Structures

Data aggregates
Like classes (in Java) except usually contain no
Structure members are public (we'll learn this late

struct student_data

{
char name[30];
int age;
int sid

} /*<==DO NOT FORGET the semicolon */

func

)

typedef

typedef <type definition> new_type_name;

struct
{
char name[30];
int age;
int sid ;

student_data

typedef struct student_data student;

typedef

typedef <type definition> new_type_name;

typedef struct student_data

{
char name[30];
int age;
int sid ;

} student; //another way to write the typedef

Structures

#include <iostream >

typedef struct student_data

{
char name[30];
} student;

int main(int argc ,
student amza; //or
cin >> amzaname;

char * argv []) {

struct student_data amza;
cin >> amza.age;
cin >> amza. sid ;
cout << ‘“name ="<<

amza.name << “, age =" << amza.age <<

return 0O;

endl ;

Page 1

Pointers

Topics
= Simple memory allocation and addressing
® Pointers
o Example Mechanisms
e Operators for use with pointers
= Dynamic memory allocation

Harsh Reality

Memory Matters

Memory is not unbounded
m |t must be allocated and managed

Memory referencing bugs especially pernicious
m Effects are distant in both time and space (e.g., a ccessing
an uninitialized variable).

Memory Management

A variable lives in some memory location for some time

Memory is allocated to variables in two ways

m Automatic allocation: through variable declaration
® e.g., inti; //allocates 4 bytes for i upon enter ing scope/function

= Dynamic allocation: using new
® e.g., new double; //allocates 8 bytes upon callin g new

Scope = Enclosing block for a variable - could be a func
or

artificially created by using { inti; } within func body

Memory Management

A variable lives in some memory location for some time

The variable lifetime is
m Automatic allocation: within scope
® e.g., inti; //while enclosing function instantiati on is active
= Dynamic allocation: until programmer explicitly fre es block
® e.g., new double; //until program calls delete (ou tlives scope)

Page 2

Memory layout and addresses Pointers

Definitions:
Example using automatic allocation: “Pointers are variables that hold a memory address”
int x =5,y = 10; //automatic vars e.g., a pointer p contains an address addr
IO e, ()= e The memory address addr contains another variable var

charc='c,d="d;

We say that pointer p “points to” variable var

4300 4304 4308 4312 /‘ f
4317
4316
Pointers Pointer Initialization/Assignment
Definitions: Q: How do we get the memory address of a variable ?
“Pointers are variables that hold a memory address” A: the “get address” operator: &

We say that pointer p “points to” variable var
floatf; //variable of type float

float *p; //pointer to variable of type float
Declarations: p = &f;
floatf; /I/variable of type float

float *p; //pointer to variable of type float

Page 3

Data Representations (revisited)

Sizes of C++ Objects (in Bytes)

Pointer Dereferencing

Q: Get the value of the variable “pointed -to” by pointer

m Data Type Compaq Alpha Typical Intel 1A32 A: the “indirection” operator: *
e int 4 4 4) .
e long int 8 4 4
e char 1 1 1 A
e > 2 2 floatf=3.2; //variable of type float
o float 4 4 4 e . .
. double s s s float *p; /Ipointer to variable of type float
® char* 8 4 4 p = &f;
Y ST cout << *p; /lprints the var “pointed -to” by p
“Word Size” (Convention) /l (i.e., var at address p)
m Size of integer data (i.e., typically 4 bytes)
Using Pointers (1) Pointer Dereferencing
float f; /* data variable */ Q: Get the value of the variable “pointed -to” by pointer
1l “p; F* poi iable */ N .
oat 7P polntervariable A: the “indirection” (a.k.a. “dereferencing”) operator o*
f p any float)
L2] [] R A
g float *p; /Ipointer to variable of type fl oat
4300 4304 an ress
Y *n=3.2; IIWRONG !!

p =&f; I* & = address operator */

f p

4300 4304

/IDereferencing an unitialized pointer
/[Typically results in SEGFAULT (bombing)

Page 4

Pointer Dereferencing

Pointers made easy (2)

float f; [* data variable */
Q: Get the value of the variable “pointed -to” by pointer float *p=a&f; /* initializing pointer variable */
A: the “indirection” operator' * *n=32; I* use of indirection operator */
f p
float f; IIvariable of type float _—_
float *p = &f; inter to variable of fl
oat *p = &f; //pointer to variable of type floa t 4300 4304
p=3.2 /ILHS is the var “pointed -to” by p float g =*p; [+ indirection: g is now 3.2 */
cout << f: //prints the value of var *n=13; I* f becomes 1.3 but g is still 3.2 */
f p g
Pointers made easy (2) The = Operator (instead of * and .)
student amza; [* data variable */ student amza; [* data variable */
student* p; I* pointer variable */ student* p; I* pointer variable */
p=& amza; I* use of indirection operator */ p=& amza; I* use of indirection operator */
. p < sid =99; /* indirection: amza. sid is now 999*/
p 2 age=17; I* amzaage is 17 */

