
Pointers in C

6 February, 2004 Alexander Smith

Pointers in C

Notation First
To make this explanation clearer, we’re going to look some examples of source code, and
draw pictures to show what is happening in memory. To keep things consistent, we’re going
to develop a pictorial notation that will be used throughout this discussion. Let’s start off with
an example.

int main(void) {
 int a = 7, b = 5, c;
 c = a - b;
 printf(“%d\n”, c);
 return 0;
}

Source Code 1

Diagram 1

This is a very simple program. The diagram on the right shows what is happening in memory.
The rectangular boxes indicate memory locations. The value inside a box indicates the value
in that memory location. The value under a box is the memory address of that box. In this
case, we have three boxes – one for each of the three variables in main(). The name of each
variable has been identified to the left of each box. Not all boxes will have names: memory
locations allocated by malloc() will be nameless. Finally, all of these boxes represent local
variables within the function main(). We have represented this with a rounded rectangle.

What’s In a Pointer? – Address-of and Dereference Operators
Using the notation above, a pointer is nothing more than a box that contains a value that is
underneath some other box. There are two basic operators for dealing with pointers in C.
One is the address-of operator ‘&’. If you give it a box, it returns the value underneath it. The
other operator is the dereference operator ‘*’. This does exactly the opposite thing. If you give
it a box, it takes the value inside that box, then goes and finds the other box that has that
value underneath it. Here’s an example:

 1: int main(void) {
 2: int num;
 3: int *pNum;
 4: num = 57;
 5: pNum = #
 6: *pNum = 23
 7: printf(“%d\n”, num);
 8: return 0;
 9: }

Source Code 2

Diagram 2a

After line 5.

Diagram 2b

At end.

Pointers in C

6 February, 2004 Alexander Smith

Look first at Diagram 2a. This shows the state of the program memory just after line 5 has
been executed. The variable num was assigned the value 57 at line 4. At line 5, the address-of
operator is used to retrieve the address of the variable num, and store this value in pNum.
Since num resides at memory location 1000 (as is shown under the box), the value 1000 is
put in pNum. pNum is now “pointing to” num. This has been indicated on the diagram with
an arrow. Note how the variable pNum was declared in line 3. The asterisk (*) there is not the
dereference operator. In this context, it is used to tell the C compiler that pNum is not an int,
but is a pointer to an int (an int*). Do not think of the arrow as a pointer. It’s better to
think of the box pNum as the pointer. A pointer is just like any other variable; the arrow is just
there to help you find the box it is pointing to.

Now look at Diagram 2b. This shows the program memory when the program is finished. The
dereference operator is used at line 6. *pNum tells the compiler to take the value inside pNum
(which is 1000), and go get the box with that value underneath it. That box happens to be
the one labelled “num” in this case. The rest of line 6 tells the compiler to put the value 23
inside that box. If you run this program, the number 23 will be printed. The value of num has
been changed.

Parameter Problems
Suppose we need to write a function that changes the value of one of its parameters. We
can’t do this directly, because in C, parameters are passed by value. Here is a code example
that does not work properly. What we intend is for the function changeBad() to change the
value of num in main(). This does not happen.

 1: void changeBad(int value) {
 2: value = 23;
 3: }
 4: int main(void) {
 5: int num = 17;
 6: change(num)
 7: printf(“%d\n”, num);
 8: return 0;
 9: }

Source Code 3

Code to change a parameter va lue (incorrect).

Diagram 3a

After line 6:1.

Diagram 3b

After line 6:2.

Diagram 3c

At end.

Pointers in C

6 February, 2004 Alexander Smith

In Diagram 3a, we are at line 2 – just inside the call to changeBad() at from 6. Notice that we
have two boxes in the picture: num in main(), and value in changeBad(). These are two
different boxes, at two different memory locations. This illustrates the fact that parameters are
passed by value. In Diagram 3b, changeBad() modifies the value of value. But value is a
parameter of changeBad(); so, when we return from changeBad() in Diagram 3c, the value
of num is left unchanged.

Source Code 3 does not do what we want it to. Source Code 4 corrects the problem:

 1: void change(int *pValue) {
 2: *pValue = 23;
 3: }
 4: int main(void) {
 5: int num = 17;
 6: change(&num)
 7: printf(“%d\n”, num);
 8: return 0;
 9: }

Source Code 4

Code to change a parameter va lue (correct).

Diagram 4a

After line 6:1.

Diagram 4b

After line 6:2.

Diagram 4c

At end.

Here, the parameter to change() is not an int, but an int* (an int pointer). In Diagram 4a,
pValue has the value 1000, which is the address of num. In Diagram 4b, we have just
executed line 2. Line 2 dereferences pValue, and assigns 23 to the result. Dereferencing
pValue (taking *pValue) returns the “box” at address 1000, which is the box labelled
“num”. Therefore, when we assign a value to this box, we are changing the value of num. In
Diagram 4c, change() has exited, and the value of num has been changed.

