
Page 1

Function Calls and Stack
Allocation

Function Calls and Stack
Allocation

TopicsTopics
� Stack Pushing and Popping

� Role of Stack in Call Chain

� Stack (Automatic) Allocation

� Parameter Passing

StackStack
� Region of memory managed

with stack discipline

� Grows toward lower
addresses

� Stack pointer indicates
lowest stack address

Stack
Pointer

sp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack PushingStack Pushing
PushingPushing

Add something at the top Add something at the top
of the stackof the stack

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack
Pointer

sp

Stack PoppingStack Popping
PoppingPopping

Throw away element at the Throw away element at the
top of the stacktop of the stack

Stack
Pointer

sp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Page 2

Procedure Control FlowProcedure Control Flow
� Use stack to support procedure call and return

Stack Allocated in Stack Allocated in FramesFrames
� state for single procedure instantiation

�Local variables
�Arguments
�Other (e.g., for return)

� all state goes away when procedure returns

Call Chain ExampleCall Chain Example
Code StructureCode Structure

yoo(…)
{

•
•
who();
•
•

}

who(…)
{

• • •
amI();
• • •
amI();
• • •

}

amI(…)
{

•
•
amI();
•
•

}

yoo

who

amI

amI

amI

Call Chain

� Procedure amI
recursive (calls itself)

amI

Stack
Pointer

sp

yoo

who

proc

Stack
“Top”

Stack FramesStack Frames
ContentsContents

� Local variables

� Return information

� Temporary space

ManagementManagement
� Space allocated when enter

procedure

� Deallocated (freed) when return

amI

Stack
Pointer

sp

yoo

•
•
•

Stack OperationStack Operation

yoo

Call Chain
yoo(…)
{

•
•
who();
•
•

}

Page 3

Stack
Pointer

sp

yoo

who

•
•
•

Stack OperationStack Operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

}
Stack

Pointer
sp

yoo

who

amI

•
•
•

Stack OperationStack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

Stack
Pointer

sp

yoo

who

amI

•
•
•

Stack OperationStack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI
amI

Stack
Pointer

sp

yoo

who

amI

•
•
•

Stack OperationStack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI
amI

amI

amI

Page 4

Stack
Pointer

sp

yoo

who

amI

•
•
•

Stack OperationStack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI
amI

amI

Stack
Pointer

sp

yoo

who

amI

•
•
•

Stack OperationStack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

Stack
Pointer

yoo

who

•
•
•

Stack OperationStack Operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

Stack
Pointer

sp

yoo

who

amI

•
•
•

Stack OperationStack Operation

yoo

who

Call Chain
amI(…)
{

•
•
•
•

}
amI

amI

amI

amI

Page 5

Stack
Pointer

sp

yoo

who

•
•
•

Stack OperationStack Operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

amI

yoo(…)
{

•
•
who();
•
•

}

Stack
Pointer

sp

yoo

•
•
•

Stack OperationStack Operation

yoo

Call Chain

who

amI

amI

amI

amI

Function Parameters Function Parameters

Function arguments are passed “by value”.Function arguments are passed “by value”.

What is “pass by value”?What is “pass by value”?
� The called function is given a copy of the argument s.

What does this imply?What does this imply?
� The called function can’t alter a variable in the c aller

function, but its private copy.

An exampleAn example

Example 1: swap_1Example 1: swap_1

void swap_1(int a, int b)
{

int temp;
temp = a;
a = b;
b = temp;

}

Q: Let x=3, y=4,
after swap_1(x,y);
x =? y=?

A1: x=4; y=3;

A2: x=3; y=4;

Page 6

Process Memory ImageProcess Memory Image

run-time heap (via new)

program code

data

Stack (automatic allocations)

0

Dynamic Memory
Allocator requests
memory from the heap.
Heap grows upwards

Automatic variables are
allocated memory on the
stack.
Stack grows downwards

Dynamic (Heap) Memory Allocator
Recap
Dynamic (Heap) Memory Allocator
Recap
Operator Operator newnew is still a highis still a high --level request such aslevel request such as

“I’d like an instance of class “I’d like an instance of class StringString ””

Try to think about it low levelTry to think about it low level
� You ask for n bytes (the sizeof that type/class)

� You get a pointer (memory address) to the allocated object

� This allocation is on the heap

� You need to free all memory blocks you allocated
� A delete for each corresponding new

Automatic Allocator InternalsAutomatic Allocator Internals

Automatic allocation of variables occurs on the sta ckAutomatic allocation of variables occurs on the sta ck

