
2224 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 10, OCTOBER 2007

A 3.2 Gb/s CDR Using Semi-Blind Oversampling
to Achieve High Jitter Tolerance

Marcus van Ierssel, Member, IEEE, Ali Sheikholeslami, Senior Member, IEEE, Hirotaka Tamura, Member, IEEE,
and William W. Walker, Member, IEEE

Abstract—A hybrid CDR is presented that embeds a 5
blind-oversampling CDR within a conventional phase-tracking
CDR. This hybrid CDR has a jitter tolerance that is the product
of the individual jitter tolerances. In this implementation, the
jitter tolerance of a phase-tracking CDR alone is increased by
a factor of 32 at frequencies below its loop filter’s bandwidth,
while maintaining the high-frequency jitter tolerance of a 5
blind-oversampling CDR. Measured data from a 0.11 m CMOS
test chip at 2.4 Gb/s confirm a 200 UI peak-to-peak jitter toler-
ance for a 200 kHz jitter. The test chip operates from 1.9 Gb/s
to 3.5 Gb/s with a BER less than 10 11, consuming 115 mW at
2.4 Gb/s.

Index Terms—Blind oversampling, clock and data recovery
(CDR), jitter tolerance, oversampling, phase tracking.

I. INTRODUCTION

J ITTER tolerance refers to the maximum amplitude of
sinusoidal jitter (as a function of frequency) that can be

tolerated without causing data recovery errors. High jitter
tolerance is essential to applications such as spread-spectrum
clocking [1], [2] where the clock embedded in the received data
can deviate from its nominal phase by as many as a few hundred
UI. Increased jitter tolerance also introduces flexability into
the tradeoff between jitter tolerance, transfer, and generation.
The traditional phase-tracking CDR has a jitter tolerance that is
inversely proportional to jitter frequency, within the bandwidth
of its loop filter [3]. While increased jitter tolerance can be
achieved through increased loop bandwidth, this may not be
practical due to loop stability concerns, and increased jitter
transfer [4].

Instead of increasing the loop bandwidth, one alternative is
to change the CDR architecture. In [5], an analog phase shifter
(DLL) is embedded within a phase-tracking CDR. This DLL
absorbs jitter before it reaches the CDR, allowing it to operate
under jitter conditions that would cause a conventional phase-
tracking CDR to fail. Such an architecture can increase the jitter
tolerance by factor equal to the phase-shift range of the DLL.
However, DLLs have a limited phase shift range, only 2–3 UI
in this implementation.

Manuscript received October 4, 2006; revised February 28, 2007.
M. van Ierssel and A. Sheikholeslami are with the Department of Electrical

Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada (e-mail:
vane@eecg.toronto.edu; ali@eecg.toronto.edu).

H. Tamura is with Fujitsu Laboratories Ltd., Kanagawa 223-8522, Kawasaki,
Japan.

W. W. Walker is with Fujitsu Laboratories of America, Inc., Sunnyvale, CA
94085 USA (e-mail walker@fla.fujitsu.com).

Digital Object Identifier 10.1109/JSSC.2007.905233

Fig. 1. CDR jitter tolerance.

We propose to expand this phase shift range by substituting
the analog phase shifter (DLL) with a digital phase shifter, in the
form of a blind-oversampling CDR [6]. We refer to this hybrid
combination of phase tracking and blind-oversampling CDRs
as a semi-blind oversampling CDR [7]. As shown in Fig. 1,
the semi-blind oversampling technique produces a jitter toler-
ance, , equal to the product of the phase tracking jitter
tolerance, , and the blind oversampling jitter tolerance,

, thereby increasing the low-frequency jitter tolerance
by the phase shift range (32 UI in our design). This paper pro-
vides the theory and detailed implementation of this technique,
as well as measured results for a design that was fabricated after
the publication of [7].

To provide context for our proposed semi-blind oversam-
pling technique, Section II derives the jitter tolerance of a
phase-tracking CDR and that of a blind-oversampling CDR.
Section III conceptually describes the proposed semi-blind
oversampling CDR, and derives equations for its jitter toler-
ance. Section IV describes the implementation of the semi-blind
oversampling CDR. The simulated and measured results of
its implementation are then discussed in Section V. Finally,
Section VI summarizes the contributions of this work.

II. JITTER TOLERANCE IN THE PHASE-TRACKING

AND BLIND-OVERSAMPLING CDR

A. Phase-Tracking Jitter Tolerance

A phase-tracking CDR employs feedback to keep the recov-
ered clock in phase with the clock embedded in the received
data, as shown in Fig. 2. The recovered clock is then used to
sample (recover) received data using a sampler. Under ideal

0018-9200/$25.00 © 2007 IEEE

VAN IERSSEL et al.: A 3.2 Gb/s CDR USING SEMI-BLIND OVERSAMPLING TO ACHIEVE HIGH JITTER TOLERANCE 2225

Fig. 2. Phase-tracking CDR.