(*p). sid =99; /* indirection: amza. sid is now 999*/

(*p).age = 17; I* amzaage is 17 */
cin >> (*p).name; /* say we input “CA" */

cin >>p <> name; /*say we input “CA" */

Page 5

Dynamic Memory Allocation

Java manages memory for you, C++ does not
m |n Java programmer allocates with new, but does not free
space (garbage collection in Java)
m C++ requires the programmer to explicitly allocate and
deallocate memory

m Memory can be allocated dynamically during run-time with
new and deallocated (freed) using delete

Memory

Memory allocated with new, de -allocated with delete

new returns address of (pointer to) allocated block

Allocated block Free block D Bicelbyie
(4 bytes) (3 bytes) D Allocated byte

The memory allocator provides an abstraction of memo ry as a set of blocks

Use of New/Delete

new double;

m |f successful:
@ Returns a pointer to a memory block of at least sizeof

(double) bytes, i.e. 8, (typically) aligned to 8-byte bounda ry.

delete p;

m Returns the block pointed to by p to pool of available
memory

m p must come from a previous call to new.

new

Allocates memory in the heap
m Lives between function invocations

Examples
m Allocate an integer
e int *iptr =new int;
m Allocate a structure
e struct student_data* amzaptr = new student;
(same as: student* amzaptr = new student;)

(same as:
student* amzaptr = new struct student_data;)

Page 6

delete

Deallocates memory in heap.
Pass in a pointer that was returned by new.

Examples
m Allocate an integer
eint* iptr =new int;
® delete iptr;
m Allocate a structure
@ struct student_data*
® delete amzaptr;

amzaptr = new student;

Caveat: don't free the same memory block twice!

Examples

typedef struct
{

char name[30];

student_data

} student;

typedef struct two_chars {
char first_char;
char second_char;
} two;
typedef struct five_chars {
char first_char;
char second_char;
... char fifth_char;

} five;

Allocation/Dealloc. Examples

pl=new int;

p2 = new struct five_chars;

p3 = new struct six_chars;

delete p2;

p4 = new struct two_chars;

Allocation/Dealloc. Examples

pl=new int;

p2 = new five;

p3 = new six;

delete p2; CTTTTITTT

p4 = new two;

Page 7

Pointer Declarations

int *p1; five *p2; six *p3; two *p4;

pl=new int;

L1
t o
L1

p2 = new five;

p3 = new six; LI TTITITTT

delete p2; CTTTTITTT

P4 = new two; (T T N T [e 7]

Dynamic Allocation Example

wvoid foo(int n, int m) {
int i, *p; //automatic allocation

I+ dynamically allocate a block of 4 bytes */
if ((p = new int) == NULL) {

cerr << “allocation failed";

exit(0);

*p=5;
I* print the content of the newly allocated space * !
cout << *p << endl;
i=*p;
I* print the content of i */

cout <<i<<end;

delete p; /* return 4 bytes to available memory */
/* cannot access this space with *p anymore */

I* print the content of i */
cout <<i<< endl;

}

How about pointers inside structs ?

typedef struct four_chars {
char first_char;
char second_char;
... char fourth_char;
}four;
typedef struct four_plus_two_chars {

four * first_four_chars
two * last_two_chars;
}four_plus_two;

How about pointers inside structs ?

Need to allocate nested objects. Need to deallocate them correspondingly.
pl = new four_plus_two;
LTI ITTIIIT I]
p2 = new four; p1->first_four_chars = p2;
LTI ITTI I I]
p3 = new two; pl->last_two_chars = p3;
CLTTTTTITTIT T TT]

delete p1;

QOops !

Memory leak ! (garbage left around, need to delete all
allocated blocks)

Page 8

Easy fix because we kept p2 and p3

Need to allocate nested objects. Need to deallocate
pl = new four_plus_two;
CITTTTIITTITIIITIITIT]

p2 = new four; p1->first_four_chars = p2;

p3 = new two; pl->last_two_chars = p3;

them correspondingly.

delete p2;

delete p3;

delete p1;

Usually only pointer to “top” is kept

Need to allocate nested objects. Need to deallocate
pl = new four_plus_two_chars; (“top” pointer to obj

pl->first_four_chars = new four;

pl->last_two_chars = new two;

delete p1;

QOops !

Memory leak ! (garbage left around, cannot get to
the remaining blocks !1)

them correspondingly.

ect)

Process Memory Image

Automatic variables are
allocated memory on the
stack.

Stack grows downwards

Stack (automatic allocations)

Dynamic Memory f
Allocator requests
memory from the heap.
Heap grows upwards

run-time heap (via new)

data

program code

Dynamic (Heap) Memory Allocator
Summary: Not like Java

No garbage collection

Operator new is still a high -level request such as
“I'd like an instance of class ~ String "

Try to think about it low level
m You ask for n bytes (the sizeof that type/class)

m You get a pointer (memory address) to the allocated object

Page 9

Heap Allocator Internals

Memory allocated in a contiguous block. External Fragmentation:
enough aggregate heap memory, but no single free bl

pl = new four;

p2 = new five;

(ITTTIT T TIT]
p3 = new six;

CITT T TT e 7
delete p2;

p4 = new six; //cannot allocate a block of 6 bytes
/lthis allocation fails due to
/I“no more heap space”

when

ock is large enough.

Automatic Allocator Internals

Automatic allocation of variables occurs on the sta
We'll learn how the stack works next

ck

Page 10