We’ll learn how automatic allocation works nextWe’ll learn how automatic allocation works next

Passing Arguments by ValuePassing Arguments by Value
Upon function call, the Upon function call, the

argument values are copied argument values are copied
(byte(byte --byby--byte) onto stackbyte) onto stack
� Push args on stack for the

function you are about to call

Space for local variables is Space for local variables is
allocated on stackallocated on stack
� Local variables allocated

automatically in new frame

� Disappear when frame pops

off the stack

Local
Variables

Local
Variables

Copy Args
for who

Caller
(yoo)

Copy Args
for amI

Callee
(who)

amI

Page 7

yoo()
{ int y1,y2;

•
•
who(y1,y2);
•
•

}

Stack
Pointer

sp

|y1|y2|
yoo

•
•
•

Frame
Pointer

fp

Pass Args by ValuePass Args by Value

yoo

Call Chain

who(int a, int b)
{

int w1,w2;
• • •
amI();
• • •
amI();
• • •

}

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

•
•
•

Pass Args by Value (Copy)Pass Args by Value (Copy)

yoo

who

Call Chain

who(int a, int b)
{

int w1,w2;
• • •
amI(a);
• • •
amI(b);
• • •

}

yoo()
{ int y1,y2;

•
•
who(y1,y2);
•
•

}

who(int a, int b)
{

int w1,w2;
• • •
amI(a);
• • •
amI(b);
• • •

}
Stack

Pointer
sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

| i|
amI

•
•
•

Pass Args by Value on CallPass Args by Value on Call

yoo

who

amI

Call Chain

amI(int i)
{

•
•
amI(i);
•
•

}

amI(int i)
{

•
•
amI(i);
•
•

}

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

| i|
amI

•
•
•

Pass Args by Value on CallPass Args by Value on Call

yoo

who

amI

Call Chain

| i|
amI

amI

Page 8

amI(int i)
{

•
•
amI(i);
•
•

}

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

| i|
amI

•
•
•

Pass Args by Value on CallPass Args by Value on Call

yoo

who

amI

Call Chain

| i|
amI

amI

amI
| i|
amI

amI(int i)
{

•
•
amI(i);
•
•

}

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

| i|
amI

•
•
•

Stack Pop on ReturnStack Pop on Return

yoo

who

amI

Call Chain

| i|
amI

amI

amI

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

| i|
amI

•
•
•

Stack Pop on ReturnStack Pop on Return

yoo

who

amI

Call Chain
amI(int i)
{

•
•
amI(i);
•
•

}

amI

amI

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

•
•
•

Stack Pop on ReturnStack Pop on Return

yoo

Call Chainwho(int a, int b)
{

int w1,w2;
• • •
amI(a);
• • •
amI(b);
• • •

}

who

amI

amI

amI

Page 9

who(int a, int b)
{

int w1,w2;
• • •
amI(a);
• • •
amI(b);
• • •

}

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

| i|
amI

•
•
•

Pass Args by Value on CallPass Args by Value on Call

yoo

who

Call Chain

amI(int i)
{

•
•
amI(i);
•
•

}

amI

amI

amI

amI

Stack
Pointer

sp

|y1|y2|
yoo

| a| b|
|w1|w2|

who

•
•
•

Stack Pop on ReturnStack Pop on Return

yoo

Call Chainwho(int a, int b)
{

int w1,w2;
• • •
amI(a);
• • •
amI(b);
• • •

}

who

amI

amI

amI

amI

yoo()
{ int y1,y2;

•
•
who(y1,y2);
•
•

}

Stack
Pointer

sp

|y1|y2|
yoo

•
•
•

Stack Pop on ReturnStack Pop on Return

yoo

who

Call Chain

amI

amI

amI

amI

SummarySummary

The Stack Makes Function Calls WorkThe Stack Makes Function Calls Work
� Private storage for each instance of procedure call

� locals + arguments are allocated on stack

� Can be managed by stack discipline
� Procedures return in inverse order of calls

� That’s how automatic allocation works
� Local vars allocated on new frame upon entering func tion call
� Vars (including arg copies) freed automatically upon return

Do you see now why you cannot delete an Do you see now why you cannot delete an
automatically allocated object ? automatically allocated object ?

Page 10

Summary (contd.)Summary (contd.)

Do you see now why you cannot delete an Do you see now why you cannot delete an
automatically allocated object ?automatically allocated object ?

(e.g. (e.g. intint i; i; int int * pi = &i; * pi = &i; delete pi is WRONGdelete pi is WRONG !) !)

