

Automatic Generation of Interrupt-Aware Hardware
Accelerators with the M2V Compiler

Abilash Sekar
Georgia Institute of Technology

abilash.sekar@gatech.edu

Alessandro Forin
Microsoft Research

sandrof@microsoft.com

ABSTRACT
The MIPS-to-Verilog (M2V) compiler and the Basic Block

Tools (BBTools) can automatically generate a hardware

accelerator for selected blocks of machine code in an

application. The compiler translates MIPS machine code into a

hardware design captured in Verilog (an "Extension"). The

BBTools patch the application binary by inserting the extension

instruction that triggers the accelerator. The original code is

preserved, so that execution can fall back to software when

necessary.

This work extends the M2V compiler with support for memory

load and store instructions, and for interrupts. We use a

transactional model to handle interrupts and/or traps due to TLB

misses in the Extension. We also extended the BBTools to

automatically create the best encoding for an extension

instruction. The tool evaluates which pair of roots in the

dependency graph leads to the shortest execution cycle time for

the Extension. With this addition, the process of creating

Extensions for the eMIPS processor can now be fully automated

and applied to practical applications, where loads and stores

inside the Extension are of paramount importance. Code

coverage is already at 50% of a large code base.

1. INTRODUCTION
Extensible processors have a simple RISC pipeline and the

ability to augment the Instruction Set Architecture (ISA) with

custom instructions. The ISA can be augmented statically, at

tape-out, or it can be augmented dynamically when applications

are loaded. Extensible processors differ from other accelerators

in their tight integration with the basic data path, which leads to

minimal latencies and therefore greater flexibility. Examples of

dynamically extensible processors include eMIPS [5] and

Stretch [10]. Tensilica‟s Xtensa [11] is an example of a statically

extensible processor.

Selection of the best code to accelerate is an active area of

research. The eMIPS tool-chain, shown in Figure 1, selects the

best candidate blocks by executing the application on the Giano

full-system simulator [17], in concert with the data obtained via

static analysis of the application binary. The BBTools extract the

basic blocks to accelerate and patch the binary image with the

special instructions for the accelerator. The M2V compiler [13]

automatically generates the design for the hardware accelerator.

In previous versions of eMIPS, the accelerator blocks could be

specified and given to a hardware designer to hand design the

accelerator. While this can lead to an efficient implementation,

manual designs do not scale well as extensible processors are

more widely used and the hardware becomes more complex.

The use of the M2V tool chain can expand the use of hardware

acceleration and completely automate the process of generating

hardware accelerators.

*.EXE

Compiled

Binary

Executable

BB Tools

GIANO

Simulator
*.EXE

Patched Binary

*.BBW

Extension

Basic Block File

M2V

(MIPS to

Verilog

Compiler)

*.V

Synthesizable

Verilog

Figure 1. The eMIPS Tool Chain to automate the generation

of hardware accelerators.

The work described herein addresses three limitations in the tool

chain that prevented the M2V compiler from being usable in but

a few practical cases. The first limitation was the lack of support

for load and store operations, and more generally for variable-

cost operations. M2V only handled MIPS instructions that took

zero or one cycle. We added support for all the instructions that

took a fixed number of cycles, accounting for the cost in the

generation of the schedule. We then added support for the

instructions that have variable costs, prime and foremost loads

and stores. We developed a way to preserve the overall structure

of the compiler, while dealing with the variable costs. The

dependency graph still leads to a state machine that controls the

overall execution. The transitions are now defined not only by

the clock, but also by the signals that indicate completion of the

variable-cost operations.

The second limitation was the lack of support for interrupts

within an Extension. External interrupts could only happen

before or after the extension instruction, never inside it. This

assumption is invalid in the presence of TLB misses due to loads

and stores. Furthermore, the assumption requires that an

Extension never encounters errors, such as arithmetic overflows

or unaligned addresses. For a real-time system, it is important to

respond to interrupts in a timely and predictable manner. Even in

a general-purpose OS it is unacceptable to allow a user process

to ignore interrupts and lock the machine. To address the

interrupt limitation, we used the concept of transactions in

dealing with the write-backs to the register file and the stores to

memory. The overall execution of the Extension is subdivided in

sets that execute “atomically”. Interruptions of any sort are

accepted only at the transaction boundaries. On interruption, the

write-back machine cancels all write-backs from future

transactions, completes the write-backs for the current

transaction, and then relinquishes control back to the data-path

in a limited amount of time. The restart-address is set to the

point in the original basic block that corresponds to the current

write-back state. It is therefore mandatory that extension

instructions are simply inserted in the original image, and that

they do not replace the original basic block.

