Structures

Data aggregates
Like classes (in Java) except usually contain no

Structure members are public (we’ll learn this late

struct student_data

{

char name[30];
int age;
int sid ;

}; [*<==DO NOT FORGET the semicolon */

func

r

typedef

typedef <type definition> new_type_name;

struct student_data

{

char name[30];
int age;
int sid ;
h
typedef struct student_data student;

Page 1

typedef

typedef <type definition> new_type_name;

typedef struct student_data
{
char name[30];
int age;
int sid ;
} student; //another way to write the typedef

Structures

#include <iostream >

typedef struct student_data
{

char name[30];
} student;

int main(int argc , char * argv []){
student amza; //or struct student_data amza;
cin >> amza.name;
cin >> amza.age;
cin >> amza. sid ;
cout <<“name ="<< amza.name << *“, age =" << amza.age << endl ;
return 0;

Page 2

Pointers

Topics
m Simple memory allocation and addressing
® Pointers
® Example Mechanisms
® Operators for use with pointers

m Dynamic memory allocation

Harsh Reality

Memory Matters

Memory is not unbounded
m It must be allocated and managed

Memory referencing bugs especially pernicious

m Effects are distant in both time and space (e.g., a ccessing
an uninitialized variable).

Page 3

Memory Management

A variable lives in some memory location for some time

Memory is allocated to variables in two ways

m Automatic allocation: through variable declaration
® e.g., inti; //allocates 4 bytes for i upon enter ing scope/function

m Dynamic allocation: using new
® e.g., new double; //allocates 8 bytes upon callin g new

Scope = Enclosing block for a variable - could be a func

or
artificially created by using { int i; } within func body
Memory Management

A variable lives in some memory location for some time

The variable lifetime is
m Automatic allocation: within scope
® e.g., inti; //while enclosing function instantiati on is active
m Dynamic allocation: until programmer explicitly fre es block
® e.g., new double; //until program calls delete (ou tlives scope)

Page 4

Memory layout and addresses

Example using automatic allocation:
int x =15,y =10; //automatic vars

floatf=12.5, g = 9.8;
charc=‘c,d="d;

4300 4304 4308 4312 f f
4317
4316
Pointers
Definitions:

“Pointers are variables that hold a memory address”
e.g., a pointer p contains an address addr

The memory address addr contains another variable var

We say that pointer p “points to” variable var

Page 5

Pointers

Definitions:
“Pointers are variables that hold a memory address”

We say that pointer p “points to” variable var

Declarations:
float f; //variable of type float
float *p; //pointer to variable of type float

Pointer Initialization/Assignment

Q: How do we get the memory address of a variable ?

A: the “get address” operator: &

float f; //variable of type float
float *p; //pointer to variable of type float
p = &f;

Page 6

Data Representations (revisited)

Sizes of C++ Objects (in Bytes)

m Data Type Compaq Alpha Typical Intel IA32
e int 4 4 4
® long int 8 4 4
® char 1 1 1
® short 2 2 2
o float 4 4 4
e double 8 8 8
® char * 8 4 4

» Or any other pointer

“Word Size” (Convention)
m Size of integer data (i.e., typically 4 bytes)

Pointer Dereferencing

Q: Get the value of the variable “pointed -to” by pointer

A: the “indirection” operator: *

float f = 3.2; //variable of type float

float *p; llpointer to variable of type float
p = &f;

cout <<*p; /lprints the var “pointed -to” by p

Il (i.e., var at address p)

Page 7

Using Pointers (1)

float f; [* data variable */
float *p; [* pointer variable */
f p any float
4300 4304 any address
p = &f; [* & = address operator */
f P
4300 4304
Pointer Dereferencing
Q: Get the value of the variable “pointed -to” by pointer
A: the “indirection” (a.k.a. “dereferencing”) operator D
float f; [Ivariable of type float
float *p; /lpointer to variable of type fl oat
*n = 3.2; IIWRONG !!

/[Dereferencing an unitialized pointer

/[Typically results in SEGFAULT (bombing)

Page 8

Pointer Dereferencing

Q: Get the value of the variable “pointed -to” by pointer

A: the “indirection” operator: *

float f; [Ivariable of type float
float *p = &f; //pointer to variable of type floa t
*p =3.2; /ILHS is the var “pointed -to” by p
cout <<f; /lprints the value of var
Pointers made easy (2)
float f; [* data variable */
float *p = &f; [* initializing pointer variable */
p=3.2; [use of indirection operator */
f P
4300 4304
float g =*p; [* indirection: g is now 3.2 */
p=1.3; [f becomes 1.3 but g is still 3.2 */
f p g
4300 4304 4308

Page 9

Pointers made easy (2)

student amza; [* data variable */
student* p; [* pointer variable */
p =& amzg; [* use of indirection operator */

(*p). sid =99; [* indirection: amza. sid is now 999*/
(*p).age = 17; /* amza.ageis 17 */
cin >> (*p).name; /* say we input “CA” */

The = Operator (instead of * and .)

student amza; [* data variable */

student* p; [* pointer variable */

p =& amzg; [* use of indirection operator */
p 2 sid =99; /* indirection: amza. sid is now 999*/
p 2 age=17,; /* amza.ageis 17 */

cin >>p = name; /* say we input “CA” */

Page 10

Dynamic Memory Allocation

Java manages memory for you, C++ does not
m In Java programmer allocates with new, but does not free
space (garbage collection in Java)
m C++ requires the programmer to explicitly allocate and
deallocate memory

m Memory can be allocated dynamically during run-time with
new and deallocated (freed) using delete