Because automatically allocated objects live Because automatically allocated objects live
temporarily on the stack. You cannot control lifeti me. temporarily on the stack. You cannot control lifeti me.

You can only free objects that you allocated with n ew You can only free objects that you allocated with n ew
(on the heap).(on the heap).

The two The two allocators allocators (dynamic & automatic) are different.(dynamic & automatic) are different.

Function Parameters Passing (contd) Function Parameters Passing (contd)

The only mechanism in C++ is to pass arguments by The only mechanism in C++ is to pass arguments by
value (push/copy value (push/copy args args on stack) !!!on stack) !!!

So how can we make swap work ?So how can we make swap work ?
� A: The called function is passed a pointer (address) of a var .

What does this imply?What does this imply?
� The called function can alter that variable var through its

pointer

� This fakes a mechanism called “pass args by reference ”
present in other languages (e.g., Pascal).

An exampleAn example

Example 2: swap_2Example 2: swap_2

void swap_2(int *a, int *b)
{

int temp;
temp = *a;
*a = *b;
*b = temp;

}

Q: Let x=3, y=4,
after
swap_2(&x,&y);
x =? y=?

A1: x=3; y=4;

A2: x=4; y=3;

Parameters Passing “by Reference” Parameters Passing “by Reference”

1.1. The stack mechanism works unchangedThe stack mechanism works unchanged

2.2. The pointer (The pointer (argarg) is still copied (byte by byte) on) is still copied (byte by byte) on
stack as usual !stack as usual !

3.3. So the pointer itself is still passed “by value”So the pointer itself is still passed “by value”

4.4. However, the However, the callee callee can directly access that memory can directly access that memory
addressaddress

thus can change the var through its pointer

5.5. If If argarg is large object (e.g., is large object (e.g., structstruct student_data) student_data)
should pass its address (to avoid large copies)should pass its address (to avoid large copies)

Page 11

Compilation and LinkingCompilation and Linking

TopicsTopics

Separation of function code Separation of function code
into .cc and .hinto .cc and .h
� Compiling

� Object files

� Linking different files

A Simplistic Program Translation
Scheme (seen up to now)
A Simplistic Program Translation
Scheme (seen up to now)

Problems:
• Efficiency: small change requires complete recompil ation
• Modularity: hard to share common functions (e.g., c out, sort)

Solution:
• Use separate files for different functionalities (c ode is “modular”)
• Linker

Translator (compiler)

m.cc

p

ASCII (text) source file

Binary executable object file
(memory image on disk)

g++ -o p m.cc

Example C ProgramExample C Program

int e=7;

int main() {
...

z = squared(y);
cout << e;

return 0;
}

m.cc sq.cc

extern int e;

int squared(int y) {
return y*y;

}

A Better Scheme Using a LinkerA Better Scheme Using a Linker

Linker (ld)

Translators

m.cc

m.o

Translators

sq.cc

sq.o

p

Separately compiled
object files

Executable object file (contains code
and data for all functions defined in
m.cc and sq.cc)

Page 12

Translating the Example Program Translating the Example Program

g++g++ coordinates all steps in the translation and linkin g coordinates all steps in the translation and linkin g
process. process.
� Invokes preprocessor, compiler, assembler (as), and linker

(ld).

� Passes command line arguments to appropriate phases

Example: create executable Example: create executable pp from from m.ccm.cc and and sq.ccsq.cc ::

�g++ -c m.cc
�g++ -c sq.cc
�g++ m.o sq.o –o p

This creates m.o
This creates sq.o
Links m.o and sq.o

Translating the Example Program Translating the Example Program

g++g++ coordinates all steps in the translation and linkin g coordinates all steps in the translation and linkin g
process. process.
� Invokes preprocessor, compiler, assembler (as), and linker

(ld).

� Passes command line arguments to appropriate phases

Example: create executable Example: create executable pp from from m.ccm.cc and and sq.ccsq.cc ::

�g++ -c m.cc
�g++ -c sq.cc
�g++ m.o sq.o –o p

This creates m.o
This creates sq.o
Links m.o and sq.o

Can do it like this too:
�g++ m.cc sq.cc –o p
But:
If one file changes,all need to be recompiled,long compile time

What Does a Linker Do?What Does a Linker Do?

Merges object filesMerges object files
� Merges multiple (. o) object files into a single executable

object file that can be loaded and executed.

Resolves external referencesResolves external references
� As part of the merging process, resolves external

references.
� External reference : reference to a symbol defined in another

object file.
� External references can be to either code or data

» code: a(); /* reference to symbol a */

» data: extern int x; /* reference to symbol x */

Why Linkers?Why Linkers?