The third limitation concerns the instruction encoding for the

new extension instruction. We observed that the selection of

which registers or constants to encode in the instruction can

have an effect on the overall execution time. These values are

available early in the execution pipeline. It is therefore important

to select those that allow the most work to proceed before

stalling on a dependency. Our algorithm uses two parameters in

deciding which two register numbers to encode – fan-out and

depth of the root register read nodes. The algorithm selects the

pair of registers with the maximum combined fan-out and depth.

The remainder of this paper is structured as follows. Section 2

discusses related work. Section 3 gives an overview of the

eMIPS hardware platform. Section 4 discusses the automatic

encoding of the extension instruction by the BBTools. Section 5

defines the support for memory operations in the M2V compiler.

Section 6 discusses the model and implementation for handling

interrupts in the Extension. Section 7 discusses the experimental

results, and Section 8 concludes the report.

2. RELATED WORK
Commercial FPGA manufacturers today all provide examples of

soft-cores, microprocessor designs that the customer can modify

and extend for their application [12, 2, 10]. M2V uses the

eMIPS processor [5] as its underlying hardware platform.

eMIPS is the first design that is secure for general purpose

multi-user loads, and the set of potential applications is therefore

more open-ended than those found in the typical embedded

system alone.

A common approach to generate code for an extensible

processor is to modify an existing C compiler. Tensilica [11]

automatically regenerates a full GNU compilation system given

the RTL of the new instruction. Ienne et al. [3] use the SUIF

compiler. M2V accepts as input binary machine code rather than

source code. There are trade-offs between accelerating from

source code in a high-level language or from binaries. One of

the major advantages when accelerating from binaries is that any

application can be accelerated, even applications where the

source code is controlled by an outside party and not available to

the developer. A disadvantage is that some of the information

that has been discarded must be reconstructed, and there are

limits to this reversal process.

The FREEDOM compiler [14] is similar to M2V; the compiler

accepts binary machine code as input and maps it to an FPGA.

The Extensions generated by the M2V compiler are meant for a

general-purpose environment and therefore execute in

coordination with the main processor data path, whereas

FREEDOM maps the entire program to the bare FPGA. M2V

generates Extensions that are explicitly interrupt-aware, whereas

there is no mention of handling interrupts in the FREEDOM

compiler. Additionally, the Extensions generated by the M2V

compiler for the eMIPS have secure access to the memory

subsystem via the Memory Management Unit (MMU), which is

not a requirement for the DSP-like programs handled by the

FREEDOM compiler.

Another avenue of research in extensible processors is the

identification of the Instruction Set Extensions (ISE) that most

benefit a given program, see for instance [4] for a recent

overview. Bonzini [4] advocates generating the ISE from within

the compiler, Tensilica [11] from profiling data. M2V currently

follows the application profiling approach; it uses the BBTools

and dynamic full-system simulation with Giano to select the

candidate basic blocks. The current approach can extend to

handling chains of blocks e.g. in frequently executed loops that

are automatically recognized via full-system simulation [15]. A

possible addition to our work is to use M2V in concert with a

high-level compiler. The compiler can identify the ISE and pass

it to M2V for compilation to HDL.

A related area is the generation of HDL code from C, the so-

called C-to-gates design flows [8, 9]. The common target is the

automated generation of HDL code from sequential programs.

The main difference with M2V is that the input is binary code.

Using binary code supports all programming languages,

included dynamically generated (jitted) code. It is the only

viable option in case the high level source code is not available,

e.g. for third-party code and libraries. The drawback is that it

makes the problem harder. The binary code has already been

optimized (register allocation, loop unrolling, etc) during its

compilation hence identifying parallelism is more difficult. The

BBTools framework tries to account for some of these

optimizations by using a canonical form of the basic block, so

that it can identify repeating basic blocks in the binary.

