# An Adaptive Reference Generation Scheme for 1T1C FeRAMs

Trevis Chandler<sup>1</sup>, Ali Sheikholeslami<sup>1</sup>, Shoichi Masui<sup>2</sup>, and Michiya Oura<sup>2</sup>

<sup>1</sup> Department of Electrical and Computer Engineering, University of Toronto, Canada

<sup>2</sup> Fujitsu Laboratories Limited, Akiruno, Japan

Engilt (chandle ali) Canada and (magni Changa)

Email: {chandle, ali}@eecg.utoronto.ca and {masui@fram.ed, oura@flab}.fujitsu.co.jp

#### Abstract

A reference time, instead of a reference voltage, is generated used to compare stored "0" and "1" in a race of bitlines towards reaching a threshold voltage in a 1T1C FeRAM. The reference time is adaptive, tracking process variations, aging, and fatigue of ferroelectric capacitors. This scheme is implemented in a  $256 \times 128$ -bit testchip in a  $0.35 \, \mu m$  ferroelectric process and achieves a 40ns access time at 3V.

### Introduction

FeRAMs can be implemented using a one-transistor one-capacitor (1T1C) cell structure to improve density, however, a reference scheme is required for reading [1]. A constant reference voltage such as one reported in [2] does not track fatigue and aging properties of ferroelectric capacitors, rendering the scheme inefficient for frequent read/write applications. In contrast, an adaptive reference scheme proposed in this paper tracks fatigue, aging, and process variations, such that equal sensing margins are maintained over time and across chip for stored "0" and "1".

A conventional read scheme detects the stored data by comparing the bitline voltage to a reference voltage  $(V_{ref})$  using a sense amplifier (SA), as shown in Figure 1a. Our proposed scheme, shown in Figure 1b, detects the stored data by comparing the time of the rising edge of the sense amplifier output to the time of the rising edge of the reference signal  $(SA_{ref})$ . An SA output reading a "0"  $(SA_0)$  rises at time  $T_0$ , while an SA output reading a "1"  $(SA_1)$  rises at time  $T_1$ . The comparison occurs by latching the SA outputs at reference time  $(T_{ref})$ , halfway between  $T_0$  and  $T_1$ . This time-domain scheme lends itself easily to adaptive implementation as we will see next.

## Adaptive Reference Generation

Figure 2 shows the block diagram of the proposed scheme. During read, the plateline (PL) is held low while the bitlines (BL) are charged up using constant current sources (CS). The BLs connected to stored "0" are charged up faster compared to the bitlines connected to stored "1", due to smaller capacitance of the ferroelectric capacitor ( $C_{\rm FE}$ ) in state "0" [3]. A BL with stored "0" reaches the SA threshold voltage (SA<sub>th</sub>) at  $T_0$  causing SA<sub>0</sub> to rise, while a BL with stored "1" reaches the same threshold at  $T_1$  causing SA<sub>1</sub> to rise. As a result, SA<sub>0</sub> rises prior to SA<sub>1</sub>. These two signals are used to adaptively generate SA<sub>ref</sub> with a rising edge at  $T_{ref} = (T_1 + T_0)/2$  to maximize the sensing margins (Figure 1b). SA<sub>ref</sub> is then used as a control signal to latch the SA outputs at  $T_{ref}$ . The last bit, n, of each row is stored differentially [4] to ensure the reference generator has both SA<sub>0</sub> and SA<sub>1</sub> to produce SA<sub>ref</sub>.

The circuit diagram of one column is shown in Figure 3. A differential amplifier compares the BL voltage to  $SA_{th}$ , producing the SA output signal. The latch stores the value of the SA output at  $T_{ref}$ . Once  $SA_{ref}$  occurs, the result of the read is available at Data node of the latch, and writeback can begin.

Since Data node is isolated from the BLs, the data can be read before the BLs reach their final voltages, hence reducing access time compared to conventional scheme [2].

To guarantee  $T_{ref} = (T_1 + T_0)/2$ , two identical adjustable delay elements are connected in series and adaptively tuned by a delay comparator to match the time difference  $T_1$  -  $T_0$ , as shown in Figure 4. As a result, a single delay element provides a rising edge midway between  $T_0$  and  $T_I$ . The adjustable delay element, shown in Figure 5, delays SA<sub>0</sub> by attaching binary weighted capacitors to the control node, and buffers the result to all the latches. The binary weighted capacitors are controlled by the signals B0, B1, B2, which are generated by the delay comparator. The second adjustable delay element uses SA<sub>ref</sub> as the input and uses the same control signals to produce  $SA_{0-2\Delta}$ . The delay comparator, shown in Figure 6, determines which rising edge occurs first (SA<sub>0-2A</sub> or SA<sub>1</sub>), accordingly sending an up/down signal to the counter to increase or decrease the delay control signals until SA<sub>0-2A</sub> and SA<sub>1</sub> are matched.