Fig. 3. Jitter tolerance of a phase-tracking CDR under ideal conditions.

conditions, with no ISI or clock jitter, error-free data recovery is
achieved when the received data is sampled within 1/2 UI of the
nominal sampling point—the center of the data eye. In terms of
the input clock phase, , and the recovered clock phase, ,
the condition for error-free data recovery is expressed as

(1)

The jitter tolerance of this CDR is the largest sinusoidal am-
plitude of that satisfies (1). For a charge-pump CDR using a
series RC filter [8], the phase transfer function can be written as

(2)

where is the Laplace transform of .
Combining (2) and (1) and solving for twice the largest am-

plitude of , we derive the peak–peak phase-tracking (PT)
jitter tolerance:

(3)

In a critically damped loop, the jitter tolerance has two poles
at the origin and two zeros at , as pic-
torially shown in Fig. 3. For this type of CDR, the only way to
increase the jitter tolerance is to increase , moving the toler-
ance curve to the right. However, as in all closed-loop feedback
systems, increasing degrades the stability of the loop [4].

Instead of increasing , the semi-blind oversampling CDR
proposed in this paper achieves a higher jitter tolerance by
embedding a blind-oversampling CDR within a phase-tracking

Fig. 4. Blind-oversampling CDR.

CDR. In Section II-B, we examine the jitter tolerance of a
blind-oversampling CDR.

B. Blind-Oversampling Jitter Tolerance

Unlike the phase-tracking CDR, the blind-oversampling
CDR does not attempt to track the clock embedded in the
received data. Instead, it oversamples the received data using a
local clock uncorrelated with the embedded clock. As shown in
Fig. 4, this feed-forward architecture determines the embedded
clock phase from the transitions in the samples. The recovered
phase is then used to select (down-sample) the data bits within
a window of oversampled data. These bits then enter an elastic
FIFO. For every additional bit period that the local clock lags
the embedded clock, an additional bit must be delayed (stored)
by the FIFO. This makes the occupied FIFO depth proportional
to this phase difference with a resolution of 1 UI, a property
which will be exploited later for inter-bit phase-detection.

Blind-oversampling has an important feature that we exploit
to overcome the sampling restriction (1) of the phase-tracking
CDR. Because phase detection and data selection occur after
sampling, there is no longer an inherent restriction on the phase
difference between the local clock and the clock embedded in
the received data. These clocks may differ by many UI, as long
as the FIFO is large enough to absorb the difference.

While this CDR has no inherent limit on the phase difference,
there is a limit of the rate of phase change. The phase change
between transitions in the received signal must be less than 1/2
UI, otherwise it becomes impossible to identify the number of
symbols between transitions. Because oversampling quantizes
the phase, this translates to a maximum phase change of 2/5 UI
between transitions for 5 oversampling.

The jitter tolerance of a blind-oversampling CDR with a 5
oversampling ratio is illustrated in Fig. 5, where the tolerable
sinusoidal jitter amplitude is plotted as a function of jitter
frequency. At high jitter frequencies, the jitter period is much
smaller than the time between transitions, (upon which
the phase detector relies), hence a transition might not occur
during one jitter period. At these frequencies, the jitter tolerance
is 2/5 UI peak-to-peak.

As the jitter-frequency decreases, the CDR begins to track
phase changes in the received signal not exceeding 2/5 UI be-
tween transitions, or

(4)

To find the resulting jitter tolerance, we apply a sinusoidal
jitter source, (in radians), to the
CDR, where is the jitter amplitude in units of UI. Inserting

2226 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 10, OCTOBER 2007

Fig. 5. Blind-oversampling CDR jitter tolerance.

this into (4) and maximizing the derivative gives the following
condition for the jitter amplitude:

(5)

This relation shows that the maximum jitter amplitude is a
function of the time between transitions. We must satisfy (5) for
all possible values of , including the worst-case of

, where is the runlength of the input sequence and is the
bit time. Therefore, the peak–peak Blind-OverSampling (BOS)
jitter tolerance becomes

(6)

The jitter tolerance thus increases at 20 dB/decade, with de-
creasing frequency, until the CDR’s FIFO becomes saturated.
At and below this frequency, the peak jitter tolerance remains
constant and equal to the FIFO size.

III. PROPOSED SEMI-BLIND OVERSAMPLING CDR

The contribution of this work is the use of the blind-over-
sampling CDR to overcome the sampling time restriction of the
phase-tracking CDR, as described by (1). This is illustrated in
Fig. 6, where a blind-oversampling CDR replaces the sampler in
a phase-tracking CDR. We term this hybrid design a semi-blind
oversampling CDR, as the local clock used for oversampling
is no longer blind, but instead tracks phase change within the
bandwidth of the phase-tracking loop. However, where a phase-
tracking CDR has to maintain a phase difference between re-
ceived and local clocks of less than 1/2 UI, as specified in (1),
the new phase detector allows a phase difference equal to the
peak jitter tolerance of the blind-oversampling CDR, or

(7)

This is similar to the embedding of a DLL inside a PLL
as described in [5], in which an analog phase-shifter shifts
the phase of the received signal before it is applied to a con-
ventional phase-tracking CDR. This approach increases the
allowable phase-difference between the recovered and em-
bedded clocks by an amount equal to the tuning range of the
analog phase-shifter, which is limited to approximately 2 UI. In
contrast, our design uses a blind-oversampling CDR as a digital
phase-shifter that increases the allowable phase-difference by
an amount equal to its FIFO size. Since the FIFO size can be

Fig. 6. Semi-blind oversampling CDR.