3. eMIPS HARDWARE OVERVIEW
The extensible MIPS (eMIPS) processor, shown in Figure 2, is

an example of a RISC processor tightly integrated with

programmable logic. The programmable logic has many uses,

including: extensible on-line peripherals, zero overhead online

verification of software, hardware acceleration of general-

purpose applications, and in-process software debugging [1].

This paper is concerned with automatically generating hardware

accelerators within the context of the eMIPS extensible

processor. The instruction set for the eMIPS processor is the

instruction set for the R4000 MIPS processor [7]. The eMIPS

pipeline follows the classic RISC pipeline [6] consisting of five

stages: instruction fetch (IF), instruction decode (ID), execute

(EX), memory access (MA), and register write-back (WB). The

programmable logic is tightly integrated with the RISC pipeline;

Ex.

(ALU) MA WB

Soft

Fabric

IF ID

Hard Fabric:

TISA

Inter Pipeline Traffic

CP0

(Exception

Handler)

Memory

(MMU, Cache) Registers

Peripheral Ext. 2

Execution

Blocks Ext. 1
Ext. 1

ID

Ext. 2

ID
Extensions

Figure 2. eMIPS block diagram. The Soft Fabric can be

reconfigured at run time to extend the ISA.

it can synchronize with it and it can access the same resources as

the RISC pipeline. Figure 3 illustrates the pipelining of

instructions through eMIPS.

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

Figure 3. Instruction flow through the eMIPS pipeline.

The decode logic in the extension logic is always an observer of

the main pipeline and is trying to decode the instruction in the

instruction decode (ID) phase of the pipeline. When the

instruction is not an extension instruction, the Extension fails to

decode it and the instruction is executed in the main pipeline. If

instead the extension logic successfully decodes the instruction,

the extension becomes active and hardware acceleration takes

over execution. Instructions flowing through the main RISC

pipeline prior to the extension instruction complete normally.

Instructions following the extension instruction are stalled until

the Extension is near completion, in the EXn-1 cycle.

The RISC pipeline imposes micro-architectural constraints on

the extension logic, for instance in the arbitration for access to

the register file and other resources. The extension logic needs

to read and write the register file and access the memory

management unit (MMU). M2V automatically schedules all

resource accesses in the extension logic to avoid conflicts with

the primary RISC pipeline. Thus, register writes must be delayed

by the Extension until previous instructions are retired and

register reads must finish a couple of cycles before the trailing

instructions get to the ID stage. As a specific example, consider

the case in Figure 3 when the extension instruction is in the EX1

cycle of execution, instruction m-1 is in the MA pipeline stage

and so instruction m-1 has access to the MMU. Instruction m-2

is in the WB pipeline stage and it has control of the register file

write ports. The extension instruction does not have control of

all the resources until stage EX3 when the previous instructions

have been retired.

Opcode_name rt, rs, immediate

31:26 25:21 20:16 15:0

opcode rs rt immediate

Figure 4. The MIPS “I” format encoding.

The eMIPS processor has been implemented on Xilinx Virtex 4

FPGAs using the ML401 and ML402 evaluation boards. The

partial reconfiguration capabilities of this FPGA model allow

software to load dynamically the hardware for the instruction

extensions.

4. INSTRUCTION ENCODING
An extension instruction is an instruction that is not part of the

base ISA of the eMIPS processor. It is inserted in the instruction

stream for the specific purpose of triggering an Extension. If the

Extension is present and active, it recognizes the instruction and

takes over execution. Otherwise the instruction is treated as a

NOP and execution continues with the original basic block. In

this section we describe how we automatically generate the

extended instruction encodings.

In general, an Extension is free to use the instruction bits in any

way, provided that the top 6 bits use an invalid opcode. The

implementation of the eMIPS decoder presents an opportunity

for optimization. By default, the decoder expects "I” format

instructions (Figure 4) and fetches the corresponding rs and rt

registers in advance. If the extended instruction uses this format

it can make use of those two registers immediately, without any

penalty.