## Simulation Results

Figure 7 shows simulation results of one read cycle for the proposed scheme. PL is held low while the BL voltages rise by the activated CSC. The rise time difference is captured by the comparison of the BL voltage against  $SA_{th}$ , producing either  $SA_0$  or  $SA_1$ . The results are latched by  $SA_{ref}$ . The total access time of this scheme is 40ns with only 15ns in actual sensing. The proposed scheme achieves a 20% reduction in access time compared to previous work [3]. Figure 8 shows the circuit adaptively reduces the delay of  $SA_{0.2\Delta}$  until it is matched to  $SA_1$ . Extensive simulations for process variations and operating conditions verify the robustness of the proposed scheme. Further verification to be provided by test results.

## Conclusion

An adaptive reference time is generated for a 256x128-bit 1T1C FeRAM testchip, with layout shown in Figure 9. Simulation results confirm the reference time tracks fatigue and process variations. The proposed scheme achieves an access time of 40 ns at 3 V supply. Measurement results will be presented during the symposium.

### Acknowledgments

The authors thank Shoichiro Kawashima and Toru Endo of Fujitsu Labs, Japan, for their valuable comments, and Yadollah Eslami, Joyce Wong, and Igor Arsovski of the University of Toronto for their feedback and help on this work. Authors also thank Fujitsu Labs of Japan and NSERC of Canada for their generous funding.

### Reference

- [1] A. Sheikholeslami et al., "A survey of circuit innovations for ferroelectric random-access memories," Proc. of the IEEE, pp. 667-689, May 2000
- [2] D.J. Jung et al., "Highly manufacturable 1T1C 4Mb FRAM with novel sensing scheme," IEDM, pp. 279-282, Dec 1999
- [3] Y. Eslami et al., "A differential-capacitance read scheme for FeRAMs," Symp. VLSI Circuits, pp. 298-301, June 2002
- [4] T. Endo and S. Kawashima "Semiconductor Integrated Circuit Device" US Patent, Pub. No. US 2002/0060930, May 23, 2002

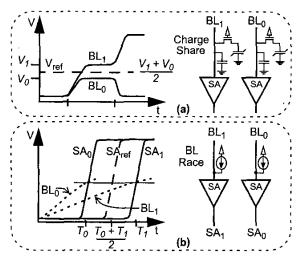



Figure 1: (a) Conventional read scheme using  $V_{ref}$  (b) proposed scheme using  $T_{ref}$  halfway between  $T_0$  and  $T_1$ 

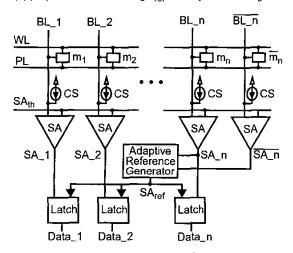



Figure 2: Block diagram of adaptive reference scheme

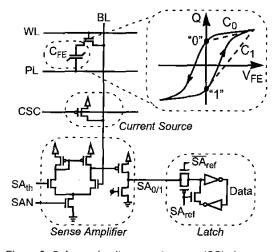



Figure 3: Column circuit - current source (CS) charges BL with constant current, sense amplifier (SA) compares  $V_{BL}$  to  $SA_{th}$  and latches data at  $T_{ref}$ 

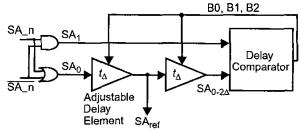



Figure 4: Adaptive Reference generator adaptively controls delay to ensure  $T_0 + T_{2\Delta} = T_1$  and hence  $T_{ref} = (T_1 + T_0)/2$ 

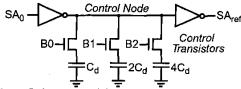



Figure 5: Adjustable delay element delays SA<sub>0</sub> using binary weighted capacitors to generate SA<sub>ref</sub>

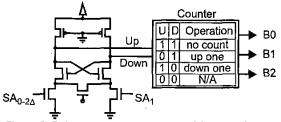



Figure 6: Delay comparator compares  $SA_{0.2\Delta}$  against  $SA_1$  to determine if  $SA_{0.2\Delta}$  needs more/less delay to match  $SA_1$ 

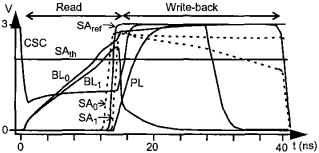



Figure 7: Read Simulation - stored data is detected by time difference between SA<sub>0</sub>, SA<sub>ref</sub> and SA<sub>1</sub>

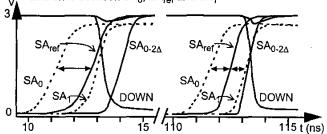



Figure 8: Adaptation simulation: SA<sub>ref</sub> is over-delayed in first cycle, signalling DOWN to counter to bring SA<sub>ref</sub> closer to midpoint in the following cycle

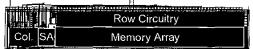



Figure 9: Chip layout - 256 x 128 bits (512 rows) with a read access time of 40 ns at 3 V