Fig. 7. Semi-blind oversampling CDR jitter tolerance.

chosen by the designer, the allowable phase-difference becomes
merely another design parameter.

Combining (7) with the phase transfer function of the phase-
tracking CDR, (2), and solving for twice the maximum value of

, we obtain the peak–peak jitter tolerance of this Semi-
Blind OverSampling (SBOS) CDR:

(8)

(9)

Thus, the jitter tolerance is the product of the blind-oversam-
pling and phase-tracking tolerances, as shown in Fig. 7. Because
the jitter tolerance of the blind-oversampling CDR at low fre-
quencies saturates at the FIFO size, the resulting jitter tolerance
at these frequencies is a factor of the FIFO-size higher (32 in our
implementation) than that of the conventional phase-tracking
CDR.

While this hybrid architecture increases the jitter tolerance
of the phase tracking CDR, it does so with little effect on jitter
transfer and jitter generation. The jitter transfer characteristic
remains that of the original phase tracking CDR. The jitter gen-
eration characteristic also remains that of a phase-tracking CDR.
However, for small jitter amplitudes, the CDR behaves as if it
uses an early/late phase detector, while for large jitter ampli-
tudes, the multi-level phase output of the blind-oversampling
CDR (the FIFO depth) produces behaviour consistent with the
use of a linear phase-detector.

IV. DESIGN IMPLEMENTATION

Fig. 8 shows the block diagram of our semi-blind oversam-
pling CDR. A 20-phase 800 MHz VCO is used to 5 over-

VAN IERSSEL et al.: A 3.2 Gb/s CDR USING SEMI-BLIND OVERSAMPLING TO ACHIEVE HIGH JITTER TOLERANCE 2227

Fig. 8. Hybrid CDR design.

Fig. 9. VCO and samplers schematic.

sample a 3.2 Gb/s sequence. Therefore, in one period of the 800
MHz clock, we collect a total of 20 samples, corresponding to
4 UI in the received data. These 20 samples are then aligned
to a single clock edge by the retiming block and passed to the
fine-phase detector. The fine phase is the intra-bit component
(modulo 1 UI) of the phase difference between the clock em-
bedded in the received data, and the recovered clock. The fine-
phase detector uses the location of transitions within the window
of 20 samples to determine the fine phase. The fine phase is then
used by the down-sampler to pick the data bits among the 20
samples. Due to the changing fine phase, the downsampled data
size from a 20-sample window can be between 3 and 5 bits, as
explained later. This data is then written into an 8 4 elastic
FIFO where up to a total of 32 UI peak–peak jitter (the FIFO
size) is absorbed.

Since the occupied depth of the FIFO is an indication of the
phase difference between embedded and recovered clocks, the
FIFO write pointer can be used as a measure of the coarse phase.
This coarse phase is measured in integer multiples of UI and
complements the fine phase. Phase tracking in this CDR is im-
plemented by passing the FIFO write pointer (coarse phase) to a

Fig. 10. Retiming and sample voting.

5-bit DAC, which is then low-pass filtered to provide the VCO
control voltage. The loop is then closed by feeding the recov-
ered clock to the blind-oversampling component, creating a hy-
brid CDR that is no longer blind, but tracks low-frequency jitter
with higher tolerance.

Sections IV-A–G describe the detailed implementation of the
various blocks in Fig. 8.

A. VCO/Samplers

Fig. 9(a) shows the circuit implementation of the 20-phase
VCO using a 10-stage ring oscillator. Although the figure
shows single-ended signals for clarity, all signals are differen-
tial. Small extra buffers cut halfway across the ring, creating
sub-feedback loops that enable increased VCO frequency [9].
The CDR samplers are also integrated with the VCO, shown
as the small blocks marked “S” on the periphery of the ring,
eliminating the need to distribute a multi-phase clock. Once
sampling has occurred, the remaining CDR blocks use only
a single clock. Fig. 9(b) shows the transistor-level schematic
of the shaded block in Fig. 9(a). The top and bottom halves
of the schematic are mirror images of each other. In each
half, an nMOS differential pair for a main VCO buffer and a
sub-feedback buffer share common pMOS loads. The inputs of
the sub-feedback differential pairs are connected to the outputs
on the other side, while the inputs to the main VCO buffers are
driven by the outputs of the previous stages.

2228 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 10, OCTOBER 2007

Fig. 11. Fine-phase detector. (a) Block diagram. (b) Example of data sequence.

B. Retiming and Voting

The 20 samples from the VCO samplers are aligned to 20
evenly-spaced clock phases. The retiming block, shown in
Fig. 10, applies the samples to a voting block, discussed below,
and then aligns the voted samples to a single clock phase (one
of the 20), common to all other digital logic in the CDR.

The retiming block includes a 2/3 majority sample voting
block which aims to reduce the effect of noise in the input
samples. For each sample, the voting block outputs the value
shared by the majority (two or more) of a three-sample window
centered on that sample. The purpose of the voting block can
best be illustrated with an example: While the sequence of
samples “00001111” is unchanged after voting, the sequence
“00010111” becomes “00001111” after voting. This change
eliminates the extra transitions that result from noise near data
transitions. These extra transitions can upset the fine-phase
detector, and eliminating them improves the BER, as we will
see later.

