
Page 1

StructuresStructures
Data aggregatesData aggregates

Like classes (in Java) except usually contain no Like classes (in Java) except usually contain no funcfunc

Structure members are public (we’ll learn this late r)Structure members are public (we’ll learn this late r)

structstruct student_datastudent_data

{{

charchar name[30];name[30];

intint age;age;

int sidint sid ;;

}; }; /* <== DO NOT FORGET the semicolon *//* <== DO NOT FORGET the semicolon */

typedeftypedef
typedef typedef <type definition> new_type_name; <type definition> new_type_name;

structstruct student_datastudent_data

{{

charchar name[30];name[30];

intint age;age;

int int sidsid ;;

};};

typedef struct typedef struct student_data student;student_data student;

Page 2

typedeftypedef
typedef typedef <type definition> new_type_name; <type definition> new_type_name;

typedef structtypedef struct student_datastudent_data

{{

charchar name[30];name[30];

intint age;age;

int int sidsid ;;

} student; //another way to write the } student; //another way to write the typedeftypedef

StructuresStructures
#include#include <<iostreamiostream >>

typedef structtypedef struct student_datastudent_data

{{

charchar name[30];name[30];

……

} student; } student;

intint main(main(intint argcargc , , charchar * * argvargv []) {[]) {

student student amzaamza; //or ; //or struct struct student_data student_data amzaamza;;

cin cin >> >> amzaamza.name;.name;

cin cin >> >> amzaamza.age;.age;

cin cin >> >> amzaamza.. sidsid ;;

coutcout << “name =“ << << “name =“ << amzaamza.name << “, age =“ << .name << “, age =“ << amzaamza.age << .age << endlendl ;;

returnreturn 0;0;

}}

Page 3

Pointers Pointers

TopicsTopics
� Simple memory allocation and addressing

� Pointers
� Example Mechanisms
� Operators for use with pointers

� Dynamic memory allocation

Harsh RealityHarsh Reality

Memory MattersMemory Matters

Memory is not unboundedMemory is not unbounded
� It must be allocated and managed

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
� Effects are distant in both time and space (e.g., a ccessing

an uninitialized variable).

Page 4

Memory ManagementMemory Management

A variable lives in some memory location for some timeA variable lives in some memory location for some time

Memory is allocated to variables in two waysMemory is allocated to variables in two ways
� Automatic allocation: through variable declaration

� e.g., int i; //allocates 4 bytes for i upon enter ing scope/function

� Dynamic allocation: using new
� e.g., new double; //allocates 8 bytes upon callin g new

Scope = Enclosing block for a variable Scope = Enclosing block for a variable -- could be a could be a funcfunc

or or

artificially created by using {artificially created by using { int int i; ……} within i; ……} within funcfunc bodybody

Memory ManagementMemory Management

A variable lives in some memory location for some timeA variable lives in some memory location for some time

The variable lifetime isThe variable lifetime is
� Automatic allocation: within scope

� e.g., int i; //while enclosing function instantiati on is active

� Dynamic allocation: until programmer explicitly fre es block
� e.g., new double; //until program calls delete (ou tlives scope)

Page 5

5 10 12.5 9. 8 c d

Example using automatic allocation:

int x = 5, y = 10; //automatic vars
float f = 12.5, g = 9.8;
char c = ‘c’, d = ‘d’;

4300 4304 4308 4312

4316
4317

Memory layout and addressesMemory layout and addresses

PointersPointers

Definitions:Definitions:

“Pointers are variables that hold a memory address”“Pointers are variables that hold a memory address”

e.g., a pointer e.g., a pointer pp contains an address contains an address addraddr

The memory address The memory address addraddr contains another variable contains another variable varvar

We say that pointer We say that pointer pp “points to” variable “points to” variable varvar

Page 6

PointersPointers

Definitions:Definitions:

“Pointers are variables that hold a memory address”“Pointers are variables that hold a memory address”

We say that pointer We say that pointer pp “points to” variable “points to” variable varvar

Declarations:Declarations:

float f; //variable of type floatfloat f; //variable of type float

float *p; //pointer to variable of type floatfloat *p; //pointer to variable of type float

Pointer Initialization/Assignment Pointer Initialization/Assignment

Q: How do we get the memory address of a variable ?Q: How do we get the memory address of a variable ?