The input to the M2V compiler are block descriptions in the so-

called BBW text file format. BBMatch is a program, part of the

BBTools framework, used for creating BBW source files

automatically, from a MIPS executable file. A second tool reads

the BBW file and applies it to a MIPS ELF binary image. For

each basic block that matches the BBW file the tool inserts the

corresponding extended instruction before the block itself. The

BBW description is actually a constrained pattern of canonical

instructions, it will match any sequence with a compatible

register assignment. For the example in Figure 5, the BBW file

might say that rx=R1 and ry=R2. Any sequence of the two

instructions OR+SLLV is a candidate for matching. An actual

match might require R3=3, … R6=6, but allow any register

number in the R1-R2 positions. Alternatively, it might require

that R3=ry+1, R4=ry+2, etc etc.

[0] ext0 rx, ry, offset

[4] or r5, r1, r2

[8] sllv r6, r3, r4

Figure 5. The choice of rx and ry in this basic block affects

the performance of the generated Extension.

The selection of the registers to encode in the extension

instruction plays an important part in the schedule that M2V will

generate for the Extension. This is illustrated by the simple

example basic block shown in Figure 5. The cost of the OR and

the SLLV instructions in the basic block are 1 and 0 cycles

respectively. We shall consider two cases to illustrate the

importance of encoding the correct registers. M2V generates the

circuit graphs shown in Figure 6 for two different encodings of

the extension instruction. A circuit graph [13] is essentially a

Control and Data Flow Graph [4] decorated with the costs of

operations and the resulting execution schedule. In the graphs,

the clock cycle when the respective node completes is depicted

next to the node. The graphs show that though the number of

states in the Extension remains the same, the number of clock

cycles taken by the Extension to execute the set of instructions

differs based on the encoding of the registers.

Considering the first case, registers R1 and R2 are encoded, thus

making them available directly in stage 2 of the extension state

machine. The OR instruction can be executed immediately, and

will complete in cycle 1 since the Extension has all the registers

available and no unmet dependencies. However, the SLLV

instruction requires both source registers to be read from the

register file, which takes 4 clock cycles. This causes the SLLV

instruction to complete in cycle 4. A pipeline stage is inserted by

the extension state machine after execution of the instructions at

cycle 4. The two register write-backs are performed after the

pipeline stage, in cycle 5 (R5) and cycle 6 (R6). Thus, the

Extension requires 6 cycles to complete execution with this

encoding.

Considering the second case, registers R1 and R3 are encoded.

In this case, none of the instructions can be executed directly as

both have unmet dependencies and require register reads from

the register file. Assuming there are at least two read ports in the

register file, the OR instruction completes after 5 cycles, 4

cycles for reading register R2 and 1 cycle for execution.

Similarly, the SLLV instruction completes execution in cycle 4.

Again, a pipeline stage is inserted after execution of the instruct-

RF

Read

R1

RF

Read

R2

RF

Read

R3

RF

Read

R4

SLLVOR

RF

Write

R5

RF

Write

R6

cyc 1

cyc 4cyc 4

cyc 4

cyc 5 cyc 6

Case (i): Extension instruction encoded with R1, R2

Key:

State 3

State 2

State 1

State 4

RF

Read

R1

RF

Read

R4

SLLVOR

RF

Write

R5

RF

Write

R6

RF

Read

R3

RF

Read

R2

cyc 4 cyc 4

cyc 4cyc 5

cyc 6cyc 7

Case (ii): Extension instruction encoded with R1, R3

Figure 6. Circuit graphs for the block in Figure 5, using

different encoding schemes.

tions in cycle 5. The register write-backs are performed in cycle

6 (R6) and cycle 7 (R5). Thus the Extension requires 7 cycles to

complete execution with this encoding. In this minimal example,

a two instruction basic block shows a difference of 1 execution

cycle depending on the selected encoding. The encoding scheme

will have a greater impact on the execution time when there are

long latency paths in the basic block.

4.1 Register Selection Algorithm
The encoding algorithm uses two main parameters in selecting

the rs and rt registers – fan-out and depth of the root register

read nodes. Fan-out is the number of instructions dependent on

the root register read node. Depth is a count of the register nodes

and the cost of the instruction nodes till a dependency is met in

the graph. Using the circuit graphs in Figure 6, all the root

nodes, R1, R2, R3 and R4 have a fan-out of 1. For the depth

calculation, all the registers have a dependency at the instruction

nodes, with the only differentiating factor being the cost of the

OR instruction node compared to the SLLV instruction node.