Double Trouble
We’ve seen some examples of what pointers are used for. Now we’re going to look at some
examples of where you might want to use double pointers. Source Code 5 is an example of
a data structure you might use for a singly-linked list. Suppose we want to write a function
to add a new item to the head (beginning) of the list. Here, we’re going to run into the same
problem we saw in the previous example. Source Code 6 is an example of a first attempt at
writing a function to insert a new item at the head of the list.

Pointers in C

6 February, 2004 Alexander Smith

typedef struct node_struct {
 int data;
 struct node_struct *next;
} node_t;

Source Code 5

Linked-list data structure.

 1: void ListInsertBad(node_t *head, int newData) {
 2: node_t *newHead = malloc(sizeof(node_t));
 3: newHead->data = newData;
 4: newHead->next = head;
 5: head = newHead;
 6: }
 7: int main(void) {
 8: node_t *myList = NULL;

 /* Assume we have some code here that puts some items in the list,

 * so that it now contains the entries {1, 2, 3}. */
20: ListInsertBad(myList, 5);
21: printf(“%d\n”, myList->data);
22: return 0;
23: }

Source Code 6

Code to insert an item in a linked-list (incorrect).

Diagram 6a

After line 20:4.

Diagram 6b

After line 20:5.

Figure 6a shows the state of the program after executing line 4 in ListInsertBad(). At this point,
we have allocated a new node, and connected the rest of the list to it. Then, in Figure 6b,
we have just executed line 5. Now newHead points to the new head of the list. So far, this
is what we want. We have inserted a new item at the beginning of the list, and we have our
variable newHead pointing to it. But what happens when we return from ListInsertBad()? This
is shown in Figure 6c.

Pointers in C

6 February, 2004 Alexander Smith

Diagram 6c

At end.

In main(), myList still points to the original head of the list – not the new one. The new item
we added is still taking up memory, but we don’t have any pointers that point to it, so we
have no way of accessing it. When you run this program, the number 1 will be printed, not
the number 5. ListInsertBad() fails to work for exactly the same reason that changeBad() fails.
Remember that parameters are passed in by value. On line 5, when we set head to equal
newHead, we are only changing the value of the head in ListInsertBad(). This is totally
separate from the value of myList in main(). Look again at Source Code 3. myList in main()
and head in ListInsertBad() (from Source Code 6) are analogous to num in main() and value
in changeBad() (from Source Code 3), respectively.

Make sure that you understand why ListInsertBad() does not work and how it is similar to
changeBad() before reading any further.

The problem we encountered in Source Code 3 was that, since parameters are passed by
value, num was copied when we passed it into changeBad(), so we could not change num in
main() by changing value in changeBad(). We fixed this problem in Source Code 4 by
changing the parameter to an int* instead of just an int. Let’s see if the same approach can
be used to fix ListInsertBad(): instead of passing in a node_t* parameter, we will pass in a
pointer to a node_t* parameter – a node_t**. The result is shown here:

Pointers in C

6 February, 2004 Alexander Smith

 1: void ListInsert(node_t **pHead, int newData) {
 2: node_t *newHead = malloc(sizeof(node_t));
 3: newHead->data = newData;
 4: newHead->next = *pHead;
 5: *pHead = newHead;
 6: }
 7: int main(void) {
 8: node_t *myList = NULL;

 /* Assume we have some code here that puts some items in the list,

 * so that it now contains the entries {1, 2, 3}. */
20: ListInsert(&myList, 5);
21: printf(“%d\n”, myList->data);
22: return 0;
23: }

Source Code 7

Code to insert an item in a linked-list (correct).

Diagram 7a

After line 20:4.

Diagram 7b

After line 20:5.

Diagram 7c

At end.

Pointers in C

6 February, 2004 Alexander Smith

Figure 7a again shows the state of the memory after line 4. Once again, we have allocated
a new node and linked it to the former head of the list. This time, the parameter to ListInsert()
is a node_t** – a pointer to a node_t*. pHead does not point to the head of the list; it
points to the variable myList in main(). Now on line 5 we dereference pHead and assign
the value of newHead to the result. Dereferencing pHead gives us the box at memory
location 1000. When we assign the 5024 (the value in newHead) to this box, we are actually
changing the value of the variable myList in main(). You can see the result in Figure 7b.
When ListInsert() returns, myList will have been updated to point to the new head of the list,
which is the behaviour we originally intended.

Freedom at Last
There’s one last thing which needs to be mentioned. We have been talking about pointers
and memory addresses, and have shown some examples using malloc(). The memory that
is allocated by malloc() stays allocated until you free it. You do this by calling free() on
the pointer that malloc() had returned. This releases the memory allowing it to be re-
claimed by the system. It is important always to free memory that you have allocated once
you are done with it. If you don’t, then your program will allocate more and more memory
the longer it runs. This is called a “memory leak” – the free memory in your machine will
slowly leak away as your program runs. Eventually you will use up all the memory in your
machine. When this happens, your program will be terminated by the operating system with
an unpleasant error message. Always check your programs to make sure that you have
matched each call to malloc() with a call to free() somewhere else.