A: the “get address” operator: &A: the “get address” operator: &

float f; //variable of type floatfloat f; //variable of type float

float *p; //pointer to variable of type floatfloat *p; //pointer to variable of type float

p = &f;p = &f;

Page 7

Data Representations (revisited)Data Representations (revisited)

Sizes of C++ Objects (in Bytes)Sizes of C++ Objects (in Bytes)
� Data Type Compaq Alpha Typical Intel IA32

� int 4 4 4
� long int 8 4 4
� char 1 1 1
� short 2 2 2
� float 4 4 4
� double 8 8 8
� char * 8 4 4

» Or any other pointer

“Word Size” (Convention)“Word Size” (Convention)
� Size of integer data (i.e., typically 4 bytes)

Pointer Dereferencing Pointer Dereferencing

Q: Get the value of the variable “pointedQ: Get the value of the variable “pointed --to” by pointerto” by pointer

A: the “indirection” operator: *A: the “indirection” operator: *

float f = 3.2; //variable of type floatfloat f = 3.2; //variable of type float

float *p; //pointer to variable of type floatfloat *p; //pointer to variable of type float

p = &f;p = &f;

coutcout << *p; //prints the << *p; //prints the varvar “pointed“pointed --to” by pto” by p

// (i.e., // (i.e., varvar at address p) at address p)

Page 8

? ?

f p

4300 4304

?

any float

any address

? 4300

f p

4300 4304

Using Pointers (1)Using Pointers (1)
floatfloat f; f; /* data variable *//* data variable */

floatfloat ** p; p; /* pointer variable *//* pointer variable */

p = &f; p = &f; /* & = address operator *//* & = address operator */

Pointer Dereferencing Pointer Dereferencing

Q: Get the value of the variable “pointedQ: Get the value of the variable “pointed --to” by pointerto” by pointer

A: the “indirection” (a.k.a. “dereferencing”) operator : *A: the “indirection” (a.k.a. “dereferencing”) operator : *

float f; //variable of type floatfloat f; //variable of type float

float *p; //pointer to variable of type fl oatfloat *p; //pointer to variable of type fl oat

*p = 3.2; //WRONG !! *p = 3.2; //WRONG !!

//Dereferencing an //Dereferencing an unitialized unitialized pointerpointer

//Typically results in SEGFAULT (bombing)//Typically results in SEGFAULT (bombing)

Page 9

Pointer Dereferencing Pointer Dereferencing

Q: Get the value of the variable “pointedQ: Get the value of the variable “pointed --to” by pointerto” by pointer

A: the “indirection” operator: *A: the “indirection” operator: *

float f; //variable of type floatfloat f; //variable of type float

float *p = &f; //pointer to variable of type floa tfloat *p = &f; //pointer to variable of type floa t

*p = 3.2; //LHS is the *p = 3.2; //LHS is the varvar “pointed“pointed --to” by pto” by p

coutcout << f; //prints the value of << f; //prints the value of varvar

Pointers made easy (2)Pointers made easy (2)

f p

4300 4304

3.2 4300

f p

4300 4304

? 4300

floatfloat g = *p; g = *p; /* indirection: g is now 3.2 *//* indirection: g is now 3.2 */

*p = 1.3;*p = 1.3; /* f becomes 1.3 but g is still 3.2 *//* f becomes 1.3 but g is still 3.2 */

floatfloat f; f; /* data variable *//* data variable */

floatfloat ** p = &f; p = &f; /* initializing pointer variable *//* initializing pointer variable */

*p = 3.2;*p = 3.2; /* use of indirection operator *//* use of indirection operator */

3.2

g

4308

Page 10

Pointers made easy (2)Pointers made easy (2)

amza p

4300 ? e.g., 4300 + sizeof(student)

4300

amza p

4300 ?