C. Fine-Phase Detector Basics

The fine-phase detector determines the intra-bit clock phase,
or fine phase, based on data transitions within a window of 20
samples spanning four nominal bit periods. In general, these
transitions can occur on any of five fine phases (0 to 4, repre-
senting 0/5 to 4/5 UI), consistent with a 5 oversampling rate.
The fine-phase detector determines which fine phase within one
window is most likely to have resulted in the distribution of tran-
sitions across the 5 fine phases. This fine phase is later used to
downsample the data within that window.

A block diagram of the fine-phase detector is shown in
Fig. 11(a). The input to the fine-phase detector is the oversam-
pled and retimed window of 20 samples, . Each sample is
XORed with its preceding sample to locate the data transitions,

. The number of transitions (0–4) occurring during each

fine phase are then totalled to find the transition counts, .
The final block finds the fine phase, , which is essentially a
weighted average of the transition phases, , using the as
weights. If no transitions occur, the fine phase from the previous
window is retained.

Fig. 11(b) shows an example sequence occurring during one
window. On top, the figure shows the 20 sample-periods broken
down into four nominal bit-periods, each having five samples
with fine phases, , of 0 to 4. Under this is the sequence of
samples, , and the transitions, . The transitions occurring
on each fine phase are then added to form the transition totals,

, below. This process is illustrated for . The computation
of from these transition totals is described next.

As discussed in Section II-B, the 5 blind-oversampling
CDR can track phase changes occurring at a rate of less than
2/5 UI between transitions. Since our system uses a 2 1
PRBS sequence, the maximum runlength of the sequence is
31 bits. This results in at most 32 UI between transitions,
occurring over eight windows (of 4 UI each). Over one window,
this gives a maximum phase change of 2/5 UI divided by 8,
or 1/20 UI. Because we measure the fine phase in discrete
increments of 1/5 UI, this will usually not be measurable within
one window, and as such can be approximated as constant over
one window. As a result, we can treat each transition within
one window as a measure of the same phase with an added
component of random jitter. This allows us to construct a fine
phase probability density function (PDF)1 in the form of ,
where is the total number of transitions. The expected fine
phase, or average transition phase, can be calculated as

(10)

1Technically, this should be called probability mass function (PMF) as it ap-
plies to a discrete random variable.

VAN IERSSEL et al.: A 3.2 Gb/s CDR USING SEMI-BLIND OVERSAMPLING TO ACHIEVE HIGH JITTER TOLERANCE 2229

Fig. 12. Transition count PDFs and their ambiguity in fine phase due to phase-wrapping.

There is an ambiguity, however, in the direct application of
(10) that can result in multiple values of for the same set of

. This ambiguity is illustrated in Fig. 12 where two dif-
ferent PDFs are associated with the same set of . In each
PDF has a fine phase of 4, although occurring at two dif-
ferent coarse phases. Blindly applying (10) to both PDFs pro-
duces . However, as shown in the figure, knowledge
of the coarse phase shows that is the correct result for
PDF2.

The above ambiguity can be resolved by applying the con-
straint that the change in fine phase between two transitions
cannot exceed 2/5 UI. This constraint restricts the composite
phase of the to a 1 UI contiguous region centered around
the fine phase from the previous window. In the above example,
if the previous fine phase was 4, this would be represented by
the shaded region in Fig. 12. Given a set of and the pre-
vious fine phase, this allows only one interpretation of the re-
spective coarse phases. Only PDF2 in Fig. 12 satisfies this con-
straint. Once the correct PDF is constructed, its fine phases must
be unwrapped to reflect their relative phases. In this example,
this would mean treating the fine phases in the shaded region
as , not . After unwrapping, we can
apply (10) to determine .

While the transition detector and transition counter of
Fig. 11(a) can be implemented in a straightforward fashion,
a brute-force arithmetic approach to averaging and phase-un-
wrapping in the average transition locator results in a circuit
with a delay in excess of the short cycle times required in a CDR
operating in the Gb/s regime. To speed up the computation, we
use a slightly different viewpoint of averaging, as outlined next.

D. Fine-Phase Detector Detailed Implementation

The implementation of the average transition detector is
based on the observation that (10) can be rewritten as

(11)

Accordingly, if we define

(12)

then is a decreasing function of with a single zero at
. Therefore, if we decrease from its maximum value,

there will be an for which the sign of changes. By simul-
taneously calculating between all possible integer values

Fig. 13. g(n � �n) as a function of .

of (at 0.5, 1.5, 2.5, 3.5), we can identify (rounded to the
nearest integer value) as laying between the values of for
which changes polarity. For example, if and

, then we can conclude that .
Unfortunately, the evaluation of (12) for multiple requires

a large layout area, and results in an implementation that is still
too slow for our application. However, we can achieve a simple
and fast implementation by replacing in (12) with a mono-
tonic function,

(13)

yet maintain similar properties. The function we use, illustrated
in Fig. 13, increases by a factor of 2 on each side of .
This reduces the calculation complexity of (13) as all multipli-
cations now reduce to simple bit-shifts and, as will be shown,
partial results can be shared between the calculations for the var-
ious values of . This simplification produces almost identical
results to (12) with a few minor differences that are discussed
later.

