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17.3 A Current-Saving Match-Line Sensing Scheme 
for Content-Addressable Memories
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A Content-Addressable Memory (CAM) searches for data by its
content and returns the address of the matching data. This fea-
ture is used extensively in applications such as internet routers
to channel incoming packets towards their destination address-
es contained in the packet header. Energy per search and search
speed are two important metrics used to evaluate CAM perfor-
mance [1]. A current-saving match-line (ML) sensing scheme is
proposed that substantially reduces the energy per search with-
out compromising search speed. The proposed sensing scheme
consumes only 1.3fJ/bit/search, a 60% power reduction compared
to previously reported sensing schemes [2,3], to achieve a search
time of less than 2ns in a 256x144b array implemented in a
0.13µm CMOS process.

Figure 17.3.1 shows a general CAM architecture where search-
lines (SL) run perpendicular to MLs. The search data is presented
to the SLs which are connected bit-by-bit to all the words stored in
the memory. A NAND-based ML architecture is well known [4] for
its low power consumption (due to switching of only one ML) and
relatively long search time (due to having several transistors in
series). In contrast, a NOR-based CAM provides a much faster
search by pulling down a precharged-high ML through parallel
NMOS transistors that form the NORs. This speed however comes
at the price of higher switching activities of the MLs, i.e., all MLs
are charged to VDD and then to ground.

Figure 17.3.2 shows the circuit details of the current-saving ML
sensing scheme. To explain the circuit operations of this scheme,
ignore the effects of the current-saving block and assume the
VAR node is grounded [2]. Prior to a search operation, search
data is applied to the SLs while all MLs are precharged to
ground and all 'sn' nodes are precharged high. A CAM search
begins by lowering ML_EN and allowing the PMOS transistors
to provide identical currents (IML) to all MLs. An ML0 (ML with
no mismatch) is charged faster than any ML having a one-bit
mismatch (ML1) or more (MLn for an ML with n-bit miss). When
the Dummy ML (DML, equivalent to an ML0) reaches the
threshold voltage of the NMOS transistor (VTn) in the ML sense
circuit, the 'sn' node is discharged, flagging ML_EN to turn off all
current sources, hence preventing further power consumption in
the array. The signal of the DML is slightly delayed, in fact, to let
ML0 go above the threshold voltage (VTn) while all other MLs
stay below VTn. Without the current-saving block, this architec-
ture consumes power uniformly-distributed across the MLs.
That is, all MLs will consume the same amount of power inde-
pendent of the number of mismatches in the ML. The current-
saving block is added to reduce the power consumed by the MLs
having one-bit miss or more. This is achieved through dynami-
cally allocating less current to slower-rising MLs as next
described.

The VAR node is precharged to ground to guarantee all MLs ini-
tially receive the same level of current. This node is then gradu-
ally pulled up by a threshold current (ITh) or pulled down by a
current proportional to the ML voltage (Isink). In case of an ML0
(or DML), Isink is initially less than ITh, but gradually rises above
ITh, pulling VAR to ground and providing a maximum IML to the
corresponding ML. In case of an ML1 (or MLn with n higher than
1), Isink remains less than ITh, allowing the difference to charge
VAR and cut off IML to the corresponding ML.

Figures 17.3.3 and 17.3.4 show the simulation results of the cur-
rent-saving ML sensing scheme. Figure 17.3.3 compares the volt-
ages developing on ML0 and ML1, both initially at ground. In
less than 0.5ns, VAR0 and VAR1, corresponding to ML0 and
ML1, respectively, begin to separate, helping ML0 to rise faster
than ML1. In less than 2ns, the voltage difference between ML0
and ML1 reaches at least 200mV. This is far larger than any
threshold-voltage mismatch of the NMOS transistors signaling a
global shut-down of all current sources with ML_EN. Figure
17.3.4 illustrates the current supplied to the MLs during the
search operation. The amount of current saving increases monot-
onically with the number of mismatches in a ML. This current
saving reaches nearly its maximum for ML7, for which the total
charge delivered by the current source is 48% less than the total
charge delivered to ML0. All other MLs (MLn with n > 7) save
similar amounts of current as ML7.

To verify the circuit operation under various process conditions,
Fig. 17.3.5 shows the comparison of the voltage developed on
ML0 with the voltage developed on a 'fast' ML1 (ML1f). To model
an ML1f, its capacitance is reduced by 20% to 0.8CML and the size
of its corresponding PMOS transistor is increased by 20% to
1.2WML. As seen in the figure, ML1f does rise faster than ML0
initially, but falls below ML0 by at least 160mV in less than
2.5ns, producing correct search results. This is made possible
partly by increasing ITh in Fig. 17.3.2 through three programma-
ble bits (provided off-chip) and partly by ensuring that under all
process conditions, the product of IML (max) and the resistance to
ground of ML1 is less than the minimum VTn. This guarantees
that the voltage of an MLn with n ≥ 1 never reaches VTn.
Increasing ITh, however, decreases IML, hence increasing the
search time by 50% to 3ns.

To compare the energy saved in the proposed scheme versus
those of the conventional precharge-high scheme and the cur-
rent-race scheme, all three methods are simulated in an array of
256 rows by 144b. Figure 17.3.6 shows that the current-save
sensing scheme cuts the energy/bit/search by 60% when com-
pared to the precharge-high scheme and by 40% when compared
to the current-race sensing scheme.

The proposed scheme is implemented along with current-race
sensing scheme in an array of 256x144b for direct comparison of
search speed and search energy in a 1.2V, 0.13µm CMOS process.
The testchip layout, having a total area of 1.6mmx1.8mm, is
shown in Fig. 17.3.7.
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Figure 17.3.1: CAM ML architectures. Figure 17.3.2: Current-saving match-line sensing scheme.

Figure 17.3.6: NOR architecture: energy-per-search comparison.
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Figure 17.3.3: Voltage development on ML0 (fully-matched) and ML1
(one-bit miss).

Figure 17.3.4: Current supplied to ML0, ML1,...,and ML7. (MLn is an
ML with n-bit mismatch).

Figure 17.3.5: Simulation results comparing the voltage on a typical
ML0 against the voltage on a fast-rising ML1 (worst-case one-bit miss).
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Figure 17.3.7: Chip Layout.
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Figure 17.3.1: CAM ML architectures.
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Figure 17.3.2: Current-saving match-line sensing scheme.
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Figure 17.3.3: Voltage development on ML0 (fully-matched) and ML1 (one-bit miss).
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Figure 17.3.4: Current supplied to ML0, ML1,...,and ML7. (MLn is an ML with n-bit mismatch).
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Figure 17.3.6: NOR architecture: energy-per-search comparison.
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Figure 17.3.7: Chip Layout.
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