CA| 17| 99| 4300

(*p).(*p). sid sid = 99; = 99; /* indirection: /* indirection: amzaamza.. sidsid is now 999*/is now 999*/

(*p).age = 17;(*p).age = 17; /* /* amzaamza.age is 17 */.age is 17 */

cincin >> (*p).name; /* say we input “CA” */>> (*p).name; /* say we input “CA” */

student student amzaamza; ; /* data variable *//* data variable */

student* student* p; p; /* pointer variable *//* pointer variable */

p = &p = & amzaamza;; /* use of indirection operator *//* use of indirection operator */

The ���� Operator (instead of * and .)The ���� Operator (instead of * and .)

amza p

4300 ?

99| 17| CA 4300

p p �������� sidsid = 99; = 99; /* indirection: /* indirection: amzaamza.. sidsid is now 999*/is now 999*/

p p �������� age = 17;age = 17; /* /* amzaamza.age is 17 */.age is 17 */

cincin >> p >> p �������� name; /* say we input “CA” */name; /* say we input “CA” */

student student amzaamza; ; /* data variable *//* data variable */

student* student* p; p; /* pointer variable *//* pointer variable */

p = &p = & amzaamza;; /* use of indirection operator *//* use of indirection operator */

Page 11

Dynamic Memory AllocationDynamic Memory Allocation

Java manages memory for you, C++ does notJava manages memory for you, C++ does not
� In Java programmer allocates with new, but does not free

space (garbage collection in Java)

� C++ requires the programmer to explicitly allocate and
deallocate memory

� Memory can be allocated dynamically during run-time with
new and deallocated (freed) using delete

MemoryMemory
Memory allocated with new, deMemory allocated with new, de --allocated with deleteallocated with delete

new returns address of (pointer to) allocated blocknew returns address of (pointer to) allocated block

Allocated block
(4 bytes)

Free block
(3 bytes)

Free byte

Allocated byte

The memory allocator provides an abstraction of memo ry as a set of blocks

Page 12

Use of New/DeleteUse of New/Delete
new double;new double;

� If successful:
� Returns a pointer to a memory block of at least sizeof

(double) bytes, i.e. 8, (typically) aligned to 8-byte bounda ry.

delete p;delete p;

� Returns the block pointed to by p to pool of available
memory

� p must come from a previous call to new.

newnew

Allocates memory in the Allocates memory in the heapheap
� Lives between function invocations

ExamplesExamples
� Allocate an integer

� int * iptr = new int;

� Allocate a structure
� struct student_data* amzaptr = new student;

(same as: student* amzaptr = new student;)

(same as:

student* amzaptr = new struct student_data;)

Page 13

deletedelete

DeallocatesDeallocates memory in heap.memory in heap.

Pass in a pointer that was returned by new.Pass in a pointer that was returned by new.

ExamplesExamples
� Allocate an integer

� int* iptr = new int;

� delete iptr;

� Allocate a structure
� struct student_data* amzaptr = new student;

� delete amzaptr;

Caveat: don’t free the same memory block twice!Caveat: don’t free the same memory block twice!

ExamplesExamples
typedef structtypedef struct student_data student_data

{{

charchar name[30]; name[30]; ……

} student; } student;

typedef structtypedef struct two_chars {two_chars {

charchar first_char;first_char;

charchar second_char;second_char;

} two; } two;

typedef structtypedef struct five_chars {five_chars {

charchar first_char;first_char;

charchar second_char; second_char; ……

… … charchar fifth_char;fifth_char;

} five; } five;

Page 14

Allocation/Dealloc. ExamplesAllocation/Dealloc. Examples
p1 = new int;

p2 = new struct five_chars;

p3 = new struct six_chars;

delete p2;

p4 = new struct two_chars;

