generation of HDL code from C, the so-

called C-to-gates design flows [8, 9]. The common target is the 

automated generation of HDL code from sequential programs. 

The main difference with M2V is that the input is binary code. 

Using binary code supports all programming languages, 

included dynamically generated (jitted) code. It is the only 

viable option in case the high level source code is not available, 

e.g. for third-party code and libraries. The drawback is that it 

makes the problem harder. The binary code has already been 

optimized (register allocation, loop unrolling, etc) during its 

compilation hence identifying parallelism is more difficult. The 

BBTools framework tries to account for some of these 

optimizations by using a canonical form of the basic block, so 

that it can identify repeating basic blocks in the binary. 

 

3. eMIPS HARDWARE OVERVIEW 
The extensible MIPS (eMIPS) processor, shown in Figure 2, is 

an example of a RISC processor tightly integrated with 

programmable logic.  The programmable logic has many uses, 

including: extensible on-line peripherals, zero overhead online 

verification of software, hardware acceleration of general-

purpose applications, and in-process software debugging [1].  

This paper is concerned with automatically generating hardware 

accelerators within the context of the eMIPS extensible 

processor. The instruction set for the eMIPS processor is the 

instruction set for the R4000 MIPS processor [7].  The eMIPS 

pipeline follows the classic RISC pipeline [6] consisting of five 

stages: instruction fetch (IF), instruction decode (ID), execute 

(EX), memory access (MA), and register write-back (WB).  The 

programmable logic is tightly integrated with the RISC pipeline; 
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Figure 2. eMIPS block diagram. The Soft Fabric can be 

reconfigured at run time to extend the ISA. 

 



 

 

it can synchronize with it and it can access the same resources as 

the RISC pipeline. Figure 3 illustrates the pipelining of 

instructions through eMIPS.   

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

 

Figure 3. Instruction flow through the eMIPS pipeline. 

The decode logic in the extension logic is always an observer of 

the main pipeline and is trying to decode the instruction in the 

instruction decode (ID) phase of the pipeline.  When the 

instruction is not an extension instruction, the Extension fails to 

decode it and the instruction is executed in the main pipeline.  If 

instead the extension logic successfully decodes the instruction, 

the extension becomes active and hardware acceleration takes 

over execution.  Instructions flowing through the main RISC 

pipeline prior to the extension instruction complete normally.  

Instructions following the extension instruction are stalled until 

the Extension is near completion, in the EXn-1 cycle.  

The RISC pipeline imposes micro-architectural constraints on 

the extension logic, for instance in the arbitration for access to 

the register file and other resources.  The extension logic needs 

to read and write the register file and access the memory 

management unit (MMU).  M2V automatically schedules all 

resource accesses in the extension logic to avoid conflicts with 

the primary RISC pipeline. Thus, register writes must be delayed 

by the Extension until previous instructions are retired and 

register reads must finish a couple of cycles before the trailing 

instructions get to the ID stage. As a specific example, consider 

the case in Figure 3 when the extension instruction is in the EX1 

cycle of execution, instruction m-1 is in the MA pipeline stage 

and so instruction m-1 has access to the MMU.  Instruction m-2 

is in the WB pipeline stage and it has control of the register file 

write ports.  The extension instruction does not have control of 

all the resources until stage EX3 when the previous instructions 

have been retired.  

Opcode_name rt, rs, immediate 

31:26 25:21 20:16 15:0

opcode rs rt immediate

 

Figure 4. The MIPS “I” format encoding. 

The eMIPS processor has been implemented on Xilinx Virtex 4 

FPGAs using the ML401 and ML402 evaluation boards.  The 

partial reconfiguration capabilities of this FPGA model allow 

software to load dynamically the hardware for the instruction 

extensions.   

4. INSTRUCTION ENCODING 
An extension instruction is an instruction that is not part of the 

base ISA of the eMIPS processor. It is inserted in the instruction 

stream for the specific purpose of triggering an Extension. If the 

Extension is present and active, it recognizes the instruction and 

takes over execution. Otherwise the instruction is treated as a 

NOP and execution continues with the original basic block. In 

this section we describe how we automatically generate the 

extended instruction encodings. 

In general, an Extension is free to use the instruction bits in any 

way, provided that the top 6 bits use an invalid opcode. The 

implementation of the eMIPS decoder presents an opportunity 

for optimization. By default, the decoder expects "I” format 

instructions (Figure 4) and fetches the corresponding rs and rt 

registers in advance. If the extended instruction uses this format 

it can make use of those two registers immediately, without any 

penalty.  