The above substitution of allows the calculation of
with a simple implementation. Fig. 14 shows an example of

such an implementation for PDF2 in Fig. 12. It consists of five
identical blocks, one for each phase in the allowable phase re-
gion such that the phase is unwrapped with previous fine phase

at the center. Each of these blocks simultaneously con-
tributes a portion of the computation required to calculate
at all four intermediate values of .

Running up and down, partial sums from the previous block
are multiplied by two using a bit shift, and then added to the
of the local block. The resulting new partial sum is then passed
on to the next block, where the process is repeated. As a result, at
any point a from stages away is multiplied by . There-
fore, the partial sum at any point gives the contribution towards

from all the on the side of the block from which that
partial sum originated. To fully calculate , the partial sum
running in one direction is subtracted from the partial sum from
the other direction (shown by the value in brackets between par-
tial sums), keeping only the most-significant bit (MSB) to in-
dicate the polarity. The MSBs bounding each phase are then

2230 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 10, OCTOBER 2007

Fig. 14. Average transition locator implementation.

Fig. 15. Average transition locator with phase unwrapping.

XORed to generate an average fine phase output (one-hot en-
coded) where the polarity of changes.

To complete the implementation, we must ensure that the pre-
viously discussed phase-unwrapping has been performed. This
can easily be done as shown in Fig. 15 where the five stages in
the phase detector are connected in a loop. This loop is cut be-
tween blocks 1/2 UI away from the previous fine phase output
using AND gates driven by the previous one-hot fine phase. This
cut creates a 1 UI contiguous region around the previous phase,
as shown in Fig. 12(b). Once cut, the result is the 5-stage system
of Fig. 14.

To determine the loss of accuracy of a fine-phase detector
using instead of , we used a behavioural sim-
ulation written in C. This simulation compared the fine phase
outputs of phase-detectors using both methods, over all 126 pos-
sible unique combinations of one to four transitions. The results
matched in all but eight cases. Of these mismatches, two were
pathological transition counts that do not happen during normal

operation. Another three cases were boundary cases where the
fine phases lay exactly halfway between discrete fine phases and
could be rounded to one side or the other with identical rounding
errors. The final three cases represent a phase-detection error of
1/30 UI. For these three cases, the tracking ability of the blind
oversampling drops from 2/5 UI to (2/5 1/30) UI between
transitions. The reduction in tracking ability translates to a pro-
portional decrease in the high-frequency jitter tolerance, due to
the blind-oversampling component described in Section II-B.
However, it has no effect on the low-frequency jitter tolerance
where the FIFO is saturated and the blind-oversampler is no
longer limited by the rate of phase-change. The loss at high-fre-
quencies is a small price given the increased bit-rate permitted
by the simplified implementation.

Despite its simple and fast architecture, the average transition
locator shown in Fig. 15 is still the speed bottleneck of the CDR.
The critical path starts at the register generating the old fine
phase, , then proceeds to the AND gates which cut the loop of
partial-sum blocks. It then goes through these blocks and comes
out as the new fine phase, , going back to the register. While
the average transition locator is bracketed by pipeline stages, as
shown in Fig. 11(a), the critical path described above cannot be
pipelined, limiting the current implementation to a bit-rate of
3.5 Gb/s.

E. Downsampler

The downsampling block, shown in Fig. 16, selects the data
bits amongst the 20 samples in a window, guided by the fine
phase. Four 5–1 multiplexers then provide 5 downsampling,
using the fine phase to pick the sample in the center of the data
eye, which is 0.5 UI, or 2.5 samples, from the average transition
location.

Under typical conditions, we downsample only 4 bits from
the 20 samples. However, depending on the relationship be-
tween the sampling phases of the current and previous windows,
there exist 6 cases (among a total of 25) for which we must
pick an additional bit or drop a bit, ending up with 3 or 5 bits.
The graph on the left side of Fig. 17 shows the downsampled

VAN IERSSEL et al.: A 3.2 Gb/s CDR USING SEMI-BLIND OVERSAMPLING TO ACHIEVE HIGH JITTER TOLERANCE 2231

Fig. 16. Downsampler.

Fig. 17. Data-selection implementation.

data-size as a function of the current and previous sampling
phase. On the right side of Fig. 17 are three examples showing
the different downsampled data sizes. The different sizes
arise due to the sampling phase drifting across the boundary
between sample windows. When the sampling phase drifts
forward across this boundary, as shown in the bottom example,
an oversampled data-bit straddling the window boundary is
demultiplexed twice-once in each window. When this happens,
we drop a bit. When the sampling phase drifts backward across
this boundary, as shown in the top example, the bit straddling
the window boundary is not demultiplexed in either window.
In this case, we add a bit.