This gives the depth of registers R1-R2 as 2 and R3-R4 as 1.

The algorithm takes the sum of the fan-out and depth of the

register nodes and encodes the nodes with the maximum value.

In the previous example, the nodes encoded by the algorithm

would be R1 and R2, which is the best encoding scheme as seen

from the circuit graphs in Figure 6.

Other algorithms are possible. The total number of general-

purpose registers is limited though abundant in MIPS, and the

calling convention further restricts the number of maximum

potential roots in any practical dependency graph. It is therefore

practical to perform a brute-force exhaustive search for the

selection with the optimal cycle count. The worst-case number

of alternatives for a processor with N usable registers is
𝑛 𝑛−1

2

or 465 for MIPS. We will explore this alternate approach when

the compiler has full code coverage.

PCLK

MADDR

MOE

MWE

CTR

MDATA

VLD

MDATA

IN

MDATA

OUT

ADDR A ADDR B

{BLS,HLS,RNL} {BLS,HLS,RNL}

DATA A DATA B

Figure 7. Memory Write Protocol.

5. MEMORY ACCESS SUPPORT
It is well known in the literature that the lack of load and store

operations leads to limited speedups from hardware acceleration.

The operations are not only important for performance, but in

our experience they are almost always present in the most-

frequently executed basic blocks of an application, precisely the

blocks that M2V wants to accelerate.

The eMIPS architecture allows for Extensions to access memory

through the MMU just like the main MIPS processor data path.

The MMU is part of the Trusted ISA portion of the eMIPS

processor. The MMU is the only path to memory available to

general, untrusted Extensions. To ensure correct execution of the

memory instructions, the Extension must obey the memory

protocol shown in Figure 7 for a write case. In both the read and

write protocols, the MDATA_VLD signal serves as an indicator

that the memory request is acknowledged by the controller. The

signal indicates when the data is available from, or to be written

to memory. The M2V compiler implements the protocols in

Verilog, in the form of a memory state machine. The memory

state machine is then integrated into the existing extension state

machine. M2V maintains an array of memory operations in a

particular state that is integrated into the extension state

machine. Once the Extension transitions from one state to a state

with a memory operation, the memory state machine is

activated.

On the rising edge of the Pipeline CLK (PCLK), the address is

latched onto MADDR signal and the Memory Output Enable

(MOE) signal is raised in case of a read or the Memory Write

Enable (MWE) is raised in case of a write. MDATA_VLD then

falls down once the memory request is acknowledged, and the

memory state machine moves onto the next state, waiting for the

MDATA_VLD to go high, indicating the availability of the data

in MDATA_IN for a read or completion of the write for a write

operation.

When a state involves a memory access, the main extension state

machine waits on the completion of the memory state machine

and transitions to the next state when all operations (e.g. register

and memory reads and writes) for that state are completed.

6. INTERRUPT SUPPORT
We have modified the M2V compiler to handle interruptions

while the processor is executing in the Extension. Interruptions

can be due to three different sources, but we will use the single

term “interrupt” to indicate any and all of them. Our approach

handles all cases in the same manner. The first cause of

interrupts is address translation misses and errors in the MMU

while the Extension is trying to access memory. A second cause

is actual interrupts from peripherals such as timers and I/O

devices. A third cause of interrupts is the case of errors inside

the Extension, such as unaligned addresses and overflows. We

use a transaction model based approach to handle all interrupts

in the Extension.

The basic block to be accelerated is analyzed and divided into

“transactions”. A transaction is a set of instructions that

terminate just before a memory instruction. Even in the event the

basic block has no memory operations, there is still a maximum

number of cycles allowed before interrupts are permitted. The

maximum number of operations in a particular transaction is

user-selectable, default is 7. Future work should consider the

actual latency/cost of the instructions rather than an arbitrary

number of instructions. The maximum transaction size should

still be user-selectable because it affects the interrupt latency of

a real-time system.