Allocation/Dealloc. ExamplesAllocation/Dealloc. Examples

p1 = new int;

p3 = new six;

delete p2;

p4 = new two;

p2 = new five;

p1

p2

p3

p4

Page 15

Pointer DeclarationsPointer Declarations

p1 = new int;

p3 = new six;

delete p2;

p4 = new two;

p2 = new five;

p1

p2

p3

p4

int *p1; five *p2; six *p3; two *p4;

Dynamic Allocation ExampleDynamic Allocation Example
void foo(int n, int m) {

int i, *p; //automatic allocation

/* dynamically allocate a block of 4 bytes */
if ((p = new int) == NULL) {

cerr << “allocation failed";
exit(0);

}

*p = 5;

/* print the content of the newly allocated space * /
cout << *p << endl;

i = *p;

/* print the content of i */
cout << i << endl;

delete p; /* return 4 bytes to available memory */
/* cannot access this space with *p anymore */

/* print the content of i */
cout << i << endl;

}

Page 16

How about pointers inside structs ?How about pointers inside structs ?

typedef structtypedef struct four_chars {four_chars {

charchar first_char;first_char;

charchar second_char; second_char; ……

… … charchar fourth_char;fourth_char;

} four; } four;

typedef structtypedef struct four_plus_two_chars {four_plus_two_chars {

four *four * first_four_charsfirst_four_chars ;;

two *two * last_two_chars;last_two_chars;

} four_plus_two; } four_plus_two;

How about pointers inside structs ?How about pointers inside structs ?

p1 = new four_plus_two;

p2 = new four; p1->first_four_chars = p2;

p3 = new two; p1->last_two_chars = p3;

delete p1;

Oops !

Memory leak ! (garbage left around, need to delete all
allocated blocks)

Need to allocate nested objects. Need to deallocate them correspondingly.

Page 17

Easy fix because we kept p2 and p3Easy fix because we kept p2 and p3

p1 = new four_plus_two;

p2 = new four; p1->first_four_chars = p2;

p3 = new two; p1->last_two_chars = p3;

delete p2;

Need to allocate nested objects. Need to deallocate them correspondingly.

delete p1;

delete p3;

Usually only pointer to “top” is kept Usually only pointer to “top” is kept

p1 = new four_plus_two_chars; (“top” pointer to obj ect)

p1->first_four_chars = new four;

p1->last_two_chars = new two;

delete p1;

Need to allocate nested objects. Need to deallocate them correspondingly.

Oops !

Memory leak ! (garbage left around, cannot get to
the remaining blocks !!)

Page 18

Process Memory ImageProcess Memory Image

run-time heap (via new)

program code

data

Stack (automatic allocations)

0

Dynamic Memory
Allocator requests
memory from the heap.
Heap grows upwards

Automatic variables are
allocated memory on the
stack.
Stack grows downwards

Dynamic (Heap) Memory Allocator
Summary: Not like Java
Dynamic (Heap) Memory Allocator
Summary: Not like Java

No garbage collectionNo garbage collection

Operator Operator newnew is still a highis still a high --level request such aslevel request such as
“I’d like an instance of class “I’d like an instance of class StringString ””

Try to think about it low levelTry to think about it low level
� You ask for n bytes (the sizeof that type/class)

� You get a pointer (memory address) to the allocated object

Page 19

Heap Allocator InternalsHeap Allocator Internals

p1 = new four;

p2 = new five;

p3 = new six;

delete p2;

p4 = new six; //cannot allocate a block of 6 bytes
//this allocation fails due to
//“no more heap space”

Memory allocated in a contiguous block. External Fragmentation: when
enough aggregate heap memory, but no single free bl ock is large enough.

Automatic Allocator InternalsAutomatic Allocator Internals

Automatic allocation of variables occurs on the sta ckAutomatic allocation of variables occurs on the sta ck

We’ll learn how the stack works nextWe’ll learn how the stack works next