The input to the M2V compiler are block descriptions in the so-

called BBW text file format. BBMatch is a program, part of the 

BBTools framework, used for creating BBW source files 

automatically, from a MIPS executable file. A second tool reads 

the BBW file and applies it to a MIPS ELF binary image. For 

each basic block that matches the BBW file the tool inserts the 

corresponding extended instruction before the block itself. The 

BBW description is actually a constrained pattern of canonical 

instructions, it will match any sequence with a compatible 

register assignment. For the example in Figure 5, the BBW file 

might say that rx=R1 and ry=R2. Any sequence of the two 

instructions OR+SLLV is a candidate for matching. An actual 

match might require R3=3, … R6=6, but allow any register 

number in the R1-R2 positions. Alternatively, it might require 

that R3=ry+1, R4=ry+2, etc etc. 

[0] ext0 rx, ry, offset 

[4] or r5, r1, r2 

[8] sllv r6, r3, r4 

Figure 5. The choice of rx and ry in this basic block affects 

the performance of the generated Extension. 

The selection of the registers to encode in the extension 

instruction plays an important part in the schedule that M2V will 

generate for the Extension. This is illustrated by the simple 

example basic block shown in Figure 5.  The cost of the OR and 

the SLLV instructions in the basic block are 1 and 0 cycles 

respectively. We shall consider two cases to illustrate the 

importance of encoding the correct registers. M2V generates the 

circuit graphs shown in Figure 6 for two different encodings of 

the extension instruction. A circuit graph [13] is essentially a 

Control and Data Flow Graph [4] decorated with the costs of 

operations and the resulting execution schedule. In the graphs, 

the clock cycle when the respective node completes is depicted 

next to the node. The graphs show that though the number of 

states in the Extension remains the same, the number of clock 

cycles taken by the Extension to execute the set of instructions 

differs based on the encoding of the registers. 

Considering the first case, registers R1 and R2 are encoded, thus 

making them available directly in stage 2 of the extension state 

machine. The OR instruction can be executed immediately, and 

will complete in cycle 1 since the Extension has all the registers 

available and no unmet dependencies. However, the SLLV 

instruction requires both source registers to be read from the 

register file, which takes 4 clock cycles. This causes the SLLV 

instruction to complete in cycle 4. A pipeline stage is inserted by 

the extension state machine after execution of the instructions at 

cycle 4. The two register write-backs are performed after the 

pipeline stage, in cycle 5 (R5) and cycle 6 (R6). Thus, the 



 

 

Extension requires 6 cycles to complete execution with this 

encoding. 

Considering the second case, registers R1 and R3 are encoded. 

In this case, none of the instructions can be executed directly as 

both have unmet dependencies and require register reads from 

the register file. Assuming there are at least two read ports in the 

register file, the OR instruction completes after 5 cycles, 4 

cycles for reading register R2 and 1 cycle for execution. 

Similarly, the SLLV instruction completes execution in cycle 4. 

Again, a pipeline stage is inserted after execution of the instruct- 
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Case (i): Extension instruction encoded with R1, R2 
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Case (ii): Extension instruction encoded with R1, R3 

Figure 6. Circuit graphs for the block in Figure 5, using 

different encoding schemes. 

tions in cycle 5. The register write-backs are performed in cycle 

6 (R6) and cycle 7 (R5). Thus the Extension requires 7 cycles to 

complete execution with this encoding. In this minimal example, 

a two instruction basic block shows a difference of 1 execution 

cycle depending on the selected encoding. The encoding scheme 

will have a greater impact on the execution time when there are 

long latency paths in the basic block.  

4.1 Register Selection Algorithm 
The encoding algorithm uses two main parameters in selecting 

the rs and rt registers – fan-out and depth of the root register 

read nodes. Fan-out is the number of instructions dependent on 

the root register read node. Depth is a count of the register nodes 

and the cost of the instruction nodes till a dependency is met in 

the graph. Using the circuit graphs in Figure 6, all the root 

nodes, R1, R2, R3 and R4 have a fan-out of 1. For the depth 

calculation, all the registers have a dependency at the instruction 

nodes, with the only differentiating factor being the cost of the 

OR instruction node compared to the SLLV instruction node. 

This gives the depth of registers R1-R2 as 2 and R3-R4 as 1. 

The algorithm takes the sum of the fan-out and depth of the 

register nodes and encodes the nodes with the maximum value. 

In the previous example, the nodes encoded by the algorithm 

would be R1 and R2, which is the best encoding scheme as seen 

from the circuit graphs in Figure 6. 