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

Transaction 1

Transaction 2

Transaction 3

Figure 8. Example basic block, divided in transactions.

The Extension must correctly indicate to the TISA what the re-

start address is, e.g. after the software interrupt handler returns.

This address is termed the Virtual PC (VIRPC), as the Extension

is keeping track of the PC as seen by the MIPS pipeline, even

though the Extension has no concept of instruction fetch or

instruction ordering. The VIRPC address simply corresponds to

the start of each transaction in the original basic block.

We illustrate the subdivision of a basic block in transactions

with an example in Figure 8. Transaction 1 terminates once the

load instruction ([c]) is encountered. Transaction 2 is terminated

at the end of the maximum allowed 7 instructions in the

transaction. The remaining instructions are part of transaction 3.

The basic idea behind the transactions scheme is to preserve the

original program order, while at the same time allowing for

more optimistic and more parallel execution inside the

Extension. We decided to be very conservative in this first

implementation and to leave more aggressive optimizations for

future work. The Extension will recognize an interrupt at the

next transaction boundary should an interrupt occur during the

Extension‟s execution. Any write-backs that are due to a

subsequent transaction are aborted.

The transaction model is used to perform write backs in-order,

but from the abstracted viewpoint of a transaction, that is, the

write backs in transaction 1 must complete prior to any write

backs in transaction 2. However, the write backs inside a

particular transaction can be performed out of order. This limits

the parallelism generated by the circuit graph to some extent by

imposing the restriction of performing certain write backs in

order. We perceive this to not be a huge problem as the eMIPS

TISA interface allows for two register writes every cycle, thus

decreasing the possibility of bottlenecks at the register file.

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

T1

T2

T3

9 Writebacks to the RF 6 Writebacks to the RF

Transactional Model No interrupt handling

Figure 9. Overhead of handling interrupts.

Figure 9 illustrates the overhead in terms of register write-backs.

In the case of generating hardware without the support of

interrupts only 6 write-backs are necessary to the register file. It

can be clearly seen that further optimizations can be applied to

this basic transaction model. By just terminating Transaction 2

an instruction before or after would have reduced the number of

write-backs by 2. This would have ensured only one extra write-

back in the transactional model approach.

M2V uses transactions registers to keep track of the current

transaction being written back for a particular state of the

Extension. When the Extension encounters an interrupt, the

extension state machine checks to see if the current state of the

Extension is an end of a transaction or not. If it is an end of a

transaction, the VIRPC is updated to reflect the address of the

start of the next transaction and the extension state machine is

stalled in that state. The Extension then waits for the resources

to be taken away by the pipeline arbiter and the Enable and

Grant signal to go low. Once the enable goes low, the Extension

lowers the ACK signal to signal the end of the Extension at that

transaction. The program then re-starts execution from the

VIRPC address on the main MIPS processor, with the registers

and other structures in the correct state.

7. RESULTS
The design generated by the M2V compiler was synthesized

using the Xilinx ISE tools. With the transactional model

enabled, the percentage of total slices used increased from 3% to

4%, compared to the base version of M2V with memory

support. This is because of the extra registers used in the

transactional model and the extra state machine required to track

the transactions during execution. Overall, the added complexity

from interrupts causes a penalty in area utilization. This extra

cost is balanced almost exactly by the improvements in the new

data path interface of the current eMIPS implementation over

the one presented in [13]. There is no penalty in frequency.

Table 1. M2V code coverage test results

No. files 325

No. blocks 146,057 Percent Total

Compiled ok 25,029 17.1%

Warnings 44,800 30.7%

Failures 76,228 52.2%

We tested the changes to the compiler with the example basic

block shown in Figure 8. The basic block is a 64-bit division

block with an extra memory instruction (load from the stack

pointer) inserted to test the working of memory accesses. To test

interrupt handling, we generated timer interrupts at short

variable intervals. The Extension was simulated using

ModelSim and the test program simulation was run in Giano.

The test program checked over 500 test vectors for the 64-bit

division and the test passed successfully in all cases. The

Extension always reported the correct Virtual PC (VIRPC)

address and the transactional state machine worked as designed.