To deal with the additional-bit condition, the first bit in the
20-sample window is prepended to the downsampled data after
the 5–1 multiplexer in Fig. 16, as shown by the dashed line by-
passing the multiplexers. This 5-bit demux_data is then sent to
the elastic FIFO. However the number of these bits used depends
on the downsampled data size. When the data size is 4 bits (nei-
ther data_size_3 nor data_size_5 asserted), the 4 bits from the
multiplexer are used and the prepended bit is discarded; When
an additional bit results in a 5-bit data size, all 5 bits are used;
When a bit is deleted, resulting in a 3-bit data size, both the
prepended bit and following bit are discarded. The data size is
determined based on the current and previous sampling-phase
by the data-size detector of Fig. 16, which implements the map-
ping function shown in Fig. 17.

Fig. 18. Elastic FIFO block.

F. Elastic FIFO

The elastic FIFO block, shown in Fig. 18, accepts 3–5 bits
from the downsampler block during each clock cycle, while out-
puting 4 bits. It has a depth of 32 bits, and hence is capable of
absorbing up to 32 UI peak–peak phase difference between the
received data and the local sampling clock.

In addition to this primary function, the elastic FIFO block
also provides the coarse phase output for the CDR’s loop filter.
The FIFO write-pointer provides a measure of the phase offset,
in UI, between the embedded clock and the local clock. As such,
the FIFO write-pointer is used directly as a coarse phase output,
used by the phase-tracking portion of the CDR. In addition, this
coarse phase output is used for frequency detection during CDR
start-up. During start-up, when the embedded and local clocks
are at different frequencies, the constant phase shift will cause
the FIFO to repeatedly overflow or underflow. If the two or more
sequential overflows or underflows occur, then the frequency
detector will output frequency_up or frequency_down pulses,
respectively.

G. DAC/LPF

The coarse phase and frequency up/down signals control cur-
rent sources connected to the CDR’s loop filter as shown in
Fig. 19. The coarse phase input (0–31) drives a 5-bit current
DAC which is RC filtered to create the VCO control voltage,

.
The current output of DAC is coarse phase

, where is the current resolution. A coarse phase
offset of 15.5 biases the DAC around a half-full (half-empty?)

2232 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 10, OCTOBER 2007

Fig. 20. Test chip die photo.

Fig. 19. DAC and loop filter.

FIFO. Because one coarse phase step equals 1 UI, which
equals 1/4 of a clock cycle, the resulting phase detector gain is

. An off-chip current reference is used to set
.

The frequency up/down signals control switches which
source or sink a current of directly onto the loop filter
capacitor, providing quick frequency lock.

The loop dynamics of the CDR are those of a typical charge-
pump PLL [8], characterized by (2). In this loop, the CDR’s
VCO was measured and found to have Grad/s/V,
and we selected , nF and A to
produce a system with a characteristic frequency, , of 0.6 MHz
and a quality factor of .

V. MEASURED RESULTS

A test chip was designed and fabricated in a 0.11 m CMOS
process to demonstrate the feasibility and performance of
the CDR. Fig. 20 shows a die photo of the design, measuring
440 m 340 m, excluding pads. Two iterations of this design
were fabricated, as supply noise problems degraded the BER
of the first version. The measured results of both iterations are
discussed here.

Fig. 21 shows the bit-error rate of our CDR as a function of
bit-rate. This figure shows the first design iteration CDR to be
functional between 1.9 Gb/s and 3.5 Gb/s. The low-frequency

Fig. 21. Bit error rate versus bit-rate.

limit is a result of the VCO tuning range, while simulation shows
the high-frequency limit to be due to a critical path in the fine-
phase detector. In the midband the average BER is 4 ,
far worse than commercially acceptable levels of . While
our measurement results show that the sample-voting scheme
described in Section IV provides a 15% improvement in BER,
these results still fail to meet commercial standards.

During testing, two observations led us to conclude that the
source of the poor BER performance was supply noise. First, it
was observed that the midband BER was roughly with a
50 load connected to the recovered clock output, and 4
without. As the loading of this clock output only directly affects
the final drive stage in the chip’s pad ring, we concluded that
supply noise was the cause of the BER degradation. Our second
observation related to the JTAG-like scan-chain that is used to
configure the CDR, and to monitor the built-in BERT. In our first
design iteration it was necessary to continuously shift out the
BERT error-counter via the scan-chain to determine the BER.
This BER measurement was found to be correlated with the
frequency of the scan-chain clock. By lowering this frequency
from 166 MHz to 500 kHz, we observed the BER to drop from

VAN IERSSEL et al.: A 3.2 Gb/s CDR USING SEMI-BLIND OVERSAMPLING TO ACHIEVE HIGH JITTER TOLERANCE 2233

Fig. 22. Jitter tolerance results.

4 to 4 . This scan-chain snakes through the entire
design, and we suspect supply noise from the scan-chain clock
buffers and the chain’s shift-registers as the cause of BER degra-
dation in this case. The first design iteration results presented in
Fig. 21 were obtained with an unloaded recovered clock output,
and a scan-chain clock-rate of 166 MHz.