Other algorithms are possible. The total number of general-

purpose registers is limited though abundant in MIPS, and the 

calling convention further restricts the number of maximum 

potential roots in any practical dependency graph. It is therefore 

practical to perform a brute-force exhaustive search for the 

selection with the optimal cycle count. The worst-case number 

of alternatives for a processor with N usable registers is 
𝑛 𝑛−1 

2
 

or 465 for MIPS. We will explore this alternate approach when 

the compiler has full code coverage. 
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Figure 7. Memory Write Protocol. 

5. MEMORY ACCESS SUPPORT 
It is well known in the literature that the lack of load and store 

operations leads to limited speedups from hardware acceleration. 

The operations are not only important for performance, but in 

our experience they are almost always present in the most-

frequently executed basic blocks of an application, precisely the 

blocks that M2V wants to accelerate. 

The eMIPS architecture allows for Extensions to access memory 

through the MMU just like the main MIPS processor data path. 

The MMU is part of the Trusted ISA portion of the eMIPS 

processor. The MMU is the only path to memory available to 

general, untrusted Extensions. To ensure correct execution of the 

memory instructions, the Extension must obey the memory 

protocol shown in Figure 7 for a write case. In both the read and 

write protocols, the MDATA_VLD signal serves as an indicator 

that the memory request is acknowledged by the controller. The 

signal indicates when the data is available from, or to be written 

to memory. The M2V compiler implements the protocols in 

Verilog, in the form of a memory state machine. The memory 

state machine is then integrated into the existing extension state 

machine. M2V maintains an array of memory operations in a 

particular state that is integrated into the extension state 

machine. Once the Extension transitions from one state to a state 

with a memory operation, the memory state machine is 

activated. 



 

 

On the rising edge of the Pipeline CLK (PCLK), the address is 

latched onto MADDR signal and the Memory Output Enable 

(MOE) signal is raised in case of a read or the Memory Write 

Enable (MWE) is raised in case of a write. MDATA_VLD then 

falls down once the memory request is acknowledged, and the 

memory state machine moves onto the next state, waiting for the 

MDATA_VLD to go high, indicating the availability of the data 

in MDATA_IN for a read or completion of the write for a write 

operation. 

When a state involves a memory access, the main extension state 

machine waits on the completion of the memory state machine 

and transitions to the next state when all operations (e.g. register 

and memory reads and writes) for that state are completed. 

6. INTERRUPT SUPPORT 
We have modified the M2V compiler to handle interruptions 

while the processor is executing in the Extension. Interruptions 

can be due to three different sources, but we will use the single 

term “interrupt” to indicate any and all of them. Our approach 

handles all cases in the same manner. The first cause of 

interrupts is address translation misses and errors in the MMU 

while the Extension is trying to access memory. A second cause 

is actual interrupts from peripherals such as timers and I/O 

devices. A third cause of interrupts is the case of errors inside 

the Extension, such as unaligned addresses and overflows. We 

use a transaction model based approach to handle all interrupts 

in the Extension.  

The basic block to be accelerated is analyzed and divided into 

“transactions”. A transaction is a set of instructions that 

terminate just before a memory instruction. Even in the event the 

basic block has no memory operations, there is still a maximum 

number of cycles allowed before interrupts are permitted. The 

maximum number of operations in a particular transaction is 

user-selectable, default is 7. Future work should consider the 

actual latency/cost of the instructions rather than an arbitrary 

number of instructions. The maximum transaction size should 

still be user-selectable because it affects the interrupt latency of 

a real-time system. 

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

Transaction 1

Transaction 2

Transaction 3

 

Figure 8. Example basic block, divided in transactions. 

The Extension must correctly indicate to the TISA what the re-

start address is, e.g. after the software interrupt handler returns. 

This address is termed the Virtual PC (VIRPC), as the Extension 

is keeping track of the PC as seen by the MIPS pipeline, even 

though the Extension has no concept of instruction fetch or 

instruction ordering. The VIRPC address simply corresponds to 

the start of each transaction in the original basic block. 

We illustrate the subdivision of a basic block in transactions 

with an example in Figure 8. Transaction 1 terminates once the 

load instruction ([c]) is encountered. Transaction 2 is terminated 

at the end of the maximum allowed 7 instructions in the 

transaction. The remaining instructions are part of transaction 3. 

The basic idea behind the transactions scheme is to preserve the 

original program order, while at the same time allowing for 

more optimistic and more parallel execution inside the 

Extension. We decided to be very conservative in this first 

implementation and to leave more aggressive optimizations for 

future work. The Extension will recognize an interrupt at the 

next transaction boundary should an interrupt occur during the 

Extension‟s execution. Any write-backs that are due to a 

subsequent transaction are aborted. 