Memory

Memory allocated with new, de -allocated with delete

new returns address of (pointer to) allocated block

D Free byte
Allocated block Free block Y
(4 bytes) (3 bytes) D Allocated byte

The memory allocator provides an abstraction of memo ry as a set of blocks

Page 11

Use of New/Delete

new double;

m If successful:
® Returns a pointer to a memory block of at least sizeof
(double) bytes, i.e. 8, (typically) aligned to 8-byte bounda

delete p;

m Returns the block pointed to by p to pool of available
memory

m p must come from a previous call to new.

ry.

new

Allocates memory inthe heap
m Lives between function invocations

Examples
m Allocate an integer
e int *iptr = new int;
m Allocate a structure
® struct student_data* amzaptr = new student;
(same as: student* amzaptr = new student;)
(same as:
student* amzaptr = new struct student_data;)

Page 12

delete

Deallocates memory in heap.
Pass in a pointer that was returned by new.

Examples
m Allocate an integer
e int* iptr =new int;
® delete iptr;
m Allocate a structure
® struct student_data* amzaptr = new student;
® delete amzaptr;

Caveat: don't free the same memory block twice!

Examples

typedef struct student_data
{
char name[30];
} student;
typedef struct two_chars {
char first_char;
char second_char;
} two;
typedef struct five_chars {
char first_char;
char second_char;
... char fifth_char;
} five;

Page 13

Allocation/Dealloc. Examples

pl =new int;

p2 = new struct five_chars;

p3 = new struct six_chars;

delete p2;

p4 = new struct two_chars;

Allocation/Dealloc. Examples

pL=new int; HEEEEEEEEEEEEEEEE
t

p2 = new five; HEEEEEEEEEEEEEEEN

p2
p3 = new six; LT[e | |
X=

delete p2; HNEEEEEEN ' e

p4 = new two; HEEE EEE ' EE

p4

Page 14

Pointer Declarations

int *p1; five *p2; six *p3; two *p4;

pL=new int; HEEEEEEEEEEEEEEEE

p2 = new five; HEEEEEEEEEEEEEEEN

t 2
P3 = new six; [T T T T T T e |
4 3
delete p2; CTTTTTTTT e T
P4 = new two; [TTT N T e |
T pa

Dynamic Allocation Example

void foo(int n, int m) {
int i, *p; //automatic allocation

/* dynamically allocate a block of 4 bytes */
if (p = new int) == NULL) {

cerr << “allocation failed";

exit(0);
}

*p=5
/* print the content of the newly allocated space * /
cout << *p<<endl
i=*p;
/* print the content of i */

cout <<i<<endl

delete p; /* return 4 bytes to available memory */
/* cannot access this space with *p anymore */

/* print the content of i */
cout <<i<<endl

}

Page 15

How about pointers inside structs ?

typedef struct four_chars {
char first_char;
char second_char;
... Char fourth_char;
} four;
typedef struct four_plus_two_chars {

four * first_four_chars
two * last_two_chars;
} four_plus_two;

How about pointers inside structs ?

Need to allocate nested objects. Need to deallocate them correspondingly.
pl = new four_plus_two;

p2 = new four; pl->first_four_chars = p2;

p3 = new two; pl->last_two_chars = p3;

delete p1;

Oops'!

Memory leak ! (garbage left around, need to delete all
allocated blocks)

Page 16

Easy fix because we kept p2 and p3

Need to allocate nested objects. Need to deallocate them correspondingly.
pl = new four_plus_two;

p2 = new four; p1->first_four_chars = p2;

p3 = new two; pl->last_two_chars = p3;

delete p2;

delete p3;

delete p1;

Usually only pointer to “top” is kept

Need to allocate nested objects. Need to deallocate them correspondingly.
pl =new four_plus_two_chars; (“top” pointer to obj ect)

pl->first_four_chars = new four;

pl->last_two_chars = new two;

delete p1;

Oops'!

Memory leak ! (garbage left around, cannot get to
the remaining blocks 1)

Page 17

Process Memory Image

Automatic variables are
allocated memory on the Stack (automatic allocations)
stack. *

Stack grows downwards

Dynamic Memory f
Allocator requests
memory from the heap. run-time heap (via new)

Heap grows upwards

data

program code

Dynamic (Heap) Memory Allocator
Summary: Not like Java

No garbage collection

Operator new is still a high -level request such as
“I'd like an instance of class String ”

Try to think about it low level
m You ask for n bytes (the sizeof that type/class)
m You get a pointer (memory address) to the allocated object

Page 18

Heap Allocator Internals

Memory allocated in a contiguous block. External Fragmentation: when
enough aggregate heap memory, but no single free bl ock is large enough.

pl = new four;

p2 = new five;

p3 = new six;

delete p2;
LTI T [[| |

p4 = new six; //cannot allocate a block of 6 bytes
/lthis allocation fails due to
//"no more heap space”

Automatic Allocator Internals

Automatic allocation of variables occurs on the sta ck

We’'ll learn how the stack works next

Page 19