To address the supply noise issues described above, we fab-
ricated a second iteration of our CDR design that was modi-
fied to reduce supply noise. To reduce the amount of generated
supply noise we added an enable signal to the recovered clock
output, and introduced a method to observe the BERT error-
counter without clocking the scan-chain. To better suppress the
remaining supply noise we increased the area of on-chip de-
coupling gate capacitance from 0.002 mm to 1 mm , and in-
creased the average metal width connecting the circuit to the
global power-grid by roughly a factor of three. In addition to
these design changes, we also redesigned the testbench PCB
used to improve impedance matching in the transmission-lines,
as well as reducing the total length of coax-cable between the
PCB and the PRBS data-source from over 3 to 6 .

The measured results of the second design iteration are also
shown in Fig. 21. The low- and high-frequency limits are still
the same as those of the first iteration, however, the BER in the
midband improved to better than , which was the limit of
our measurement capability. In this version of the design, there
was no observable difference in BER with the sample-voting
scheme enabled or disabled. This suggests that in the first design
iteration the voting scheme was compensating for samples that
had been perturbed by supply noise.

Fig. 22 shows measured results for the jitter tolerance of
the first CDR design iteration, and compares them against
behavioural-simulation results and analytical predictions, all
in close agreement. The measured results from the second
iteration are almost identical. The behavioural simulations were
performed in Verilog, repeated at each frequency for cycles
with increasing jitter amplitude until an error was observed.

The analytical prediction is based on an allowable phase change
of 2/5 UI over a run length of 32 (2 1 PRBS), a FIFO of 32
bits, and a loop filter with an RC time constant of 300 ns. With
these parameters, the corner frequency of the jitter tolerance
of the phase-tracking CDR exceeds that of the oversampling
counterpart. This produces a 60 dB/decade region where the
jitter tolerance of the phase tracking component is enhanced
by the oversampling component with a benefit that increases
towards 32 with decreasing frequency. Below this frequency
range the jitter tolerance is that of a phase-tracking CDR with
the full 32 enhancement, while above this range the jitter
tolerance is determined only by the oversampling CDR. All
results are measured at 2.4 Gb/s due to the limited tuning
bandwidth of the VCO used to frequency-modulate the clock.
The CDR, however, is fully operational from 1.9 to 3.5 Gb/s.

To compare the jitter tolerance of the hybrid CDR against
that of a purely phase-tracking CDR, we simulated the latter
by reducing the FIFO size to 1-bit. The result confirms that the
hybrid CDR has a low-frequency jitter tolerance that is 32 times
that of the phase-tracking CDR, as shown in Fig. 22.

A. Power Consumption

The power consumption of the CDR was measured to be
55 mW from the analog supply and 60 mW from the digital
supply, for a total of 115 mW from a 1.2 V supply. The analog
supply feeds the VCO, samplers, and current DACs in the loop
filter. The digital supply feeds the remaining circuits. The digital
power is primarily due to the sense-amp flip-flops and the clock
that drives them. Approximately 1/3 of this digital power is due
to the BERT, which is required only for test purposes. The re-
maining digital power could be reduced still further through the
selective use of lower-power digital logic, as the current design
exclusively uses sense-amp flip-flops and a form of differential
pass-gate logic [10].

2234 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 10, OCTOBER 2007

TABLE I
SUMMARY OF DESIGN CHARACTERISTICS

VI. CONCLUSION

This paper described the design of a CDR that combines
the advantages of blind-oversampling with those of traditional
phase-tracking CDRs. The recovered clock in a traditional
phase-tracking CDR must track the embedded clock within
1/2 UI; otherwise the CDR will recover data from the wrong
symbol period. By embedding a blind-oversampling CDR
within a phase-tracking CDR, the recovered clock may deviate
in phase from the embedded clock by the jitter tolerance of
the blind-oversampling CDR. The recovered clock from the
phase-tracking CDR is then used to clock the blind-oversam-
pling CDR, resulting in a semi-blind oversampling CDR having
a jitter tolerance equal to the product of the jitter tolerances
of phase-tracking and blind-oversampling CDRs. At low jitter
frequencies, the jitter tolerance of the blind-oversampling CDR
is equal to the size of its FIFO-32 in our implementation. Mea-
sured results of our fabricated design show the low-frequency
jitter tolerance of the CDR to be 32 times that of a conventional
phase-tracking CDR. The characteristics of the fabricated
design are summarized in Table I.

REFERENCES

[1] M. Kokubo et al., “Spread-Spectrum clock generator for serial ATA
using fractional PLL controlled by �� modulator with level shifter,”
in IEEE ISSCC 2005 Dig. Tech. Papers, Feb. 2005, pp. 160–161.

[2] M. Hsieh and G. Sobelman, “Clock and data recovery with adaptive
loop gain for spread spectrum serdes applications,” in Proc. IEEE
ISCAS 2005, May 2005, pp. 4883–4886.

[3] L. M. DeVito, “A versatile clock recovery architecture and monolithic
implementation,” in Monolothic Phase-Locked Loops and Clock Re-
covery Circuits, B. Razavi, Ed. New York: IEEE Press, 1996, pp.
405–430.

[4] B. Razavi, Monolithic Phase-Locked Loops and Clock Recovery Cir-
cuits. New York: IEEE Press, 1996.

[5] T. Lee and J. Bulzacchelli, “A 155-MHz clock recovery delay- and
phase-locked loop,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp.
1736–1746, Dec. 1992.