The transaction model is used to perform write backs in-order, 

but from the abstracted viewpoint of a transaction, that is, the 

write backs in transaction 1 must complete prior to any write 

backs in transaction 2. However, the write backs inside a 

particular transaction can be performed out of order. This limits 

the parallelism generated by the circuit graph to some extent by 

imposing the restriction of performing certain write backs in 

order. We perceive this to not be a huge problem as the eMIPS 

TISA interface allows for two register writes every cycle, thus 

decreasing the possibility of bottlenecks at the register file. 

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

T1

T2

T3

9 Writebacks to the RF 6 Writebacks to the RF

Transactional Model No interrupt handling

Figure 9. Overhead of handling interrupts. 

Figure 9 illustrates the overhead in terms of register write-backs. 

In the case of generating hardware without the support of 

interrupts only 6 write-backs are necessary to the register file. It 

can be clearly seen that further optimizations can be applied to 

this basic transaction model. By just terminating Transaction 2 

an instruction before or after would have reduced the number of 

write-backs by 2. This would have ensured only one extra write-

back in the transactional model approach. 

M2V uses transactions registers to keep track of the current 

transaction being written back for a particular state of the 



 

 

Extension. When the Extension encounters an interrupt, the 

extension state machine checks to see if the current state of the 

Extension is an end of a transaction or not. If it is an end of a 

transaction, the VIRPC is updated to reflect the address of the 

start of the next transaction and the extension state machine is 

stalled in that state. The Extension then waits for the resources 

to be taken away by the pipeline arbiter and the Enable and 

Grant signal to go low. Once the enable goes low, the Extension 

lowers the ACK signal to signal the end of the Extension at that 

transaction. The program then re-starts execution from the 

VIRPC address on the main MIPS processor, with the registers 

and other structures in the correct state. 

7. RESULTS 
The design generated by the M2V compiler was synthesized 

using the Xilinx ISE tools. With the transactional model 

enabled, the percentage of total slices used increased from 3% to 

4%, compared to the base version of M2V with memory 

support. This is because of the extra registers used in the 

transactional model and the extra state machine required to track 

the transactions during execution. Overall, the added complexity 

from interrupts causes a penalty in area utilization. This extra 

cost is balanced almost exactly by the improvements in the new 

data path interface of the current eMIPS implementation over 

the one presented in [13]. There is no penalty in frequency. 

Table 1. M2V code coverage test results 

No. files 325  

No. blocks 146,057 Percent Total 

Compiled ok 25,029 17.1% 

Warnings 44,800 30.7% 

Failures 76,228 52.2% 

We tested the changes to the compiler with the example basic 

block shown in Figure 8. The basic block is a 64-bit division 

block with an extra memory instruction (load from the stack 

pointer) inserted to test the working of memory accesses. To test 

interrupt handling, we generated timer interrupts at short 

variable intervals. The Extension was simulated using 

ModelSim and the test program simulation was run in Giano. 

The test program checked over 500 test vectors for the 64-bit 

division and the test passed successfully in all cases. The 

Extension always reported the correct Virtual PC (VIRPC) 

address and the transactional state machine worked as designed.  

To test for code coverage, we ran the BBMatch and the M2V 

compiler on 325 executable files from the code base of the 

MMLite RTOS [16].  BBMatch had 100% coverage and 

extracted and encoded about 150,000 blocks from these files. 

We then ran M2V on the extracted blocks. The results are shown 

in Table 1. The large number of failures is due to a small 

number of still unsupported instructions, especially JAL, BLTZ, 

BGEZ, MULT, DIV, SLLV, and SRLV. This work is in 

progress but M2V is already useful even without them. 

8. CONCLUSIONS 
We have modified the eMIPS tool chain to remove the last 

remaining obstacles for a fully-automated generation of 

hardware accelerators. By supporting load and stores, interrupts, 

and the automatic encoding of extended instructions the 

compiler can now attack the single-block cases of practical 

applications. Code coverage is already 50% of the blocks in 

more than 300 executable files, with only a few unsupported 

instructions responsible for most of the failures. The addition of 

interrupt support to the M2V compiler is especially relevant 

because there is now no limit to the span of an accelerator, even 

in a general-purpose environment. An arbitrarily long sequence 

of instructions can be accelerated, without concerns for security 

or real-time responsiveness. 

Support for interrupts in the compiler causes the loss of a little 

amount of parallelism, because of the in-order write-backs 

requirement. Using a transactional model mitigates this effect. 

Performing two write-backs to the register file in every cycle of 

the Extension further mitigates this effect. The overhead of 

transactions would be minimal in the case of large basic blocks 

with a large number of extension states. 
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