To test for code coverage, we ran the BBMatch and the M2V

compiler on 325 executable files from the code base of the

MMLite RTOS [16]. BBMatch had 100% coverage and

extracted and encoded about 150,000 blocks from these files.

We then ran M2V on the extracted blocks. The results are shown

in Table 1. The large number of failures is due to a small

number of still unsupported instructions, especially JAL, BLTZ,

BGEZ, MULT, DIV, SLLV, and SRLV. This work is in

progress but M2V is already useful even without them.

8. CONCLUSIONS
We have modified the eMIPS tool chain to remove the last

remaining obstacles for a fully-automated generation of

hardware accelerators. By supporting load and stores, interrupts,

and the automatic encoding of extended instructions the

compiler can now attack the single-block cases of practical

applications. Code coverage is already 50% of the blocks in

more than 300 executable files, with only a few unsupported

instructions responsible for most of the failures. The addition of

interrupt support to the M2V compiler is especially relevant

because there is now no limit to the span of an accelerator, even

in a general-purpose environment. An arbitrarily long sequence

of instructions can be accelerated, without concerns for security

or real-time responsiveness.

Support for interrupts in the compiler causes the loss of a little

amount of parallelism, because of the in-order write-backs

requirement. Using a transactional model mitigates this effect.

Performing two write-backs to the register file in every cycle of

the Extension further mitigates this effect. The overhead of

transactions would be minimal in the case of large basic blocks

with a large number of extension states.

9. REFERENCES

[1] Almeida, O., et al. Embedded Systems Research at

DemoFest’07. Microsoft Research Technical Report MSR-

TR-2007-94, July 2007.

[2] Altera Corp. Excalibur Embedded Processor Solutions, „05.

[3] Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L.

Performance and Energy Benefits of Instruction Set

Extensions in an FPGA Soft Core VLSID‟06, pag. 651-656

[4] Bonzini, P., Pozzi, L. Code Transformation Strategies for

Extensible Embedded Processors CASES‟06.

[5] Forin, A., Lynch, N., L., Pittman, R. N. eMIPS, A

Dynamically Extensible Processor. Microsoft Research

Technical Report MSR-TR-2006-143, October 2006.

[6] Hennessy, J. L., Patterson, D.A. Computer Organization and

Design: The Hardware/Software Interface. Morgan

Kaufmann Publishers, San Francisco, CA. 1998.

[7] Kane, G., Heinrich, J. MIPS RISC Architecture. Prentice

Hall, Upper Saddle River, NJ. 1992.

[8] Kastner, R., Kaplan, A., Ogrenci Memik, S. Bozorgzadeh, E.

Instruction generation for hybrid reconfigurable systems

TODAES vol. 7, no. 4, pagg. 605-632, October 2002.

[9] Lau, D., Pritchard, O., Molson, P. Automated Generation of

Hardware Accelerators with Direct Memory Access from

ANSI/ISO Standard C Functions. FCCM’06, pagg. 45-54,

April 2006.

[10] Stretch, Inc. http://www.stretchinc.com 2006.

[11] Tensilica, Inc. http://www.tensilica.com, 2006.

[12] Xilinx Inc. Virtex 4 Family Overview. Xilinx Inc., June

2005.

[13] Meier, K., Forin, A. MIPS-to-Verilog, Hardware

Compilation for the eMIPS Processor, MSR-TR-2007-128,

Microsoft Research, WA, September 2007.

[14] Mittal, G., Zaretsky, D.C., Xiaoyong Tang, Banerjee, P. An

overview of a compiler for mapping software binaries to

hardware IEEE VLSI, 2007.

[15] Chandrasekhar, V., Forin, A. Mining Sequential Programs

for Coarse-grained Parallelism using Virtualization, MSR-

TR-2008-113, Microsoft Research, WA, August 2008.

[16] Available at http://research.microsoft.com/invisible/

[17] Available at

http://research.microsoft.com/research/EmbeddedSystems/Giano

/giano.aspx

http://www.stretchinc.com/
http://research.microsoft.com/invisible/
http://research.microsoft.com/research/EmbeddedSystems/Giano/giano.aspx
http://research.microsoft.com/research/EmbeddedSystems/Giano/giano.aspx