[6] J. Kim and D. K. Jeong, “Multi-gigabit-rate clock and data recovery
based on blind oversampling,” IEEE Commun., pp. 68–74, Dec. 2003.

[7] M. van Ierssel, A. Sheikholeslami, H. Tamura, and W. W. Walker, “A
3.2 Gb/s semi-blind-oversampling CDR,” in IEEE ISSCC 2006 Dig.
Tech. Papers, Feb. 2006, pp. 334–335.

[8] D. Johns and K. Martin, Analog Integrated Circuit Design. New
York: Wiley, 1997.

[9] L. Sun et al., “A 1.25-GHz 0.35-�m monolithic CMOS PLL based on
a multiphase ring oscillator,” IEEE J. Solid-State Circuits, vol. 36, no.
6, pp. 910–916, Jun. 2001.

[10] F. Lai and W. Hwang, “Design and implementation of differential cas-
code voltage switch with pass-gate (DCVSPG) logic for high-perfor-
mance digital systems,” IEEE J. Solid-State Circuits, vol. 32, no. 4, pp.
563–573, Apr. 1997.

Marcus van Ierssel (S’92–M’07) received the
B.A.Sc. degree in electrical engineering from the Di-
vision of Engineering Science in 1992, the M.A.Sc.
degree in the Department of Electrical and Computer
Engineering in 1995, and the Ph.D. degree in the
Department of Electrical and Computer Engineering
in 2007, all at the University of Toronto, Toronto,
ON, Canada.

He is currently working at Snowbush Microelec-
tronics as an analog IC designer, focusing on PLL and
SERDES design.

Ali Sheikholeslami (S’98–M’99–SM’02) received
the B.Sc. degree from Shiraz University, Shiraz, Iran,
in 1990, and the M.A.Sc. and Ph.D. degrees from
the University of Toronto, Toronto, ON, Canada,
in 1994 and 1999, respectively, all in electrical and
computer engineering.

In 1999, he joined the Department of Electrical
and Computer Engineering, University of Toronto,
where he is currently an Associate Professor. His
research interests are in the areas of analog and
digital integrated circuits, high-speed signaling, and

VLSI memory design (including SRAM, DRAM, CAM, and FeRAM). He has
collaborated with industry on various VLSI design research in the past few
years, including work with Nortel and Mosaid, Canada, and with Fujitsu Labs.
He spent his 2005–2006 research sabbatical year with Fujitsu Labs of Japan and
Fujitsu Labs of America. He presently supervises two active research groups
in the areas of high-speed signaling and VLSI memories. He has co-authored
several journal and conference papers (in both areas), in addition to three U.S.
patents on VLSI memories.

Dr. Sheikholeslami served on the Memory Subcommittee of the IEEE Inter-
national Solid-State Circuits Conference (ISSCC) from 2001 to 2004, and on
the Technology Directions Subcommittee of the same conference from 2002
to 2005. He presented a tutorial on ferroelectric memory design at the ISSCC
2002. He was the program chair for the 34th IEEE International Symposium on
Multiple-Valued Logic (ISMVL 2004) held in Toronto, Canada. He is a regis-
tered professional engineer in the province of Ontario, Canada. He received the
Best Professor of the Year Award in 2000, 2002, and 2005 by the popular vote of
the undergraduate students in the Department of Electrical and Computer Engi-
neering, University of Toronto. In 2006, he received the Early Career Teaching
Award in recognition of his “superb accomplishment in teaching” from the Fac-
ulty of Applied Science and Engineering at the University of Toronto.

Hirotaka Tamura received the B.S., M.S., and Ph.D.
degrees in electronic engineering from Tokyo Univer-
sity, Tokyo, Japan, in 1977, 1979, and 1982, respec-
tively.

In 1982, he joined Fujitsu Laboratories, Ltd.,
Kawasaki, Japan, where he was engaged in research
on Josephson devices and other exploratory devices.
In 1995, he moved into the area of CMOS circuit
design. After working on multi-gigabit DRAMs and
ferroelectric nonvolatile memories, he got involved
in CMOS high-speed signaling. His current interests

cover the circuit topology and architecture of high-speed CMOS interfaces.

William W. Walker (M’79) received the A.B. degree
in physics and applied mathematics in 1976, and the
M.S.E.E. in 1978, both from the University of Cali-
fornia at Berkeley.

From 1978 to 1983, he was a Staff Engineer
at IBM Corporation, in East Fishkill, NY, and
Burlington, VT, where he was involved in the
development of the LDD MOS transistor. From
1984 to 1991 he was a Senior Engineer at Integrated
CMOS Systems, Inc., Sunnyvale, CA. From 1991
to 2000, he was an Engineering Manager at Hal

Computer Systems, Inc., Campbell, CA, where his group developed CAMs,
SRAMs, PLLs, and Register Files for the first 64-bit SPARC microprocessors.
Since 2000, he has been with Fujitsu Laboratories of America, where he is
currently Vice President in charge of the Circuits and Devices Innovation
Group. His research interests include high-speed and low-power digital circuits
for microprocessors, millimeter-wave CMOS, and high-speed wireline CMOS
circuits for computer backplanes and optical communications.