ModularityModularity
� Program can be written as a collection of smaller s ource

files, rather than one monolithic mass.

� Can build libraries of common functions (more on th is later)
� e.g., Math library, iostream library

EfficiencyEfficiency
� Time:

� Change one source file, recompile that one !, and t hen relink.
� No need to recompile other source files

» e.g., if Bahlul changes sort, then only his file wi ll
be recompiled to produce his .o, not our own

Page 13

So what goes in .cc and in .h ?So what goes in .cc and in .h ?

int main() {
Listnode *head;

...
z = squared(y);

head = free_list(head);

return 0;
}

main.cc squared.cc

int squared(int y) {
return y*y;

}

typedef struct list_node {
. . .
} Listnode;

Listnode *free_list(Listnode *l){
..//ex5 use no aux pointers

//ex4&5 prize Visual C++ free
}

list.cc

Example C++ ProgramExample C++ Program

int main() {
Listnode *head;// Listnode ??

...
z = squared (y);

head = free_list (head);

return 0;
}

main.cc squared.cc

int squared(int y) {
return y*y;

}

typedef struct list_node {
. . .
} Listnode; //move to list.h

Listnode *free_list(Listnode *l){
.. //ex5 use no aux pointers

}list.cc

Example ProgramExample Program

#include “squared.h”

int e=7;

int main() {
Listnode *head;

...
z = squared(y);

head = free_list(head);

return 0;
}

main.cc

int squared(int y);

squared.h

squared.cc

#include “squared.h”

int squared(int y) {
return y*y;

}

Example ProgramExample Program

#include “squared.h”
#include “List.h”
int e=7;

int main() {
Listnode *head;

...
z = squared(y);

head = free_list(head);

return 0;
}

main.cc List.h

#include “List.h”

Listnode *free_list(Listnode *l){
.. //ex5 use no aux pointers

}

list.cc

typedef struct list_node {
. . .
} Listnode;

Listnode *free_list(Listnode *l);

Page 14

How It WorksHow It Works

#include “List.h”
#include “squared.h”
int e=7;

int main() {
Listnode *head;

...
z = squared(y);

head = free_list(head);

return 0;
}

main.cc List.h

int squared(int y);

squared.h

typedef struct list_node {
. . .
} Listnode;

Listnode *free_list(Listnode *l);

Preprocessor includes all text in List.h and square d.h in
main.cc. We just separate declarations out for use by others
and for the benefit of compiler/linker.

Encapsulation IntroductionEncapsulation Introduction

Implementation details hidden from UserImplementation details hidden from User

Class implementation

User

In
te

rf
ac

e

Encapsulation IntroductionEncapsulation Introduction

Implementation details hidden from UserImplementation details hidden from User

Programmers collaborate (use each other’s code thru Programmers collaborate (use each other’s code thru funcfunc calls)calls)

Class1 implementation
(by Bahlul)

In
te

rf
ac

e

User

In
te

rf
ac

e

Class2 implementation
(by Salam)

Function call

EncapsulationEncapsulation

Implementation details (in Set.cc) hidden from UserImplementation details (in Set.cc) hidden from User

Interface (in Set.h) is public Interface (in Set.h) is public -- given to Usergiven to User

Class implementation
(e.g., Set.cc)

User

In
te

rf
ac

e
(S

et
.h

)

int sort(){
…
}

Page 15

How to Encapsulate (first step) ?How to Encapsulate (first step) ?

Interface = spec (how to use) put in a header fileInterface = spec (how to use) put in a header file

We’ll see more of this with classes (e.g., private/ public) We’ll see more of this with classes (e.g., private/ public)

User

In
te

rf
ac

e
(h

ea
de

r
fil

e)

Class implementation

Function
bodies
(.cc file)

Public function headers

Public type definitions (e.g., class definition,
struct definition, typedefs)

+/- of Encapsulation ?+/- of Encapsulation ?

+ User code remains same if class + User code remains same if class implemimplem changeschanges

-- User code might run slower without apparent reasonUser code might run slower without apparent reason

#include “Set.h”

int sort(..) {
//changed from

//quick to bubble sort
}

#include <iostream>
#include “Set.h”

int main () {
…

sort(…);}

In
te

rf
ac

e
in

 S
et

.h

Class implementation
(in Set.cc)

Bottom Line: Code is spread out over several .cc an d .h files
Changes to implementation are transparent to user
Only the file that changes needs to be recompiled

User code (inventory.cc)

